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Abstract 

Background:  Zeaxanthin, a major xanthophyll pigment, has a significant role as a retinal pigment and antioxidant. 
Because zeaxanthin helps to prevent age-related macular degeneration, its commercial use in personalized nutritional 
and pharmaceutical applications has expanded. To meet the quantitative requirements for personalized treatment 
and pharmaceutical applications, it is necessary to produce highly purified zeaxanthin.

Results:  In this study, to meet the quantitative requirements for industrial applications, we generated a double 
knockout mutant which is gene-edited by the CRISPR-Cas9 ribonucleoprotein-mediated knock-in system. The 
lycopene epsilon cyclase (LCYE) was edited to the elimination of α-branch of xanthophyll biosynthesis in a knockout 
mutant of the zeaxanthin epoxidase gene (ZEP). The double knockout mutant (dzl) had a 60% higher zeaxanthin 
yield (5.24 mg L− 1) and content (7.28 mg g− 1) than that of the parental line after 3 days of cultivation. Furthermore, 
medium optimization improved the 3-day yield of zeaxanthin from the dzl mutant to 6.84 mg L− 1.

Conclusions:  A Chlamydomonas strain with the elimination of lutein production by gene editing using CRISPR-Cas9 
has been successfully developed. This research presents a solution to overcome the difficulties of the downstream-
process for the production of high-purity zeaxanthin.

Keywords:  Zeaxanthin production, Retinal pigment, CRISPR-Cas9, Lycopene epsilon cyclase, Chlamydomonas 
reinhardtii
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Background
As the major carotenoids, xanthophyll pigments absorb 
energy at wavelengths ranging between 400 and 530 nm, 
transmit this energy to the reaction center of the photo-
system, establish and maintain the structure of chloro-
plasts [1–3]. Zeaxanthin is one of the oxygen-containing 
xanthophyll pigments synthesized from β-carotene in 

most photosynthetic organisms. Under high-light condi-
tions, de-epoxidation of violaxanthin is induced by the 
pH difference across the thylakoid membrane, convert-
ing violaxanthin to zeaxanthin [1, 4]. In several organ-
isms zeaxanthin has been reported to have a significant 
role in the non-photochemical quenching mechanism 
that dissipates the excess energy of excited chlorophyll 
a as heat [4, 5]. Like in plant, zeaxanthin is also found 
in the animal retina, predominantly in the central fovea 
[6–8] and exists in two isoforms, zeaxanthin and meso-
zeaxanthin [9]. They filter blue light and protects photo-
receptors against photo-oxidative stress in retina [10, 11]. 
In connection with these biological functions, several 

Open Access

Microbial Cell Factories

*Correspondence:  esjin@hanyang.ac.kr
1 Department of Life Science, Research Institute for Natural Sciences, 
Hanyang University, 222, Wangsimni‑ro, Seongdong‑gu, Seoul 04763, 
Republic of Korea
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5691-0124
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12934-020-01480-4&domain=pdf


Page 2 of 9Song et al. Microb Cell Fact          (2020) 19:220 

studies have demonstrated that zeaxanthin is associated 
with the enhancement of visual performance [12, 13] 
and prevention of age-related macular degeneration [14, 
15]. Consequently, the commercial value of zeaxanthin 
has expanded from animal feed to nutritional supple-
ments and pharmaceutical preparations. In recent years, 
with the increase in the market, the importance of puri-
fication and quantification of zeaxanthin has emerged. It 
was noted that the amounts of zeaxanthin and lutein in 
supplements should be balanced to effectively increase 
macular pigment optical density [16] and that the intake 
needed by different individuals differs, depending on 
genetic and metabolic factors [11]. To meet the quanti-
tative requirements for personalized treatment and phar-
maceutical applications, it is necessary to produce highly 
purified zeaxanthin.

