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Abstract 

Background:  Despite the latest advancements in metabolic engineering for genome editing and characterization of 
host performance, the successful development of robust cell factories used for industrial bioprocesses and accurate 
prediction of the behavior of microbial systems, especially when shifting from laboratory-scale to industrial condi‑
tions, remains challenging. To increase the probability of success of a scale-up process, data obtained from thoroughly 
performed studies mirroring cellular responses to typical large-scale stimuli may be used to derive crucial information 
to better understand potential implications of large-scale cultivation on strain performance. This study assesses the 
feasibility to employ a barcoded yeast deletion library to assess genome-wide strain fitness across a simulated indus‑
trial fermentation regime and aims to understand the genetic basis of changes in strain physiology during industrial 
fermentation, and the corresponding roles these genes play in strain performance.

Results:  We find that mutant population diversity is maintained through multiple seed trains, enabling large scale 
fermentation selective pressures to act upon the community. We identify specific deletion mutants that were 
enriched in all processes tested in this study, independent of the cultivation conditions, which include MCK1, RIM11, 
MRK1, and YGK3 that all encode homologues of mammalian glycogen synthase kinase 3 (GSK-3). Ecological analysis 
of beta diversity between all samples revealed significant population divergence over time and showed feed specific 
consequences of population structure. Further, we show that significant changes in the population diversity during 
fed-batch cultivations reflect the presence of significant stresses. Our observations indicate that, for this yeast dele‑
tion collection, the selection of the feeding scheme which affects the accumulation of the fermentative by-product 
ethanol impacts the diversity of the mutant pool to a higher degree as compared to the pH of the culture broth. The 
mutants that were lost during the time of most extreme population selection suggest that specific biological pro‑
cesses may be required to cope with these specific stresses.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Microbial Cell Factories

*Correspondence:  dtanjore@lbl.gov; amukhopadhyay@lbl.gov
†Maren Wehrs, Mitchell G. Thompson and Deepanwita Banerjee 
contributed equally to this work
1 Biological Systems and Engineering Division, Lawrence Berkeley 
National Laboratory, Berkeley, CA 94720, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-6513-7425
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12934-020-01423-z&domain=pdf


Page 2 of 15Wehrs et al. Microb Cell Fact          (2020) 19:167 

Background
Saccharomyces cerevisiae is one of the most widely used 
microbial hosts in biotechnological processes and has 
been engineered to produce a variety of industrially rele-
vant compounds ranging from pharmaceuticals to biofu-
els [1–4]. Production strains are typically engineered and 
optimized in small scale cultivations, while the biopro-
duction processes take place in large scale bioreactors. 
Even though it is understood that microbial physiology at 
larger scales differ from that in shake flask batch cultures, 
it is typically left to later project stages to optimize the 
strain and conditions for production at scale [5, 6]. Previ-
ous work has indicated that before any candidate strains 
are employed in industrial scale production environ-
ments, it is prudent to adopt de-risking steps that charac-
terize and optimize the strain performance at industrially 
relevant scales [7]. Given the low throughput and high 
cost of large-scale bioconversion and fermentation, 
this step represents a bottleneck for the development 
of industrially useful microbial factories [5]. A better 
understanding of the differences between the culturing 
conditions in shake flask and large-scale bioreactors will 
aid our ability to preemptively engineer better microbial 
hosts before attempting costly and risky scale up.

Multiple functional genomics methods (such as tran-
scriptomics, proteomics, metabolomics, fitness profil-
ing, and fluxomics) have been used to examine critical 
aspects of strain development such as carbon source uti-
lization, tolerance to toxic substrates or final products, 
and metabolic flux optimization [8–13]. However, few 
studies applying omics-level techniques have investigated 
the differences in process scales on the physiology of a 
microbial production strain [14–17]. Furthermore, most 
reports focus on individual aspects of the fermentation 
process, including oxygen supply [18–20] as well as sub-
strate heterogeneity [21–24]. While these studies shed 
light on specific physiological changes due to known 
stresses encountered during the scale up process, such 
as mass transfer and nutrient heterogeneity, there still 
remains a dearth of knowledge regarding the biological 
impact of stresses and bottlenecks on the microbial pop-
ulation at various scales.

Among genome-wide techniques that have proven 
valuable, massively parallel fitness profiling techniques 
such as Transposon-Sequencing (Tn-Seq) [25], Bar-
code-Sequencing (Bar-seq) [26], and Random Barcode 

Transposon Sequencing (RB-Tn-Seq) [27] allow rapid 
identification of genetic loci controlling myriad impor-
tant phenotypes. In this study, we use Bar-seq, which 
quantifies changes in the population by measuring 
changes in the abundance of short nucleotide barcodes 
associated with a known mutation. The Bar-seq meth-
odology has been used extensively since the advent of 
barcoded deletion and overexpression yeast collections. 
These collections have led to impressive findings in a 
wide array of genome-wide phenotypic assays aimed 
towards increased understanding of biological functions, 
stress responses, and mechanisms of drug action [28–32]. 
Similar approaches have been used to assign functions to 
thousands of genes across many bacteria [33], as well as 
to identify and eliminate metabolism detrimental to pro-
duction of a desired molecule [34, 35].

