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MAL62 overexpression enhances 
uridine diphosphoglucose‑dependent 
trehalose synthesis and glycerol metabolism 
for cryoprotection of baker’s yeast in lean 
dough
Xi Sun1,2*  , Jun Zhang1,2, Zhi‑Hua Fan1,2, Ping Xiao1,2, Feng Li3,4, Hai‑Qing Liu1,2 and Wen‑Bi Zhu5

Abstract 

Background:  In Saccharomyces cerevisiae, alpha-glucosidase (maltase) is a key enzyme in maltose metabolism. In 
addition, the overexpression of the alpha-glucosidase-encoding gene MAL62 has been shown to increase the freezing 
tolerance of yeast in lean dough. However, its cryoprotection mechanism is still not clear.

Results:  RNA sequencing (RNA-seq) revealed that MAL62 overexpression increased uridine diphosphoglucose 
(UDPG)-dependent trehalose synthesis. The changes in transcript abundance were confirmed by quantitative reverse 
transcription–polymerase chain reaction (qRT-PCR) and enzyme activity assays. When the UDPG-dependent treha‑
lose synthase activity was abolished, MAL62 overexpression failed to promote the synthesis of intracellular trehalose. 
Moreover, in strains lacking trehalose synthesis, the cell viability in the late phase of prefermentation freezing coupled 
with MAL62 overexpression was slightly reduced, which can be explained by the increase in the intracellular glycerol 
concentration. This result was consistent with the elevated transcription of glycerol synthesis pathway members.

Conclusions:  The increased freezing tolerance by MAL62 overexpression is mainly achieved by the increased treha‑
lose content via the UDPG-dependent pathway, and glycerol also plays an important role. These findings shed new 
light on the mechanism of yeast response to freezing in lean bread dough and can help to improve industrial yeast 
strains.
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Background
The use of frozen dough is now gradually emerging 
in a multitude of bakery and food chains due to its less 
time-consuming production after freezing and cheaper 
bake-off stations [1, 2]. However, freezing often causes 

oxidative stress and cell death to baker’s yeast [3], which 
reduces the yeast growth and gas production capacity [4, 
5]. A number of protective molecules have been identi-
fied in yeast stress tolerance [6–8]. Among them, the 
disaccharide trehalose, which protects the cell mem-
brane and stabilizes the protein structure, has cap-
tured wide attention [9]. Yeast trehalose is regulated by 
two major biosynthetic systems, system I and II. Sys-
tem I is uridine-5ʹ-diphosphoglucose (UDPG) depend-
ent and contains several protein complexes, including 
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one trehalose-6-phosphate synthase (encoded by TPS1) 
[10], one trehalose-6-phosphate phosphatase (encoded 
by TPS2), and one trehalose-synthesis protein complex 
(encoded by TSL1) [11]. The system II trehalose syn-
thetic pathway is adenosine-diphosphoglucose (ADPG) 
dependent and uses maltose, a disaccharide, to synthe-
size trehalose [12, 13].

In baker’s yeast, the MAL gene family, which regu-
lates maltose metabolism, consists of five multigene 
complexes, including MAL1, MAL2, MAL3, MAL4, and 
MAL6. Each gene complex encodes a maltose permease, 
an alpha-glucosidase, and a transacting MAL-activator 
[14]. We have shown previously that overexpression of 
MAL62 enhances the cryotolerance of baker’s yeast [15] 
and speculated that multiple pathways may be involved 
in this phenomenon [16]. However, the mechanism for 
the enhanced freezing tolerance is still unknown.

To better understand the role of MAL62 overexpression 
in the freezing tolerance of baker’s yeast in lean dough, 
and its possible mechanism, we used transcriptome anal-
ysis to characterize a MAL62-overexpressing strain and 
investigated the effects of overexpression of MAL62 and 
deletion of the TPS1 gene on maltose metabolism, tre-
halose and glycerol accumulation, and the freezing toler-
ance of baker’s yeast in lean dough.

Materials and methods
Strains, plasmids, and growth conditions
The yeast and bacterial strains as well as the plasmids 
used in this study are listed in Table 1. The parent indus-
trial strain BY14 was used to create the high-leavening 
haploid BY14a strain, which was used to create all of the 
other strains, including the overexpression and deletion 
strains.

The Escherichia coli DH5a and yeast strains were cul-
tured as described previously [15]. Briefly, yeast cells in 
yeast extract peptone dextrose (YPD) medium (1% yeast 
extract, 2% peptone, and 2% dextrose) were cultured at 
30 ℃ on a rotor with a speed of 180  rpm. G418 (final 
concentration of 0.08%) (Thermo Fisher, Waltham, MA, 
USA) was added to YPD plates to select G418-resistant 
transformants. After growing in YPD for 24  h, cultured 
cells (20 mL) were inoculated into 200 mL of cane molas-
ses medium (0.5% yeast extract, 0.05% (NH4)2SO4, and 
12° Brix cane molasses), giving an initial OD600 value of 
0.4. The cells were cultured at 30 °C to an OD600 value of 
1.8 (about 24 h), then centrifuged at 4 °C and 5000 rpm 
for 5  min, and finally washed twice with sterile water. 
A modified low sugar model liquid dough (LSMLD) 
medium [17] was mainly used for the measurements of 
trehalose, intracellular glycerol, and the cell viability dur-
ing prefermentation and after prefermentation freezing.