Chlamydomonas reinhardtii has been studied as a 
green microalgal model to elucidate cellular mechanisms 
such as photosynthesis, gene expression, and pigment 
biosynthesis [17, 18]. There are many laboratory strains of 
C. reinhardtii with unique characteristics; CC-4349 is the 
best host for pigment production, showing high growth 
rate and carotenoid productivity [19]. Due to deficien-
cies in its cell wall, it is easy to improve the strain’s abili-
ties via genetic engineering using transformation [20]. 
Using targeted mutagenesis by DNA-free CRISPR-Cas9 
ribonucleoprotein (RNP), we have generated knockout 
mutants of the zeaxanthin epoxidase gene [21]. In these 
ZEP mutants, constitutive accumulation of zeaxanthin 
and lutein was achieved. Although the possibility of 
commercial application of ZEP mutant was confirmed, 
purification of zeaxanthin from it was difficult because 
of the simultaneous production of lutein; lutein has a 
structure of (3R,3′R,6′R)-β,ε-carotene-3,3′-diol which 
is similar with zeaxanthin structure of (3R,3′R)-β,β-
carotene-3,3′-diol [8]. In addition, since α-carotene and 
β-carotene, which are precursors of lutein and zeaxan-
thin respectively, branch out from lycopene, competition 
for tetraterpene from the upstream pathway is inevita-
ble [22]. Therefore, specific production of zeaxanthin is 
required for high productivity and effective purification.

In this study, we generated double gene knockout 
mutants of C. reinhardtii using a CRISPR-Cas9 RNP-
mediated knock-in system. We targeted the lycopene 
epsilon cyclase encoding gene (LCYE) using the ZEP 
mutant as a parental line to inhibit the biosynthesis of 
α-carotene and generated several ZEP/LCYE double 
knockout mutants. We selected the best dKO strain for 
specific production of zeaxanthin based on growth rate 
and pigment productivity and compared zeaxanthin 
content and yield of this mutant and the parental strains 
under mixotrophic growth conditions. To increase zeax-
anthin productivity, we adjusted the concentrations 

of medium components essential for cell growth and 
improved cell density and biomass.

Results and discussion
Generation of double knockout mutants of C. reinhardtii
C. reinhardtii has been used as a model organism to 
study carotenoid synthesis and the pathways involved are 
well understood (Fig. 1). We previously generated single 
ZEP knockout mutants of CRISPR-Cas9 RNP-mediated 
knockout without using the hygromycin resistance gene 
as a selective marker in C. reinhardtii CC-4349 [21]. The 
absence of zeaxanthin epoxidase enabled zeaxanthin 
accumulation without high light induction, however, 
because of lutein production, it was difficult to efficiently 
purify zeaxanthin. In this study, to facilitate production 
and the purification of zeaxanthin, we used CRISPR-
Cas9 to disrupt the LCYE gene, which is involved in 
α-cyclization of lycopene, in the ZEP mutant as a paren-
tal line and generated ZEP and LCYE double knockout 
(dzl) mutants.

For target-specific mutagenesis, four sgRNA 
sequences were selected from the first exon of the 
LYCE gene. Each in  vitro assembled CRISPR-Cas9 
RNP combination was co-transformed with the aph7 
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Fig. 1  Schematic diagram of the carotenoid biosynthesis pathway in 
C. reinhardtii dzl mutant. Dashed arrow implies intermediate enzymes 
and products. The enzymes in red were targeted by CRISPR-Cas9 RNP 
mutagenesis. The grey or light grey-colored pigments were removed 
in the LCYE or ZEP knockout mutants, respectively. The bold arrow 
indicates that lycopene flux is concentrated in the dzl 
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gene, which is used for the easy selection by CRISPR-
Cas9-mediated knock-in strategy [23]. Among the four 
target sites, the fourth sgRNA showed high cleavage 
efficiency and produced three dzl mutants with differ-
ent insertions (Fig. 2). According to Sanger sequencing, 
in all three mutants, the cleavage occurred between the 
third and fourth base pairs before the PAM sequence, 
resulting in insertions in the LCYE gene (Fig. 2b). dzl1 
had a 94-bp insertion of the partial sequence (specifi-
cally, 3′ UTR region) of the aph7 gene, and the other 
two mutants had 1870-bp insertion of full-length aph7 
gene in either forward or reverse directions. The aph7 
gene used for the knock-in at the target site does not 
exclude the possibility of random integrations at a dif-
ferent location, which might cause the unexpected side 
effects of the undesired mutant phenotype. Therefore, 
an additional Southern blot analysis was carried out 
to assess the number of insertion events in the mutant 
genome. In Fig. 2c, Southern blot analysis revealed that 
dzl1 and dzl3 had more than two copies and dzl2 might 
have only one copy of the aph7 gene in the genome. 
Therefore, we further investigated the effect of the ran-
dom integrated extra aph7 gene in the mutant genome 
on the pigment profiles and growth behaviors.