Most industrial biotechnological processes employing 
microbial production hosts are performed using batch 
or fed-batch cultivation, which are typically more cost-
effective compared to continuous cultivations [36, 37]. 
In this study, we explored the selective pressures that 
microbial populations encountered in shake flasks as well 
as batch and fed-batch bioreactor cultivations to charac-
terize the timing and the identity of these selective pres-
sures. We performed scale-up processes from seed train 
stage to batch and fed-batch bioreactor cultivation and 
analyzed the population dynamics of a pooled S. cerevi-
siae deletion collection using Bar-seq. Our results show 
that the response to these conditions using the yeast Bar-
seq library strongly depends on the conditions examined 
and that certain conditions impose a higher selective 
pressure.

Results
We employed the pooled S. cerevisiae deletion library to 
examine the impact of different cultivation conditions 
on the physiology of S. cerevisiae and compared poten-
tial global population differences between cultivations 
in shake flasks versus bioreactors. We were able to char-
acterize the impact of process parameters commonly 
subject to adjustments during fed-batch cultivations on 
the library. To better simulate industrial processes, we 
included a two-stage seed train to generate an adequate 
amount of actively growing cells to inoculate a produc-
tion bioreactor, as part of our workflow. To avoid any 
potential impact from amino acid insufficiencies on the 

Conclusions:  Our results demonstrate the feasibility of Bar-seq to assess fermentation associated stresses in yeast 
populations under industrial conditions and to understand critical stages of a scale-up process where variability 
emerges, and selection pressure gets imposed. Overall our work highlights a promising avenue to identify genetic loci 
and biological stress responses required for fitness under industrial conditions.
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fitness of the mutant pools, a prototrophic deletion col-
lection was used in all experiments performed in this 
study [38].

Design of Bar‑seq scale up fermentation experiments
It has long been recognized that most strains do not per-
form the same way when cultivated in a bioreactor com-
pared to a shake flask [6]. The main differences between 
these two general scenarios are dictated by the geome-
tries of vessels and impellers along with enhanced control 
capabilities available during cultivations in bioreactors. 
Better gas transfer rates [5, 39, 40] can be achieved 
through presence of impellers and air spargers, better 
control of nutrient feed rates through external feeding 
capabilities as well as robust control over pH through 
acid or base addition. We examined a selection of these 
conditions between a shake flask cultivation, a bioreactor 
cultivation in batch mode as well as in fed-batch format, 
and individually across different fed-batch strategies. To 
assess the effect of any given variable on the population 
dynamics of a pooled S. cerevisiae deletion library, we 
performed growth competition experiments in two sets, 
each comprising two seed train stages followed by differ-
ent final cultivation environments varying in either ves-
sel architecture (set 1: bioreactor versus shake flask) or 

cultivation parameter (set 2: feeding mode, pH) (Fig.  1, 
for Additional file 1: Fig S1). For each of the two sets, we 
used an individual aliquot of the pooled library to inocu-
late the first seed train stage (seed 1) and measured the 
relative abundances of mutants within the population at 
least once every 24 h throughout the course of each culti-
vation using barcode sequencing [41].

In contrast to microbial cultivation in shake flasks, 
where gas transfer and mixing are achieved predomi-
nantly by shaking, bioreactors employ oxygen spargers 
and agitators to improve oxygen transfer in the cultures. 
To test if the difference in gas transfer impacts the popu-
lation dynamics of the mutant pool, we performed batch 
cultivations without DO or pH control. All substrate was 
added to the culture media at the beginning of the culti-
vation and the composition of the resulting mutant pool 
after 72 h was compared. To assess potential differences 
in oxygen transfer in shake flask cultivations, we tested 
two different shake flask filling volumes (20% Vf/Vmax and 
40% Vf/Vmax) (Additional file 1: Figs. S1, S2).

Additionally, bioreactors allow for pH control to ensure 
an optimal production environment as well as exter-
nal feed of additional substrate to extend the process by 
minimizing nutrient limitations. To assess the impact of 
a feeding regime and pH on the population dynamics of 