RNA sequencing (RNA‑seq)
RNA-seq-based transcriptome analysis was performed to 
identify the differentially expressed genes after MAL62 
overexpression. Cells constitutively overexpressing 
MAL62 (B + MAL62) and the control (BY14a + K) were 
grown in cane molasses medium. RNA isolation and 
cDNA synthesis were performed as previously described 
[18]. Briefly, total RNA was isolated using the hot acid 
phenol method, followed by DNase treatment. The RNA 
concentration was measured using a Qubit fluorometer 
and a Qubit RNA Assay Kit (Thermo Fisher Scientific, 
Waltham, MA, USA). The RNA integrity was assessed 
using a Bioanalyzer 2100 system (Agilent Technologies, 
Santa Clara, CA, USA) and an RNA Nano 6000 Assay 
Kit.

Table 1  Characteristics of the strains used in the present study

YCC: Yeast Collection Center of the Tianjin Key Laboratory of Industrial Microbiology
a  BY14a was selected as a high-leavening capacity haploid from 32 clones derived from BY14 (data not shown)

Strains or plasmids Relevant characteristics Reference or source

Strains

 E. coli DH5α Φ80 lacZ M15ΔlacU169Δ recA1 endA1 hsdR17 supE44 thi-1 gyrA relA1 YCC​

 BY14aa MATa YCC​

 BY14a + K MATa, Yep-K [15]

 B + MAL62 MATa, Yep-PMK [15]

 B-T MATa, tps1Δ:: KanMX This study

 B-T + M MATa, tps1Δ:: MAL62 This study

 B + TPS1 MATa, Yep-PTK [16]

Plasmids

 pUG6 E. coli/S. cerevisiae shuttle vector, containing Amp+, loxP-kanMX-loxP disruption cas‑
sette

[31]

 pPGK1 bla LEU2 PGK1P-PGK1T [58]
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The RNA-seq libraries were generated from 1  μg of 
RNA from each sample using a NEBNext Ultra RNA 
Library Prep Kit (New England Biolabs, Ipswich, MA, 
USA), according to the manufacturer’s instructions. The 
clustering of samples, which was index coded to attrib-
ute individual sample sequences, was performed using 
a cBot Cluster Generation System (Illumina, San Diego, 
CA, USA). The RNA libraries were sequenced using an 
Illumina Hiseq 2500 system (Illumina). Paired-end reads 
of 125 bp/150 bp were generated and analyzed.

RNA‑seq data analysis
The differential expression of two different groups was 
analyzed using DESeq R software (https​://www.bioco​
nduct​or.org, version 1.18.0). Genes with a false-discovery 
rate-adjusted p-value < 0.05 were considered as differen-
tially expressed.

Volcano plots and hierarchical clustering were used 
to screen the differentially expressed genes and to ana-
lyze the clusters of differentially expressed genes. GOseq 
[19] was used for gene ontology (GO) term enrichment 
analysis. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) was used to determine the pathways with upreg-
ulated genes. STRING (https​://www.strin​g-db.org/) and 
Cytoscape (https​://cytos​cape.org) software programs 
were used for protein–protein interaction (PPI) network 
analysis.

Validation of gene expression levels
Quantitative reverse transcription–polymerase chain 
reaction (qRT-PCR) was used to detect the expres-
sion levels of the target genes. qRT-PCR was conducted 
using the THUNDERBIRD probe one-step qRT-PCR kit 
(TOYOBO, Osaka, Japan). The yeast UBC6 gene, which 
encodes a ubiquitin-conjugating enzyme involved in 
endoplasmic reticulum-resident proteins for degrada-
tion, was used as a reference gene [20]. The PCR prim-
ers are listed in Table 2. Yeast cDNA was extracted using 
an RNAiso kit (Takara Biotech, Dalian, China) and a Pri-
meScript RT reagent kit with gDNA eraser (Perfect Real 
Time, Takara Biotech). The PCR was conducted using a 
CFX96 real-time PCR system (Bio-Rad, Hercules, CA, 
USA). The reaction conditions were as follows: 95 ℃ for 
30 s; 61 °C for 20 min; 95 °C for 30 s; 43 cycles of 95 °C for 
5 s, 55 °C for 10 s, and 74 °C for 15 s; and 72 °C for 5 min. 
Quantitative analysis of the qRT-PCR was conducted 
using the 2−ΔΔCT method.