To select the best strain for zeaxanthin production, we 
compared the growth and zeaxanthin productivity of the 
three dzl mutants. Because the expression of LCYE was 
inhibited, the dzl mutant could not synthesize carot-
enoids of the α-branch, which were intact in the ZEP 
mutant. It was shown that the gradual changes of pig-
ment profiles caused by the sequential CRISPR-Cas9 
knockout in Fig. 3. As predicted from the carotenoid syn-
thesis pathway, the ZEP mutant had the peaks of lutein 
and zeaxanthin, whereas the dzl mutant had zeaxanthin 
as the main carotenoid pigment. All of them grew slowly 
compared to the wild type during the exponential phase, 
but all mutants had similar cell numbers with the wild 
type at the end of growth (Fig. 4a). Under low-light con-
ditions, the wild type accumulated no detectable zeax-
anthin, whereas all dzl mutants produced over 5 mg L–1 
zeaxanthin (Fig.  4b). Because dzl1 showed the highest 
cell density and zeaxanthin yield, it was selected as the 
optimal zeaxanthin production strain and used in all sub-
sequent experiments under the name of dzl.

Zeaxanthin production in double knockout mutant
We compared the growth of the wild type and zeax-
anthin-accumulating mutant what we selected above 
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Fig. 2  Characterization of dzl mutants. a Genomic PCR of the LCYE gene in the wild type and the ZEP, and dzl mutants. The intact LCYE gene yield a 
752-bp PCR fragment. b DNA sequence alignment at the LCYE locus of the wild type, ZEP, and the dzl mutants. The 20-bp sequence before the PAM 
sequence (red) was used for in vitro sgRNA transcription. The inserted aph7 gene is shown in blue (full-length) and green (partial). Upside-down 
characters represent insertions in the reverse orientation. The right column indicates the length of the insertions at the target locus. c Southern blot 
analysis of dzl mutants. Genomic DNA (20 μg) of each strain was digested with either NcoI or PstI and probed with a PCR fragment corresponding to 
the aph7 gene. The pChlamy3 vector was used as a positive control
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(dzl) in three different light conditions (Fig.  5). Under 
all light conditions, the mutant and the WT had a simi-
lar final cell density in the stationary phase (Fig. 5a–c). 
However, a slight reduction in the growth rate of dzl 
was observed during the exponential growth phase 
under high light condition (Fig.  5c). The absence of 
lutein, violaxanthin, and neoxanthin is thought to 
affect the dzl growth rate, especially under high light 
growth condition. Additionally, comparing the biomass 
productivity, there was no difference in cell density at 
stationary phase between low and moderate light con-
ditions, however the biomass of cells cultivated under 
moderate light was increased by 15–17% compared to 
that of cells cultivated under low light (Fig.  5d). High 
light cultivation increased the number of all the cells 

with a 20–30% increased biomass compared to low 
light cultivation. However, since zeaxanthin yield did 
not change in the mutants under higher light condi-
tions despite the increase in biomass or cell density, the 
highest zeaxanthin yield was achieved under low light 
(Fig. 5e).

To maximize the zeaxanthin content and avoid the use 
of excessive light energy, we compared zeaxanthin pro-
ductivity from these strains cultured under low light. 
Pigment production increased with cell growth and ZEP 
simultaneously produced lutein and zeaxanthin, while 
dzl produced only zeaxanthin at higher concentrations 
(Fig.  6). In conclusion, owing to a double knockout of 
ZEP and LCYE, metabolic flux was concentrated into 
the β-carotene biosynthesis pathway from the lycopene 
branch point and the increased β-carotene resulted in 
the production of zeaxanthin but not lutein. dzl had a 
zeaxanthin content of 7.28  mg  g–1, about 60% higher 
than that of ZEP (4.56  mg  g–1), and a zeaxanthin yield 
of 5.24 mg L–1, also about 60% higher than that of ZEP 
(3.31 mg L–1).