Fig. 1  Schematic depiction of experimental setup for the pooled population dynamics experiments. An aliquot of a pooled haploid prototrophic 
S. cerevisiae deletion collection [38] was used to inoculate a two stage shake flask seed train in YPD. Growth competition experiments were 
performed in two sets, each consisting of two seed train stages (Seed 1 and Seed 2) followed by different main cultivation environments. Set 1 
(left) varied in vessel architecture that included shake flasks with different culture volumes (SF1 and SF2) and a batch bioreactor (BR). Set 2 (right) 
varied in cultivation parameter settings that included four fed-batch mode bioreactors (CF4, CF6, DF4 and DF6) with two different feeding modes 
(CF = constant feed, DF = DO- signal based feed) and two different pH (4 and 6). All cultures were run at 30 °C, the dissolved oxygen (DO) was not 
controlled. Samples were taken at the end of each seed stage and throughout the bioreactor runs
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the mutant pool, we performed four fed-batch cultiva-
tions: (i) two pH set points, pH 4 and pH 6, and (ii) two 
glucose feeding schemes, constant rate feeding and a 
DO signal-based pulse feeding (Fig.  1, Additional file  1: 
Figs. S1, S3). In a DO signal feeding regimen, a feeding 
solution is added upon complete exhaustion of available 
carbon sources and thus is responsive to the metabolic 
activity of the cells. Whereas, under constant rate feed-
ing regimen, feed solution is continuously added to the 
fermentation broth independent of the metabolic activity. 
If the feed rate is not optimized for the process, then this 
feeding strategy may result in large accumulation of fer-
mentative by-products, including ethanol, due to poten-
tial overfeeding of the culture. In all cases, the fed-batch 
phase was triggered after initial DO spikes, indicating full 
consumption of the carbon sources available during the 
batch phase.

Mutant population succession is dictated by fermentation 
regime
We interrogated the changes detected in the mutant 
population structure of each cultivation over time and 
visualized the data using a correlation matrix showing 
the diversity of the mutant pool via the total number of 
observed mutants (Fig.  3). Of the 6002 total barcoded 
genes present in this deletion collection, 2949 were 
detected at t0 with at least 10 counts. To minimize sta-
tistical noise, we only included genes with a threshold of 
at least 10 counts in the Seed 2 population in this analy-
sis as described by Payen et al. [31]. It may be noted that 
the general trend of observed mutants per condition was 

robust and independent of this threshold (Additional 
file 1: Fig. S4).

Generally, the population structure of the two indi-
vidual seed trains were highly similar (r > 0.99 across all 
seed populations) when compared via Pearson correla-
tion of mutant barcode counts (Additional file 1: Fig. S5, 
Table  S1). In the studies investigating vessel geometry 
(set 1), microbial growth, measured by optical density 
(OD), and glucose consumption profiles look similar for 
all batch cultivations, independent of the cultivation ves-
sel (BR vs. SF1 and SF2 in Additional file 1: Fig. S2a). The 
overall structure of the populations cultivated in both 
shake flask conditions (SF1 and SF2) and the batch biore-
actor (BR) were highly similar when compared via Pear-
son correlation (Fig. 3) of mutant barcode counts (r > 0.99 
across all time points), with minor changes at 48  h (for 
additional details see Additional file  1: Fig. S2b and c). 
As the overall population structure is highly similar in all 
conditions and time points tested, we conclude that the 
difference in vessel architecture is not reflected in the 
population structure of the deletion mutant pool.

For population changes between batch, and a fed-batch 
environment for the tested conditions, we analyzed the 
abundance of individual barcode counts in populations 
under the respective conditions, comparing BR to CF 4, 6 
and DF 4, 6. Overall, only 8.6% (212 barcodes) of mutant 
barcodes initially present in the respective seed 2 culture 
were retained in all populations cultivated in a bioreactor 
environment independent of the cultivation mode (batch 
versus fed-batch), and 0.53% (13 barcodes) of mutant bar-
codes were lost in all conditions at the final timepoints 
(Fig.  2b). Upon examination of the mutant populations 

Fig. 2  a Growth profiles of each fed-batch bioreactor over time. Concentrations of glucose (yellow line) and ethanol (red line), OD600 (green line) 
and the culture %DO (dotted line) are plotted against time for cells grown in different fed-batch regimes. b Population diversity of each fed-batch 
bioreactor over time. Depicted are the counts for barcodes that were detected (blue) and not detected (orange) at a given time point at a threshold 
of n = 10
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in the fed-batch conditions specifically, we observed a 
decrease in the overall diversity of our mutant population 
over the course of the fermentation for all four condi-
tions (Fig. 2b). As expected from findings from the batch 
bioreactor study (BR) and the correlation matrix (Fig. 3, 
Additional file 1: Fig. S3b), over 90% of the mutants in the 
initial Seed 2 mutant population are still present through-
out the batch phase (< 33 h EFT, EFT = elapsed fermen-
tation time) with a highly similar population structure 
across all conditions (CF 4, 6 and DF 4, 6) before the feed 
start. Even then, all samples taken up to 48 h EFT show 
high correlation to each other, indicating little change in 
the pool of detected barcodes. However, large differences 
in population composition were observed in the popula-
tions grown in a constant rate feeding regime, in CF4 and 

6, by the end of the fermentation at 119 h. The constant 
rate feed resulted in four times higher glucose addition 
(~ 250 g) but only slightly higher OD values (OD600 ~ 52) 
than DO signal based feeding (OD600 ~ 40, < 75 g glucose 
added). Most of the glucose in CF 1 and 2 accumulated 
as the fermentative by-product ethanol (~ 37 g/L), much 
higher compared to that in DF4 and 6 (< 1  g/L ethanol 
produced) (Fig. 2a, Additional file 1: Fig S1). Both popu-
lations grown under a DO signal-based feeding regime, 
DF4 and 6, remained highly correlated to the initial pop-
ulation detected in Seed 2 and each other throughout 
the cultivation independent of the culture pH (DF4 = pH 
4, DF6 = pH 6, r = 0.98). Further, less than 200 mutants 
(i.e. less than 7.5% of the mutants present in the Seed 2 
population) in reactor DF6 were lost over the course of 