Measurement of enzymatic activities
Cells were grown in cane molasses medium to the late-log 
phase, and the Tps1 activity was measured as previously 
described [21]. One unit of Tps1 activity was defined 
as the production of 1.0  μM of trehalose-6-phosphate 

per minute. The final activity was calculated based on 
the cell dry weight (CDW). Data were expressed as the 
mean ± standard deviation (SD) from three independent 
experiments.

For α-glucosidase activity determination, cells were 
grown in cane molasses medium to an OD600 value of 
1.8, then inoculated into LSMLD medium, and culti-
vated for 2.5 h. Crude extracts were prepared using the 
Salema-Oom method [22], and the α-glucosidase activ-
ity was measured as previously described [23]. Data were 
expressed as the mean ± SD from three independent 
experiments.

To determine the activity of other enzymes, including 
hexokinase, phophoglucomutase, UGPase, and glycerol-
3-phosphate dehydrogenase (G3PDH), cells were grown 
in cane molasses medium to the late-log phase, centri-
fuged at 5000 rpm and 4 °C for 5 min, and then washed 
twice with cold sterile water. The activities of hexoki-
nase [24], phosphoglucomutase [25], UGPase [26], and 
G3PDH [27] were assayed as described previously. The 
protein concentration was measured using the Bio-Rad 
protein assay kit (Bio-Rad, Richmond, USA), according to 
the manufacturer’s instructions. Data were expressed as 
the mean ± SD from three independent experiments.

Measurement of intracellular trehalose contents
Cells were grown in cane molasses medium to the late-
log phase for the trehalose accumulation experiments. 
For the trehalose degradation tests during prefermenta-
tion, cells were grown in LSMLD medium for 25  min. 
Freshly cultured cells (0.1  g) were washed twice with 
water. Trehalose was extracted with 4  mL of 0.5  M 
trichloroacetic acid. Trehalose in the extract was esti-
mated by the method outlined by Stewart [28] as well as 
with the anthrone reagent described by Spiro [29]. Data 
were expressed as the mean ± SD from three independ-
ent experiments.

Measurement of extracellular maltose
For the measurement of extracellular maltose, cells were 
grown in LSMLD medium for 4  h. Cultured cells were 
filtered through a 0.45-µm-pore-size cellulose acetate 
filter (Millipore, Danvers, MA, USA). The extracellular 
maltose was measured by high-pressure liquid chroma-
tography (HPLC) analysis using an Aminex HPX-87H 
column (Bio-Rad, Hercules, CA, USA) and an HPLC 
pump (Waters 515). The column was eluted at 65 °C with 
5 mM H2SO4 at a flow rate of 0.6 mL/min [30]. Maltose 
was detected with a differential refractometer detector 
(Waters 410 RI). Data were expressed as the mean ± SD 
from three independent experiments.

https://www.bioconductor.org
https://www.bioconductor.org
https://www.string-db.org/
https://cytoscape.org
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Table 2  Primers used in this study