Enhancement of zeaxanthin production
Blocking the pathway competing with zeaxanthin biosyn-
thesis increased the zeaxanthin pool from a given amount 
of carotenoids in dzl. However, since it has a limit to 
increase the total pool of carotenoids within the cell, we 
attempted medium optimization to increase zeaxanthin 
productivity. We compared growth in four TAP media 
with adjusted concentrations of nitrogen, phosphate, or 
acetic acid, which are essential for cell growth (Fig. 7a). 
Moderate reduction of nitrogen and phosphorus con-
centrations in Opt1 did not affect cell growth and pig-
ment production. The increased acetic acid in both Opt2 
and Opt3 promoted cell growth after 48  h; however, in 
Opt3, which had nitrogen and phosphorus concentra-
tions reduced, pigment concentration was lower than 
that in Opt2 (Fig. 7b). Therefore, we cultured dzl in Opt2 
for high zeaxanthin production and could enhance the 
biomass and zeaxanthin production of dzl compared to 
those in TAP media (Table  1). Interestingly, the carbon 
source from photosynthesis under high-light conditions 
did not increase zeaxanthin production, but acetate as a 
carbon source did increase zeaxanthin in Opt2. It seems 
that the increase in the levels of metabolites from ace-
tate assimilation acted upstream of carotenoid synthesis 
in cells specifically adapted to mixotrophic conditions. 
As a result, zeaxanthin yield after the 3-day cultivation 
increased from 5.24 to 6.84 mg L–1 (Table 1).

Due to the important role of zeaxanthin in photosyn-
thesis, research on zeaxanthin has been conducted in 
many organisms. Several zeaxanthin-producing mutants 
with phenotypes similar to that of dzl have been isolated 
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by random mutagenesis, including in Arabidopsis thali-
ana, Scenedesmus obliquus, and C. reinhardtii [2, 24, 
25]. These studies determined the physiological effects 
of zeaxanthin accumulation on photosynthesis including 
photosynthetic capacity, non-photochemical quench-
ing, and photosynthetic apparatus organization, and 
confirmed that the absence of xanthophylls other than 
zeaxanthin does not affect cell survival and growth. 
The physiological evidence from these studies showed 
the possibility of zeaxanthin production as the single 

xanthophyll; however, they did not focus on that as such. 
Whereas our dzl mutant was generated as a specialized 
strain to produce high-purity zeaxanthin. When cultured 
in optimized media mixotrophically, dzl produced 30% 
more zeaxanthin with increased cell density and biomass 
in comparison with standard TAP media.

Further application of metabolic engineering to the dzl
To date, zeaxanthin-accumulating microorganisms 
have been isolated from nature or generated by random 
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mutagenesis to overcome the limits of yield and high 
production cost from land plants, the major zeaxanthin 
producers [26]. Of the reported zeaxanthin-accumulat-
ing microalgae, wild-type Chlorella saccharophila and 
the bkt1 mutant of Chlorella zofingiensis have the high-
est zeaxanthin content, 11.2 mg g–1 DCW and 7 mg g–1 
DCW, respectively [27, 28]. Both Chlorella strains are 
fast-growing microalgae with high biomass yield and 
carotenoid levels, making them good hosts for zeax-
anthin production. However, it is hard to extract the 
pigments from Chlorella because of its thick cell wall. 
Several extraction methods have been attempted, but 
those are laborious and complete extraction is difficult 
[29, 30]. In addition, since the LCYE gene is intact in 
both strains, lutein is produced along with zeaxanthin 
and could interfere with zeaxanthin purification. On the 
other hand, as the first microalgal mutant generated by 
targeted mutagenesis to enable the specific production 
of zeaxanthin, dzl is highly efficient in terms of extrac-
tion and purification of pigments. The background strain 
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Table. 1  Zeaxanthin productivity of  dzl cultured in  TAP 
media or in Opt2 media

a  Statistical difference between TAP vs. Opt2 condition (p < 0.05)
b  N.D, not detectable; DCW, dry cell weight