Fig. 3  Correlation matrix of mutant abundance. Heatmap shows pairwise Pearson correlation coefficients of the raw number of mutant barcodes 
counted in batch and fed-batch cultures tested with constant rate and DO signal feeding at two levels of pH, 4 and 6. Any gene that had less than 
10 barcode counts in every condition was not considered for analysis. Scale bar shows Pearson correlation coefficient from 1 to 0
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the entire cultivation, indicating that the conditions (pH 
6, DO signal based feeding) did not result in sufficient 
selective pressure for a significant change of the mutant 
pool population over the course of 119 h. In both reac-
tors cultivated at pH 4, CF4 and DF4, an additional 10% 
of the mutants in the respective mutant population were 
lost within a 24 h window in the fed-batch phase between 
48 and 72 h compared to DF6. In contrast, the population 
cultivated in CF6 (pH 6, constant rate feed) exhibited the 
start of diversity loss earlier, losing 23% of initial mutant 
barcodes between 33 h EFT and 48 h EFT and additional 
55% of these mutants between 48 and 72 h, resulting in a 
decrease of its diversity to about 35% of its initial mutant 
pool after 72 h. This observation is also reflected in the 
correlation matrix: the mutant population of CF4 (pH 
4) showed a modest decrease in correlation to DF6 after 
48 h (pH 6, r = 0.88), whereas the CF6 population (pH 6) 
changed dramatically in comparison to DF6 at that time 
point (r = 0.12), and only showed moderate correlation to 
CF4 (r = 0.54). Upon comparison of the barcode abun-
dance trends present under the constant feeding con-
ditions in CF4 and 6, we found that the majority of loss 
in diversity takes place between 48 and 72 h for both of 
these populations, which is representative of the onset of 
stationary phase. This time point seems to coincide with 
significant accumulation of ethanol in these 2 bioreac-
tor environments reaching ethanol concentration of over 
12 g/L by 72 h from 3 g/L at 48 h in both reactors (Fig. 2a, 
red line), which may suggest that the presence of high 
concentrations of ethanol in CF4 and CF6 contributes to 
the loss in diversity under these conditions.

Next, we applied standard statistical techniques com-
monly applied in microbial ecology to better understand 
how mutant populations diverged from each other over 
time. These techniques and methods include calcula-
tions of Bray–Curtis dissimilarities, which is a statistic 
to quantify the compositional dissimilarity between two 
different samples, non-metric multidimensional scaling 
(NMDS), which attempts to accurately represent the dis-
similarity of multidimensional data in lower dimensional 
space, and beta dispersion, which tests for the homoge-
neity of dispersion within groups.

An NMDS analysis of Bray–Curtis dissimilarities 
between mutant populations, revealed that samples 
diverged from one another as fermentations progressed, 
indicating that elapsed fermentation time may be an 
important driver for population divergence (Fig.  4a). 
To test this hypothesis, we applied common statisti-
cal tests on our dataset. Indeed, a one-way ANOVA 
test revealed that time was a highly significant driver of 
beta dispersion variance between samples (p = 0.001) 
and a PERMANOVA test, corrected for repeated meas-
ures (which is necessary due to repeated sampling of the 

same samples over time), showed that time accounted 
for ~ 36% of beta dispersion variance within the data 
(p < 0.001), while feeding strategy accounted for ~ 7% of 
the variance (p = 0.327). Over the course of fermentation, 
the overall beta dispersion of mutant populations tended 
to increase (Fig. 4b). When time is not taken into account 
the beta dispersion in populations from continuously fed 
reactors was significantly different via ANOVA analy-
sis followed by Tukey HSD, compared to seed cultures 
(Fig. 4c). These observations indicate that, for this yeast 
deletion collection, the selection of the feeding scheme 
which affects the accumulation of the fermentative by-
product ethanol may impact the diversity of the mutant 
pool to a higher degree as compared to feeding regimes 
that do not accumulate these byproducts.

Deletion mutants of genes associated with mitochondria 
are commonly lost across all conditions tested
Amongst the deletion mutants that were maintained 
throughout the entire fermentation, we observed that 
each condition (shake flask, batch bioreactor as well as 
fed-batch processes) resulted in overlapping as well as 
distinct mutant pools with increased or decreased fit-
ness (Fig. 5). Our analysis revealed that 47 mutants were 
overrepresented specifically in the batch bioreactor, 4 
mutants in the shake flask and 30 mutants were uniquely 
overrepresented in the fed-batch conditions at the final 
timepoint. While almost 50% of the mutants overrep-
resented in the shake flask population, were also over-
represented in the batch bioreactor population (3 of 7 
barcodes), no overlap was detected for overrepresented 
mutants between the fed-batch bioreactors and the shake 
flask. However, out of 47 mutants overrepresented in the 
fed-batch environment, 17 were also overrepresented in 
the batch bioreactor but not in shake flasks.