Name 5′ → 3′ DNA  sequences

For recombinant construction

 TU1-F GAT​GCT​GTT​GTT​CTT​TCT​TCT​GTT​T

 TU1-R CCT​GCA​GCG​TAC​GAA​GCT​TCA​GCT​GAG​TTC​TAT​GTC​TTA​ATA​AGT​CTG​TA

 KAN1-F TAC​AGA​CTT​ATT​AAG​ACA​TAG​AAC​TCA​GCT​GAA​GCT​TCG​TAC​GCT​GCA​GG

 KAN1-R GAT​CGT​CTC​ATT​TGC​ATC​GGG​TTC​AGC​ATA​GGC​CAC​TAG​TGG​ATC​TGA​TA

 TD1-F TAT​CAG​ATC​CAC​TAG​TGG​CCT​ATG​CTG​AAC​CCG​ATG​CAA​ATG​AGA​CGA​TC

 TD1-R ACT​TTC​TAA​AAT​GGC​TAT​ATA​GGG​G

 TU2-R TTC​AGT​TTT​GGA​TAG​ATC​AGT​TAG​AAG​TTC​TAT​GTC​TTA​ATA​AGT​CTG​TA

 PGKP-F TAC​AGA​CTT​ATT​AAG​ACA​TAG​AAC​TTC​TAA​CTG​ATC​TAT​CCA​AAA​CTG​AA

 PGKP-R TTT​CTG​GAT​GAT​CAG​AAA​TAG​TCA​TGT​TTT​ATA​TTT​GTT​GTA​AAA​AGT​AG

 MAL-F CTA​CTT​TTT​ACA​ACA​AAT​ATA​AAA​CAT​GAC​TAT​TTC​TGA​TCA​TCC​AGA​AA

 MAL-R AGA​AAA​GAA​AAA​AAT​TGA​TCT​ATC​GTT​ATT​TGA​CGA​GGT​AGA​TTC​TAC​CT

 PGKT-F AGG​TAG​AAT​CTA​CCT​CGT​CAA​ATA​ACG​ATA​GAT​CAA​TTT​TTT​TCT​TTT​CT

 PGKT-R CCT​GCA​GCG​TAC​GAA​GCT​TCA​GCT​GTA​ACG​AAC​GCA​GAA​TTT​TCG​AGT​TA

 KAN2-F TAA​CTC​GAA​AAT​TCT​GCG​TTC​GTT​ACA​GCT​GAA​GCT​TCG​TAC​GCT​GCA​GG

For PCR verification

 UUK-F ATC​TAA​GAG​GAC​GGT​TGC​TG

 UUK-R GTC​AAG​ACT​GTC​AAG​GAG​GG

 KDD1-F TCG​CAG​ACC​GAT​ACC​AGG​AT

 KDD1-R TCA​ACG​GAT​GGG​AAA​GCA​AT

 UUP-F GCG​GTC​CGT​TCT​GTG​GTT​

 UUP-R CCC​TCT​GTG​GCG​GTC​TAT​

 PPM-F CAC​ATG​CTA​TGA​TGC​CCA​CT

 PPM-R CGC​AAA​CAA​ACG​GAG​GTA​

 MPT-F CGA​AAG​ATA​AGC​CCA​ATG​

 MPT-R CTG​TAA​CGA​ACG​CAG​AAT​

 PTK-F AAA​TTC​TGC​GTT​CGT​TAC​

 PTK-R CCG​TCA​GCC​AGT​TTA​GTC​

 KDD2-F TAT​GTG​AAT​GCT​GGT​CGC​TAT​

 KDD2-R CCG​TTG​CTA​CTG​CCG​TTA​

For RT-qPCR

 qGDB1-F AGC​CTA​ACT​TCG​GCA​CTC​

 qGDB1-R CAC​CGT​CAT​CTA​ATC​TCA​AATA​

 qEMI2-F GGC​AAG​GAT​GTC​GTG​AGG​TT

 qEMI2-R AGC​CTG​AAG​TGT​AGC​AGT​GG

 qGLK1-F ATC​ACG​AAG​TTG​CCA​CAG​

 qGLK1-R TCA​CCC​AAG​AAC​ATC​CCT​

 qHXK2-F TCC​GTT​TAC​AAC​AGA​TAC​CC

 qHXK2-R ATA​ACA​GCG​GCA​CCA​GCA​

 qHXK1-F GTG​TCA​AGA​CCA​CTC​TGC​CA

 qHXK1-R GGA​TCT​TTG​CTT​GCG​TCA​CC

 qPGM2-F GAA​AAG​GAC​GGT​GTT​TGG​GC

 qPGM2-R GGC​TGG​GAA​GGC​GGA​ATT​AA

 qPRM15-F TAA​GCA​AGA​CCG​CAA​CCC​AA

 qPRM15-R CCA​ATC​CCT​GAG​ACG​CTT​GT

 qUGP1-F CGA​GAG​CAA​CAC​AAA​CAG​CG

 qUGP1-R CCG​GGT​TGG​GAG​ACT​TGA​TC

 qTPS1-F GGG​GCA​AGG​TTG​TTCTG​

 qTPS1-R TCA​CGG​GTG​GAC​GAGAC​



Page 5 of 14Sun et al. Microb Cell Fact          (2020) 19:196 	

Yeast strain construction
Yeast genomic DNA was extracted using a yeast DNA 
isolation kit (Omega Bio-Tek, Norcross, GA, USA). The 
tps1Δ (B-T) strain (Table 1) was constructed as follows: 
the TPS1U fragment containing the TPS1 upstream 
homologue sequence and the TPS1D fragment contain-
ing the TPS1 downstream homologue sequence were 
amplified from the BY14a yeast genome with the prim-
ers TU1-F/TU1-R and TD1-F/TD1-R, respectively. The 
fragment KanMX was amplified from the plasmid pUG6 
using the primers KAN1-F/KAN1-R [31]. Then, the frag-
ments of TPS1U, TPS1D, and loxP-KanMX-loxP were 
transferred into BY14a using the lithium acetate/poly-
ethylene glycol method [25]. G418 (300 μg/mL) was used 
to select the positive recombinants, which were further 
verified by PCR with the primers UUK-F/UUK-R and 
KDD1-F/KDD1-R. The tps1Δ plus MAL62-overexpres-
sion (B-T + M) strain (Table  1) was constructed as fol-
lows: The MAL62 gene was amplified from the BY14a 
genome with the primers TU1-F/TU2-R, TD1-F/TD1-
R, and MAL-F/MAL-R. The fragments containing the 
yeast phosphoglycerate kinase gene promoter (PGK1p) 
and terminator (PGK1t) were amplified from the BY14a 
genome with the primers PGKP-F/PGKP-R and PGKT-
F/PGKT-R, respectively. The fragment loxP-KanMX-loxP 
was amplified from the plasmid pUG6 using the primer 
pair KAN2-F/KAN1-R. Six fragments (TPS1U, PGK1P, 
MAL62, PGK1T, KanMX, and TPS1D) were transferred 
into the BY14a strain, and the recombinant B-T + M 
strain was verified via PCR using the primer pairs of 
UUP-F/UUP-R, PPM-F/PPM-R, MPT-F/MPT-R, PTK-F/
PTK-R, and KDD2-F/KDD2-R. B + MAL62, the MAL62-
overexpression strain, was constructed as described pre-
viously [15].