Yield (mg L−1) Biomass (g L−1) Content 
(mg g−1 DCW)

Lutein Zeaxanthin Lutein Zeaxanthin

TAP N.Db 5.24 ± 0.03 0.71 ± 0.02 N.Db 7.28 ± 0.04

Opt2 N.Db 6.84 ± 0.20a 1.27 ± 0.04a N.Db 5.40 ± 0.16
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CC-4349 of dzl has a no cell wall, grows quickly to satu-
ration and pigment extraction from it is easily processed 
with 90% acetone without cell disruption by physical 
means. The absence of lutein in dzl is also advantageous 
for zeaxanthin purification because it obviates the need 
to increase chromatographic resolution and the conven-
tional pigment separation method can be used. Thus, dzl 
is a good candidate for production and purification of 
zeaxanthin.

Metabolic engineering strategies for overexpression 
of native or heterologous genes in yeast, bacteria, and 
cyanobacteria have been successfully applied, result-
ing in high yield of zeaxanthin [26]. To compete with 
zeaxanthin producing bacteria and Chlorella and enable 
the commercial use of dzl for zeaxanthin production, 
metabolic flux should be regulated in addition to the 
knockout of the LCYE gene to increase the total pool of 
carotenoids within the cell. Since metabolic engineer-
ing of C. reinhardtii is advantageous due to the already 
known native pigment biosynthesis pathway and easy 
transformation, dzl is an ideal candidate for further 
strain improvement. The carotenoid biosynthesis path-
way is well conserved between plants to microalgae, 
and the rate-limiting enzymes have been identified. In 
Arabidopsis, overexpression of DXS and DXR, the rate-
limiting enzymes that regulate the isoprenoid flux of 
the methylerythritol 4-phosphate (MEP) pathway, has 
shown to increase carotenoid productivity [31, 32]. In 
Chlamydomonas, overexpression of PSY, considered a 
key enzyme in carotenoid biosynthesis (Fig. 1), increased 
the production of lutein and violaxanthin [33]. Therefore, 
overexpressing these genes as well as co-expression of 
CHYB or CYP97A5/6 which converts from β-carotene to 
zeaxanthin in dzl should be attempted to increase cellu-
lar carbon flux to the carotenoid pathway and to further 
increase zeaxanthin production eventually.

Conclusion
In this study, we characterized the first microalgal 
mutants producing zeaxanthin as a sole xanthophyll gen-
erated by CRISPR-Cas9 RNP-mediated mutagenesis. The 
introduced mutation increased the zeaxanthin content 
to 7.28 mg g–1 by removing α-carotene biosynthesis and 
pigment extraction and purification from this mutant can 
be easily achieved using conventional chromatography 
methods. Through medium optimization, a zeaxanthin 
yield of 6.84 mg L−1 was obtained after 3-days of cultiva-
tion. Also, further metabolic engineering could enhance 
the productivity. The production of highly purified zeax-
anthin from this mutant could provide sufficient amounts 
of zeaxanthin for personalized treatment and pharma-
ceutical applications.

Methods
Algal strain and culture conditions
Chlamydomonas reinhardtii CC-4349 cw15 mt- and 
mutant strains were maintained in Tris–acetate phos-
phate (TAP) medium (7.5 mM NH4Cl, 0.62 mM K2HPO4, 
0.41  mM KH2PO4, and 1  mL L–1 glacial acetic acid). 
Cells were cultured mixotrophically on an orbital shaker 
at 120  rpm under continuous white fluorescence light 
(60  μmol photons m–2  s–1) at 25  °C. For the cultivation 
on higher light conditions, cells were cultured under 
moderate light (200  μmol photons m–2  s–1) and high 
light (400 μmol photons m–2 s–1). Initially, cells (106 cells 
mL–1) was inoculated into 50 mL media in 250 mL flasks. 
For medium optimization, the concentrations of nutri-
ents were adjusted (Opt1: 5.625 mM NH4Cl, 0.465 mM 
K2HPO4, 0.3075  mM KH2PO4, Opt2: 2  mL L–1 glacial 
acetic acid, Opt3: 5.625 mM NH4Cl, 0.465 mM K2HPO4, 
0.3075 mM KH2PO4, 2 mL L–1 glacial acetic acid).