To better understand the biological relevance of these 
commonly lost and commonly retained mutants, we 
performed gene ontology enrichment analysis of these 
gene lists using the Benjamini–Hochberg procedure 
to decrease the false discovery rate of our analysis. We 
found that only 3% of the barcodes initially present in 
Seed 2 (n = 77) were commonly lost across all the fed-
batch bioreactors while 31% of the barcodes (n = 796) 
were commonly retained by the end of the experiment 
(119 h) (Fig. 2b). Of the 77 deletion mutants commonly 
lost across all fed-batch bioreactors, almost 50% (28 
genes) are annotated to be associated with mitochondria. 
Of these 28, the majority of genes (20) are annotated to 
associate to the mitochondrial envelope and 9 genes are 
associated with mitochondrial organization including 
the assembly of the mitochondrial respiratory complex. 
Of the 796 deletion mutants retained in all fed-batch bio-
reactors with 787 unique gene identifiers, the annotated 
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genes associated with response to salt stress as well 
as diphosphate activity were observed as significantly 
enriched.

Amongst the 10 genes annotated to be associated 
to cellular response to salt stress (GO ID: 0071472) are 

MSN4, a stress-responsive transcriptional activator 
involved in the yeast general stress response as well as 
all four genes MCK1, RIM11, MRK1, and YGK3, that all 
encode homologues of mammalian glycogen synthase 
kinase 3 (GSK-3). Yeast GSK-3 homologues are suggested 

Fig. 4  Beta-diversity of mutant populations in different generalized feeding regimes over time. a NMDS plot of feeding regimes over time. Colors 
show timepoints when samples were taken, and symbols show culturing condition. Greater distance between samples (points) indicates greater 
population dissimilarity (based on Bray–Curtis dissimilarity). b Boxplots show beta dispersion of all samples in the study over time. As time increases 
there is a general trend of increased beta dispersion. c Boxplots show beta dispersion of all samples in the study grouped by feeding regime, “a” 
denoted statistical significance between continuously fed and seed populations
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to promote formation of a complex between the stress-
responsive transcriptional activator Msn2p, a paralog 
to Msn4p and DNA, which is required for the proper 
response to different forms of stress [42, 43]. As these five 
deletion mutants (msn4−, mck1−, rim11−, mrk1−, ygk3−) 
were also retained throughout the study performed in the 
batch bioreactor and SF2, these genes may be promis-
ing candidates for gene deletion to improve fitness inde-
pendent of glucose availability, pH or vessel architecture. 
However, further experiments need to be performed 
to confirm this assumption. A summary of identified 
mutant barcodes and associated annotated gene func-
tions are listed in Additional file 1: Table S2.

Bioreactor‑specific stress responses revealed by Bar‑seq
In reactors CF4 and 6, which were run under a con-
stant rate feeding scheme, the drastic loss of diversity 
coincided with the onset of ethanol accumulation. In 
DF4, the implementation of a DO signal feeding scheme 
resulted in no substantial accumulation of ethanol but 
rather a frequent switch from respiratory to fermentative 

metabolic state triggered by the addition of small glucose 
boluses that are characteristic of a DO signal feeding 
scheme (Additional file 1: Fig. S3). To determine whether 
the groups of mutants that were either lost or selected 
against during this cultivation period in the respec-
tive populations are indicative of the specific stresses 
imposed on the microbial population, we performed a 
direct comparison of the mutants specifically reduced or 
lost in each of the bioreactors followed by gene ontology 
enrichment analysis of those mutant groups. To allow the 
determination of statistically significant enrichments of 
genes in these groups, we excluded the population in bio-
reactor CF6 from further analysis, as it was reduced to 
less than 50% of its initial mutant diversity by 72 h.

Overall, 174 mutants were uniquely selected against 
in bioreactor CF4, 253 in bioreactor DF4 and only 39 
mutants were either lost or appreciably selected against 
in the population cultivated in bioreactor DF6 (Fig.  6). 
Our analysis revealed that 112 mutants were selected 
against in both populations cultivated at pH 4 (CF4 
and DF4), while only 2 mutants were commonly lost or 
reduced in all bioreactors at this time period. Glucose 
addition in DF6 was controlled by measurements of 
dissolved oxygen within the culture broth (DO signal), 
which is an indirect indicator for metabolic activity of the 
cells in suspension. The frequency of DO spikes, and thus 
the rate at which the cells are consuming all the carbon 
delivered per feed bolus, significantly decreases over time 
in case of DF6 compared to DF4, starting at around 50 h 
EFT. The observed low number of mutants lost in biore-
actor DF6 could be attributed to the comparably lower 
metabolic activity of that culture (Additional file  1: Fig. 
S3).