Measurement of intracellular glycerol content
To measure the intracellular glycerol levels, cells were cul-
tured in cane molasses medium for 24 h at 30 °C and then 
transferred to LSMLD medium. The cells were prefer-
mented for 5, 10, 15, 20, and 25 min. Approximately 25 mg 
(wet weight) of cells was washed, resuspended in 1 mL of 
deionized water, and boiled twice (30 min, with occasional 

shaking). The supernatants were then centrifuged for 
10  min at 15,000×g. The level of glycerol was measured 
as described previously [32]. Data were expressed as the 
mean ± SD from three independent measurements.

Measurement of cell viability and leavening ability
Yeast cells were cultured in cane molasses medium 
[5  g/L yeast extract, 0.5  g/L (NH4)2SO4, and 12° Brix 
cane molasses] for 24 h at 30 °C and then transferred to 
LSMLD medium. The cells were prefermented for 5, 10, 
15, 20, and 25 min, and then moved to a − 20 °C freezer 
for 7 days. The cell viability was measured after freezing, 
as described previously [15]. Data were expressed as the 
mean ± SD from three independent experiments.

The leavening abilities were measured by the amount of 
carbon dioxide (CO2) produced by the lean dough. The 
lean dough contained 280 g of standard flour, 4 g of salt, 
9 g of fresh yeast, and 150 mL of water. The dough was 
mixed at 30  °C for 5  min and divided into 50-g pieces. 
The dough pieces were placed in a fermentograph (Type 
JM 451; Mekab Försäljnings AB, Nässjö, Sweden). The 
production of CO2 was measured at 30  °C for 2  h. To 
examine the effect of freezing and thawing on the leaven-
ing ability, the dough was frozen for 1 to 4 weeks at − 20 
°C and then thawed for 30 min at 30 °C. The production 
of CO2 was measured while the dough was at 30  °C for 
2 h. The measurement was repeated three times, and data 
were expressed as the mean ± SD.

Statistical analysis
Data were represented as the mean ± SD from three 
independent experiments. Differences among the various 
strains were analyzed using analysis of variance. Differ-
ences between the parent and the MAL62-overexpression 
strains were analyzed using the Student’s t-test. For all 
analyses, p < 0.05 was considered statistically significant.

Results
MAL62 overexpression enhances the UDPG‑dependent 
trehalose synthesis
RNA-seq analysis was performed to identify the differen-
tially expression genes when MAL62 was overexpressed. 

Table 2  (continued)

Name 5′ → 3′ DNA  sequences

 qTPS2-F CCA​CCA​CTG​CCC​AAG​ACA​AT

 qTPS2-R CAG​GTT​GCG​TTC​GGT​TCT​TG

 qTPS3-F TGC​TCC​GTC​TGC​TAG​AGT​CT

 qTPS3-R GGA​TCG​ACA​TCT​GGA​ACG​CT

 qUBC6-F [59] GGA​CCT​GCG​GAT​ACT​CCT​TAC​

 qUBC6-R [59] TAA​TCG​TGT​GTT​GGG​CTT​GA
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The results showed that MAL62 overexpression caused 
significant changes in gene expression (Fig.  1a). Com-
pared to the control (BY14a + K), 1460 genes were 
downregulated (Fig.  1b, green) and 1506 genes were 
upregulated (Fig.  1b, red). KEGG analysis revealed 
that the upregulated genes were mainly enriched in the 
metabolism and synthesis of carbohydrates (Fig. 1c). GO 
analysis of the biological processes (molecular function, 
cellular component, and biological process) showed that 
several processes involving trehalose were affected by 
MAL62 overexpression (Fig.  1d). In addition, STRING 

analysis demonstrated that MAL62 overexpression 
caused upregulation of TPS1, TPS2, TPS3, and UGP1, 
which are all key genes of the UDPG pathway (Fig. 2 and 
Additional file 1: Figure S1).