CRISPR‑Cas9 RNP‑mediated knock‑in
Chlamydomonas transformation was performed as 
described previously with a few modifications [21, 23]. 
Briefly, 100 μg lyophilized Cas9 protein (ToolGen, Seoul, 
South Korea) dissolved in nuclease-free water with 50% 
glycerol and in vitro transcribed 70 μg sgRNA were pre-
mixed for 10 min at room temperature to form each RNP 
complex. An aph7 gene, which confers the hygromycin 
resistance, was prepared by PCR amplification from the 
pChlamy3 vector with a specific primer set (F: 5′-ATG 
ATT CCG CTC CGT GTA AAT G-3′, R: 5′-AGT ACC 
ATC AAC TGA CGT TAC ATT C-3′). Then, 500 × 104 
cells were incubated with the RNP complex and 1 μg of 
aph7 for 5 min and transformed with a Gene Pulser Xcell 
Electroporation System (Bio-Rad, CA, USA) according 
to the recommended protocol from the GeneArt Chla-
mydomonas Engineering Kit (Life Technologies, CA, 
USA). After electroporation, cells were incubated in TAP 
media supplemented with 40 mM sucrose in 6-well plates 
for 24 h. Cells were harvested and plated on TAP media 
containing 1.5% agar with 25  μg  mL–1 of hygromycin-B 
(Life Technologies, CA, USA) for mutant selection.

Mutant screening and genotypic characterization
Colonies from TAP agar plates were transferred to 
96-well plates, and the individual cells were incubated in 
TAP media with hygromycin-B for 3 days. Transformed 
cells were subjected to colony PCR with specific prim-
ers adjacent to sgRNA target sites in LCYE (F: 5′-TGG 
TGA AAT CTA GCG TCG GCT-3′, R: 5′-GAC GCA 
ATT GCC GCT TGA GA-3′) for mutant screening. 
Knockout mutants with the aph7 DNA inserted were 
selected, their genomic DNA was isolated, and the tar-
get region was PCR-amplified for sequence confirmation. 
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The PCR products were separated on an agarose gel and 
sequenced using the Sanger method (Macrogen, Seoul, 
South Korea).

Southern blot analysis
Chlamydomonas transformation was performed as 
described in the manufacturer’s protocol (Gene Images 
AlkPhos Direct Labeling and Detection System Kit, GE 
Healthcare, IL, USA). Purified genomic DNA (20  μg) 
was digested with the NcoI and PstI restriction enzymes 
and the digests were separated on a 0.8% agarose gel 
and transferred to a positively charged nylon mem-
brane (Amersham Hybond-N+, GE healthcare, IL, USA). 
Probes, the aph7 gene, obtained by PCR amplification 
from the pChlamy3 vector were labeled with alkaline 
phosphatase provided in the kit. The transferred DNA 
was cross-linked using UV cross-linker and subjected 
to labeling, hybridization, washing, and signal detection 
according to the manufacturer’s protocol.

Pigment quantification
Cells were harvested every 12  h and pigments were 
extracted with 90% (v/v) acetone by pipetting until the 
cells became colorless. The supernatants were subjected 
to analysis using a Shimadzu Prominence HPLC model 
LC-20AD (Shimadzu, Kyoto, Japan) equipped with a 
Spherisorb 5.0  μm ODS1 4.6 × 250  mm cartridge col-
umn (Waters, Milford, USA). Pigment concentrations 
were calculated from absorbance at 445 nm and 670 nm 
as described previously [19]. All quantitative analysis 
were carried out at least in triplicate. Student’s t-test 
was performed to determine the statistical significance 
of differences in pigment production. A significant dif-
ference indicating by the asterisk was considered at a p 
value < 0.05.
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