The culture in bioreactor CF4 was maintained at pH 
4 and was fed at a constant rate with glucose, which 
resulted in a high accumulation of the fermentative by-
product ethanol starting at 48  h. The group of mutants 
selected against during this period of cultivation in CF4 
is enriched with genes associated with cellular stress 
(5.14-fold enrichment, p = 0.0415), autophagy (5.9-fold 
enrichment, p = 0.0023), and endosomal transport (6.66-
fold enrichment, p = 0.00144). Of those genes associ-
ated with cellular stress, the majority is either associated 
with DNA damage (MSH4, TSA1, GEM1, DPB4, CMR1, 
RAD57) or protein misfolding (CMR1, SSM4, CNE1). 
Additionally, we observed an overrepresentation of genes 
involved in the Cytoplasm-to-vacuole targeting (Cvt) 
pathway, a constitutive and specific form of autophagy 
that uses autophagosomal-like vesicles for selective 
transport of hydrolases to the vacuole, in the pool of 
mutants that were specifically selected against in bio-
reactor CF4 between 48 and 72 h (ATG2, ATG3, ATG4, 
ATG8, ATG9. ATG31, VPS30). Similar to bioreactor CF4, 

Fig. 5  Extant mutants that were commonly more (a) or less (b) fit 
over the course of the cultivation in either fed-batch bioreactors, 
batch bioreactor, or shake flasks from 0 to 119 h for the fed-batch 
bioreactors and 0 h to 72 h for the batch bioreactor and shake flasks. 
As shown in Fig. 2b, the majority of population changes occurred 
before 72 h in fed-batch cultivations. Venn diagrams show the 
number of mutants common or unique between parameters tested
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the culture in bioreactor DF4 was also maintained at pH 
4 but was fed intermittently based on DO spike signals. 
Here, the pool of mutants that were significantly selected 
against was enriched for genes associated with the TCA 
cycle (6.09-fold enrichment, p = 0.0182) as well as oxida-
tive stress (4.68-fold enrichment, p = 0.0142). The group 
of mutants selected against predominantly comprised 
of genes associated with the mitochondria (CIT3, IDH1, 
COX8, TIM18, UPS3, AIM25, DIC1) as well as general 
stress response genes (GPH1, GPD1) and oxidative stress 
responses (MXR1, YBP1, CTA1).

In addition, we found that 220 mutants were under-
represented specifically in the batch bioreactor, 79 in the 
shake flask and 131 were uniquely underrepresented in 
the fed-batch conditions at the final timepoint (Fig.  5). 
Unlike the overrepresented mutant pool analysis, a sub-
set of underrepresented mutants is shared in two con-
ditions and 7 mutants are underrepresented in all three 
conditions. The majority of these mutants, namely 
Rps0A−, Rpl8B−, Esa1−, Ric1−, Msc6−, can be associ-
ated with ribosomal and translational activity [44–47]. 
Similar to the overrepresented mutant pool at the final 
time point, we observed a large overlap of the underrep-
resented mutant pool in the shake flask population and 

batch bioreactor population (47%, 85 of 183 underrep-
resented in shake flasks). The pool of 131 mutants, spe-
cifically underrepresented but still present in fed-batch 
bioreactors, was enriched with genes associated with 
mitochondria (p = 0.01, n = 39, GO ID = 0,005,739). Of 
the 39 mitochondria associated genes, 11 play a role in 
mitochondrial organization while 7 are associated with 
cellular respiration.

Discussion
In this study, we demonstrate the feasibility to correlate 
physiological changes observed under controlled culti-
vation conditions, including different pH set points and 
fed-batch regimes, with significant changes in popula-
tion structures of yeast barcoded mutants. Specifically, 
we found that the choice of feeding strategy generat-
ing toxic by-products had a great effect on the popula-
tion structure, highlighting the importance of feed rate 
adjustments and dynamic feeding strategies during the 
biocatalysis phase in fed-batch processes.

We found the S. cerevisiae population structure to be 
robust throughout the entire seed train as indicated by a 
Pearson correlation of population makeup and by evalu-
ation of beta diversity between samples (Figs. 3, 4). This 

Fig. 6  Mutants selected against in bioreactors from 48 to 72 h. Venn diagram shows mutants that either were lost (had a total barcode count < 10) 
or were 50% less relatively abundant from 48 to 72 h. Red text shows GO terms that were enriched in lost or less abundant mutants in bioreactor 
CF4, while green test shows enriched GO terms from bioreactor DF4. Specific genes from each GO term are written below in black
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finding is critical as significant perturbations in the pop-
ulation structure at seed train stage would render the 
analysis of subsequent scale-up experiments infeasible. 
Interestingly, while no significant change in population 
structure was observed in the seed train, changes in the 
mutant pool composition were observed in all condi-
tions mimicking production cultivations, including shake 
flask and bioreactor experiments, allowing us to identify 
mutants in genes that were specifically selected against in 
each of the tested conditions.