To further examine the possible involvement of the 
UDPG pathway on trehalose synthesis, the expression 
levels of trehalose metabolism-related genes (GLK1, 
EMI2, HXK1, HXK2, PGM2, PRM15, UGP1, GDB1, 
TPS1, TPS2, and TPS3) were analyzed by qRT-PCR. Our 
results showed that all of these genes, except for TPS2, 
had a significantly higher expression in the B + MAL62 

Fig. 1  Results of RNA-Seq transcriptome analysis. a Hierarchical clustering of the significant genes (B indicates BY14a + K, B + M indicates 
B + MAL62). b Volcano plot of all genes. The downregulated genes are shown in green, and the upregulated genes are shown in red. c Kyoto 
Encyclopedia of Genes and Genomes analyses. d Gene ontology functional enrichment analyses. The functions are arranged from deep to shallow 
according to their relevance
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Fig. 2  Interactions between the upregulated proteins. a Protein–protein interaction networks. b Significant modules in the protein–protein 
interaction network
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strain than in the BY14a + K strain (Fig.  3a). The fold 
changes were as follows: GDB1, 2.36; TPS1, 2.27; UGP1, 
1.90; HXK1, 1.89; EMI2, 1.66; PRM15, 1.69; HXK2, 1.75; 
PGM2, 1.86; GLK1, 1.41; and TPS3, 1.47. No significant 
change of TPS2 was observed between the B + MAL62 
and BY14a + K strains. The enzyme activity measure-
ments showed that all of the tested key enzymes related 
to the UDPG pathway, except for hexokinase, were of 
higher activity in the B + MAL62 strain than in the 
BY14a + K strain (Table 3).

Disruption of the TPS1 gene diminishes the UDPG-
dependent trehalose synthase activity [13]. To further 
understand the role of MAL62 overexpression in treha-
lose synthesis, we constructed a tps1Δ strain (B-T), and 
MAL62 was overexpressed in a tps1Δ strain (B-T + M) to 
eliminate the effects of the UDPG-dependent trehalose 
synthesis pathway. Figure  3b shows that the expression 
levels of TPS1 in the B-T and B-T + M strains were not 
detectable. Compared with the maltose fermentation (a 
maltose concentration decrease of 39.86%) and alpha-
glucosidase activity (3.91 mmol mg−1 min−1, on average) 
of B + MAL62, B-T and B-T + M had lower consump-
tion of maltose (a maltose concentration decrease of 
only 6.07%, on average) and lower activities of alpha-glu-
cosidase (just maintained at 1.46 mmol mg−1 min−1, on 
average) in the first 60 min of fermentation (Fig. 4). One 
possible cause of this is the slower growth rates of the 
two tps1Δ strains [33]. However, it is worth noting that 
even when the alpha-glucosidase activities started to rise 
at 60 min and reached the peak at nearly 150 min during 
fermentation, the trehalose levels in the B-T and B-T + M 
strains were still not detectable These results suggest that 
MAL62 overexpression activates the UDPG pathway, 

which then causes the accumulation of intracellular tre-
halose and enhanced cryotolerance. To further confirm 
this finding, we overexpressed TPS1 (B + TPS1). The 
consumption of maltose and the activity of alpha-glucosi-
dase of B + TPS1 were similar to those of BY14a and B-T 
(Fig. 4). However, the trehalose accumulation (Fig. 4b, c) 
and cell viability (Fig. 5b) remained at the same level as 
those of B + MAL62, further suggesting that TPS1 plays 
an important role in cryoprotection.

MAL62 overexpression enhances glycerol metabolism
RNA-seq and STRING analyses showed that MAL62 
overexpression caused upregulation of GPD1, GPD 2, 
GPP1, and GPP2 (Fig. 2, Additional file 2: Figure S2, and, 
Additional file  3: Figure S3). GPD1 and GPD 2 encode 
the rate-limiting enzymes in the high-osmolarity glyc-
erol mitogen-activated protein kinase (HOG-MAPK) 
pathway, which induces glycerol accumulation [34–
37]. We assayed the activity of glycerol-3-phosphate 

Fig. 3  Quantitative RT-PCR analysis of the relative expression levels of genes in the recombinant strain B + MAL62 and the control strain BY14a + K 
(a) as well as in the recombinant strains B-T and B-T + M and the control strain BY14a (b). Data are expressed as the mean ± SD (indicated as error 
bars) of three independent experiments

Table 3  Activity of enzymes related to the UDPG pathway 
and glycerol metabolism

Data are expressed as the mean ± SD from three independent experiments

CDW cell dry weight
*  P < 0.05  in comparison with the parent strain

BY14a + K B + MAL62

Hexokinase (U/mg pro) 1.19 ± 0.09 1.30 ± 0.11

Phosphoglucomutase (U/mg pro) 0.14 ± 0.01 0.31 ± 0.03*

UGPase (U/mg pro) 0.43 ± 0.06 1.10 ± 0.08*

Tps1 (U/g CDW) 0.79 ± 0.07 1.20 ± 0.05*

Glycerol-3-phosphate dehydrogenase 
(U/mg pro)

1.5 ± 0.07 2.83 ± 0.21*
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dehydrogenase in the BY14a + K and B + MAL62 strains. 
As shown in Table 3, the activity of glycerol-3-phosphate 
dehydrogenase in B + MAL62 was 88.7% higher than that 
in BY14a + K, suggesting that MAL62 overexpression 
causes an increase in the glycerol content.

To further determine the change of glycerol content 
and its possible cryopreservation effect in the MAL62-
overexpressed strain, we used B-T and B-T + M to 
eliminate the effects of trehalose. As shown in Fig. 5a, 

the B-T strain exhibited a similar intracellular glycerol 
synthesis rate compared to the BY14a strain, suggest-
ing that the deletion of TPS1 did not affect glycerol 
synthesis. However, the intracellular glycerol content 
in the B-T + M strain was significantly higher than 
that in the BY14a or B-T strain after prefermentation 
for 15 min and freezing for 7 days (p < 0.05). After pre-
fermentation for 25  min and freezing for 7 days, the 
intracellular glycerol content in the B-T + M strain 

Fig. 4  Measurements of alpha-glucosidase (maltase) activity, residual maltose concentration, and intracellular trehalose content in five yeast strains: 
BY14a (a), B + MAL62 (b), B + TPS1 (c), B-T (d), and B-T + M (e)
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increased by approximately 121.5%, compared with 
prefermentation for 0 min, while the intracellular glyc-
erol contents in the BY14a and B-T strains increased 
by only 23.9% and 32.8%, respectively. These results 
suggest that MAL62 overexpression positively corre-
lates with the accumulation of intracellular glycerol.

Next, we examined whether the increased glycerol 
level by MAL62 overexpression affects the freezing 
tolerance by measuring the cell viability. As shown 
in Fig.  5b, a longer prefermentation duration caused 
a significant decrease in the cell viability after freez-
ing for 7 days in all three strains (BY14a, B-T, and 
B-T + M). After prefermentation for 25  min, the cell 
viability of the BY14a and B-T + M strains was similar, 
but the cell viability of the B-T strain was significantly 
lower than those of the BY14a and B-T + M strains 
(p < 0.05). Compared to the BY14a and B-T strains, 
the cell viability of the B-T + M strain showed a minor 
decrease after prefermentation for 15  min (Fig.  5b). 
These findings suggest that in addition to triggering 
the accumulation of trehalose, MAL62 overexpression 
also causes an increment in the glycerol content, which 
can enhance freezing tolerance.

Increased glycerol content by MAL62 overexpression 
enhanced the leavening ability after long‑term freezing
The possible effect of the increased glycerol level by 
MAL62 overexpression on the leavening ability after 
long-term freezing was determined by measuring CO2 
production. As shown in Fig. 5c, the CO2 production in 
all strains decreased as the freezing time increased from 1 
to 4 weeks. However, the CO2 production of the B-T + M 
strain was significantly higher than either the BY14a or 
B-T strain before freezing (time = 0) and after freezing 
for 1 to 4 weeks (p < 0.05). These results suggest that the 
increased glycerol content by MAL62 overexpression can 
mitigate the loss of the leavening ability after exposure to 
the stress induced by long-term freezing.

Discussion
Our comparative transcriptome analysis revealed that 
overexpression of MAL62 causes significant differences 
in gene expression, as compared to its wild-type con-
trol (BY14a + K). Many of these genes are involved in 
the stress response, especially freezing stress pathways. 
Several genes involved in starch and sucrose metabo-
lism, glycerophospholipid metabolism, and glycerolipid 

Fig. 5  Contents of intracellular glycerol and trehalose (a) and cell viability (b) after different fermentation times (0–25 min) and freezing in LSMLD 
medium for 7 days. Measurement of yeast CO2 production in the lean dough after different periods of freezing (0–4 weeks) (c). Data are expressed 
as the mean ± SD (indicated as error bars) of three independent experiments
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metabolism are also differentially expressed between 
these two strains. KEGG analysis further confirmed that 
many of the pathways are involved in cryotolerance of the 
B + MAL62 strain. In baker’s yeast, trehalose is believed 
to be the primary compound affecting the viability of 
yeast in frozen dough [38, 39]. Using mutants of S. cer-
evisiae deficient in trehalose synthesis, degradation, or 
transport, studies have shown that trehalose can pro-
tect cells exposed to freezing and dehydration [40–42]. 
We have previously reported that the enhanced freez-
ing tolerance by MAL62 overexpression is related to 
the increased activity of Tps1 [16]. Our current study 
provides further evidence that genes involved in starch 
and sucrose metabolism, including GLK1, EMI2, HXK1, 
HXK2, PGM2, PRM15, and UGP1, had a higher expres-
sion level in the B + MAL62 strain (Fig.  3a and Addi-
tional file 1: Figure S1). In addition, PPI network analysis 
revealed a high score for Tps1, Tps2, and Tps3 (Fig. 2b). 
The enzyme activities, metabolism of trehalose and 
glycerol, cell viability, and gas production after freezing 
provided further confidence (Table  3 and Figs.  4, 5a, b) 
that the enhanced freezing tolerance by MAL62 over-
expression is related to the UDPG-dependent trehalose 
synthesis pathway. However, MAL62 is an enzyme, not a 
transcription factor. It is not clear how its overexpression 
affects the expression of so many genes. One possibility is 
that MAL62 may affect the expression of some transcrip-
tion factors due to the fact that the MAL6 locus has been 
reported to be located in nuclei [43, 44].