We found that the pool of deletion mutants specifi-
cally selected against in fed-batch conditions tested in 
this study was enriched with genes associated with mito-
chondria, specifically in mitochondrial organization and 
cellular respiration. As a Crabtree-positive organism, S. 
cerevisiae predominantly metabolizes glucose by fermen-
tation even under aerobic conditions [48], which causes 
the cells to be in a non-respiratory metabolic state dur-
ing typical batch fermentation processes that employ 
glucose as a carbon source [49]. We observed that dele-
tion mutants associated with the mitochondria are spe-
cifically selected against in fed-batch regimes and not 
in the batch bioreactors. Generally, we did not observe 
significant changes in the population in any tested envi-
ronment until glucose depletion occurred, which con-
stitutes the initiation of the feeding phase in fed-batch 
processes (Fig. 2, Additional file 1: Fig. S3). The apparent 
selection against mutants harboring deletions of genes 
associated with mitochondrial organization and cellular 
respiration in fed-batch processes could be an artifact of 
the extended growth phase caused by the addition of glu-
cose in the fed-batch processes: While we did not detect 
an enrichment of genes associated in the first “wave” of 
genes selected again, there might be a “second round 
of losers” which only became apparent due to the addi-
tional generations. As mitochondria harbor important 
metabolic pathways for various native and non-native 
bioproducts [50–52], better understanding of the cause 
of this negative selection is required to enable better pro-
cess and strain designs aimed at maintaining functional 
mitochondria during scale up.

An important metric to determine the suitability of 
Bar-seq to elucidate stresses involved in industrial scale-
up was that loss of population diversity correlated to the 
onset of observable stress. Temporal analyses of mutant 
populations showed a greater than 10% loss of overall 
mutant diversity in 3 out of 4 fed-batch bioreactors from 
48 to 72 h of fermentation runs (Fig. 2). In the constant 
rate feed bioreactors CF4 and 6, this observation corre-
lated with the onset of ethanol production, which may 
have imposed a strong selective pressure against many 
mutants. Our results suggest that DO signal feeding may 
lead to a less selective environment than constant rate 

fed-batch fermentations. As DO signal based feeding 
leads to several occasions of complete glucose starvation, 
it is expected to impose a stronger selective pressure on 
the microbial culture [53]. Fluctuations in glucose and 
oxygen availability are known to result in global changes 
in gene expression patterns including initiation of cellular 
starvation responses as well as cell-cycle arrest amongst 
others [14, 22, 54], which is thought to result in an 
increased cellular stress. Studies investigating the effect 
of increased concentrations of ethanol on S. cerevisiae 
cells have shown that the presence of ethanol affects the 
intracellular pH as well as membrane fluidity, resulting in 
growth inhibition [55, 56]. Our study suggests that yeast 
cells may be more resilient to fluctuating glucose and dis-
solved oxygen levels resulting from a DO signal based 
feeding strategy as compared to the presence of ethanol 
stress caused by overfeeding using a static feed [57].

We detected that deletion mutants of genes associ-
ated with autophagy and a general stress response were 
specifically selected against under constant rate feed-
ing conditions (CF4, Fig.  6). Autophagy is the process 
whereby cytoplasmic components and excess organelles 
are degraded and is known to be initiated upon starva-
tion for nutrients such as carbon, nitrogen, sulfur, and 
various amino acids, or upon endoplasmic reticulum 
stress [58, 59]. Our findings are in agreement with Pig-
gott et  al., who found genes that function in autophagy 
to be required for optimal survival during fermentation 
when performing a genome-wide study of S. cerevi-
siae gene requirements during grape juice fermentation 
[60]. The authors concluded that the recycling of cellu-
lar components by autophagy enables yeast to survive 
the stressful conditions of fermentation and maximize 
fermentative output [60]. In S. cerevisiae, the general 
stress response is regulated by two homologous tran-
scription factors, Msn2p and Msn4p, which bind to the 
stress response element (STRE) located in the promoters 
of ~ 200 genes in response to several stresses, including 
heat shock, osmotic shock, oxidative stress, glucose star-
vation, and high ethanol concentrations [61–63]. Spe-
cifically, expression of genes associated with metabolic 
homeostasis including proteolysis, protein repair includ-
ing heat shock proteins, prevention of oxidative damage, 
and cellular reorganization is found to be upregulated 
during the general stress response [62, 64]. Hirata et  al. 
observed that the deletion of all 4 genes encoding GSK-3 
homologues resulted in reduced cell viability in response 
to different types of stress, including heat, salt, and oxi-
dative stresses, which has also been observed for a msn2 
msn4 mutant and suggested that GSK-3 is necessary for 
the formation of a complex between Msn2p and STRE to 
initiate a proper stress response [42, 61]. In the majority 
of the conditions tested in this study, individual deletion 
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mutants of all four homologues of mammalian glycogen 
synthase kinase 3 (GSK-3), which interact with Msn2p, as 
well as the deletion mutant of MSN4p were retained. This 
finding indicates that a weakened general stress response 
caused by unstable binding of Msn2p and/or Msn4p to 
the STRE in stress regulated genes may be beneficial for 
cellular fitness under the conditions tested in this study. 
Weakening the initiation of the stress response may 
result in less significant changes in gene expression pat-
terns associated with the general stress response, which 
in turn may decrease the metabolic burden that comes 
with transcription and translation machinery required 
to initiate the full change in gene expression patterns 
stress response. Further investigations are necessary to 
fully understand the effect of a potentially weakened gen-
eral stress response for cultivations in a controlled envi-
ronment and if this phenotype would translate between 
benchtop bioreactors and large scale production bioreac-
tors, which typically exhibit drastic nutrient and oxygen 
gradients [65, 66].