Microorganisms often accumulate different solutes, 
such as ions, amino acids, and polyols, to mitigate water 
loss [45, 46] when they face a water shortage. Baker’s 
yeast responds to freeze stress-induced hyperosmotic 
stress by activating the HOG-MAPK pathway, which 
induces glycerol accumulation [34–37]. It has been exten-
sively documented that glycerol 3-phosphate dehydroge-
nase, which is encoded by GPD1 and GPD2, is the key 
enzyme in the production of glycerol [47, 48]. The strong 
upregulation of GPD1 under hyperosmotic stress [49, 
50] is at least partly controlled by the HOG1-MAPK cas-
cade [49, 51]. Our transcriptome analysis revealed that 
HOG1, Msn2, and Msn4 scored high on the PPI network 
(Fig. 2b). Genes and rate-limiting enzyme activity (glyc-
erol-3-phosphate dehydrogenase) involved in glycerol 
biosynthesis were also upregulated in the B + MAL62 
strain (Additional file 2: Figure S2 and Additional file 3: 
Figure S3, and Table 3), suggesting that MAL62 overex-
pression induces the accumulation of glycerol through 
the HOG pathway.

It has been reported that stress-responsive elements 
(STRE) mediate transcriptional regulation of the treha-
lose synthase genes TPS1, TPS2, and TPS3 as well as 
the glycerol 3-phosphate dehydrogenase genes GPD1 

and GPD2 [52, 53]. Msn2 and Msn4, which bind spe-
cifically to STRE-containing oligonucleotides [54], are 
controlled by the HOG-MAPK pathway [55]. Hence, 
we speculated that the accumulation of trehalose and 
glycerol by MAL62 overexpression may start with the 
activation of the HOG-MAPK pathway, after which 
the trehalose synthase genes and glycerol 3-phos-
phate dehydrogenase genes are upregulated through 
STRE-mediated transcriptional regulation. This may 
explain our previous speculation that the enhancement 
in freezing tolerance by MAL62 overexpression may 
involve multiple pathways [16]. A possible relationship 
between maltose metabolism and cryoprotectant syn-
thesis is illustrated in Fig. 6.

Compared with the B-T and B-T + M strains, the 
BY14a strain has a higher intracellular trehalose con-
tent, which results in a higher cell viability at the onset of 
prefermentation (Fig. 5a, b). The B-T strain, which lacks 
trehalose, had a lower cell viability in the beginning, and 
the viability decreased rapidly. The B-T + M strain, which 
had a higher glycerol level, showed a smaller decrease in 
cell viability in the later stage of prefermentation (Fig. 5a, 
b). This phenomenon suggests that the high glycerol con-
tent induced by MAL62 overexpression has some posi-
tive effects on the freezing tolerance. Due to the fact that 
trehalose and glycerol are the primary compounds affect-
ing the freezing tolerance [38], the differences in treha-
lose and glycerol accumulation may play an important 
role in the different cell viabilities exhibited by the three 
strains after prefermentation and freezing for 7 days. It 
is possible that the increased level of glycerol and other 
gene expression changes caused by MAL62 overexpres-
sion may play a role in the enhanced cell viability and 
leavening ability. Studies are underway in our laboratory 
to further confirm the roles of glycerol and other related 
genes in yeast cryoprotection.

Hyperosmotic stress, which causes desiccation and 
electrolyte release from yeast cells, is a major factor 
for loss of leavening activity after freezing and thaw-
ing [39]. Besides, the formation of ice crystals during 
freezing causes damage to the cell membrane and sub-
cellular structure [56]. Previous studies have reported 
that fermentation with high glycerol-producing strains 
can result in improved cell viability and gas retention 
in dough [57]. Consistent with the report, our results 
showed that the B-T + M strain exhibits a higher glyc-
erol content as well as improved gas retention in the 
dough, especially after the storage of the frozen dough 
for more than 1 week. We believe that this is partially 
because the HOG pathway and glycerol synthesis were 
activated by MAL62 overexpression. It is worth noting 
that the B-T + M strain showed a high level of CO2 pro-
duction during the 4 weeks of frozen dough storage. A 
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possible reason is that MAL62 overexpression enhances 
maltose metabolism, which is vital for dough fermenta-
tion [15].

Conclusion
This study indicates that MAL62 overexpression 
induces cryoprotection by the increased level of tre-
halose via the UDPG-dependent trehalose synthesis 
pathway. The increased glycerol content by MAL62 
overexpression also plays an important role in the cryo-
protection, especially in the later stage of prefermenta-
tion. We believe that these findings shed new light on 
the mechanism of yeast response to freezing in lean 
bread dough and can help to improve industrial yeast 
strains.
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