In addition to the Bar-Seq technology applied in this 
study, there are other genome-wide engineering tech-
niques developed for strain engineering, functional 
genomics or fitness profiling studies that may be appli-
cable to study the population dynamics of a microbial 
culture during cultivation in bioreactors. To date, MAGE 
(Multiplex Automated Genome Engineering) [67], 
TRACE (Tracking Combinatorial Engineered Libraries) 
[68] and CREATE (CRISPR EnAbled Trackable genome 
Engineering) [69] have been successfully tested and 
applied in bacterial systems (e.g. E. coli), while MAGIC 
(Multi-functional Genome-wide CRISPR) [70] is the only 
other technology, besides Bar-Seq, that has been success-
fully applied for engineering in yeast. Feasibility assess-
ments to use CREATE in yeast have been performed [69]. 
While these high-throughput multiplexing technologies 
hold immense potential in the future they have some 
challenges that need addressing before they are success-
fully applied in yeast or other higher eukaryotic systems. 
As a result of these associated challenges and the proven 
track record of successful applications of the Bar-Seq 
technology in S. cerevisiae [26, 31, 71], we have employed 
the Bar-Seq method to de-risk our study of population 
dynamics in bioreactor settings. Challenges regarding 
use of any recombineering based engineering strategies, 
specifically for S. cerevisiae, include comparatively trans-
formation efficiency in yeast, constraints in balancing 
library coverage with number of edits per cycle as well 
as trackability of the mutant population. For example, 
tracking genomic mutations in MAGE becomes increas-
ingly challenging with an increasing number of edits as 
each targeted loci has to be individually amplified and 
sequenced for analysis. Further, the instability associated 

with plasmid-based barcodes might pose a tracking 
limitation in techniques such as CREATE and MAGIC. 
Molecular barcodes used in TRACE and Bar-Seq are 
commonly regarded as more stable and easier to track.

Our work was able to identify genetic loci that are 
selected for or against in various bioreactor schemes. 
However, the time and cost associated with each indi-
vidual fermentation run precluded biological replicates 
and established stochastic variability occurring over 
prolonged bioreactor studies. While our study confirms 
earlier findings that genes involved in autophagy can 
be associated with increased fitness during fermenta-
tion, future work should focus on robust replication to 
increase statistical relevance and allow identification of 
deletion mutants with more subtle impact on fitness in 
an industrial setting.

Materials and methods
Yeast strain collections
The prototrophic yeast deletion collection in the haploid 
S. cerevisiae BY4742 background was obtained as indi-
vidual colonies from Prof. Amy Caudy (Univ of Toronto, 
Canada) plated on Omnitrays containing YPD agar with 
200 mg/mL G418. Balanced pools of the deletion collec-
tion were obtained by harvesting all individual colonies 
into a total of 100 mL YPD containing 200 mg/mL G418 
resulting in a cell suspension of OD600 = 50. 1  mL ali-
quots of the yeast deletion pools with a final concentra-
tion of 25% glycerol were prepared and stored at − 80 °C 
until further use.

Seed cultivation
The yeast strain collection was cultured in a two-tiered 
seed train. The first seed culture was grown in 250  mL 
baffled shake flasks containing 50 mL YPD media (10 g/L 
yeast extract, 20 g/L peptone and 20 g/L glucose) inocu-
lated with a 0.7% (v/v) inoculum directly from the glyc-
erol stock. The second seed culture was grown in 500 mL 
baffled shake flasks containing 100 mL YPD media using 
a 10% (v/v) inoculum size. All seed cultures were incu-
bated at 30 °C, 200 rpm (1″ throw) for 24 h.

Shake flask experiments
Shake flask experiments were carried out in 500  mL 
baffled Erlenmeyer flasks containing 100  mL (Vf/
Vmax = 20%) and 200  mL (Vf/Vmax = 40%) of YPD 
media with an initial pH of 6.1. Vf is defined as the vol-
ume of media in the flask and Vmax is the total volume 
of the flask. Flasks were inoculated from second seed 
cultures (4% (v/v) and incubated at 30 °C and 200 rpm 
(Orbit diameter 25  mm). Cultures for serial dilution 
experiments were grown for 24 h and back diluted into 
a flask with fresh YPD media. This was done two times 
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until 72  h total fermentation time was reached. Sam-
ples were taken once a day and centrifuged at 15,000×g 
for 5 min. Supernatant was stored at 4 °C and the cell 
pellet was stored at -80 °C.

Bioreactor experiments
Batch and fed-batch bioreactor experiments were per-
formed in 2 L bench top glass fermentors (Biostat B, 
Sartorius Stedim, Göttingen, Germany) equipped with 
two 6-blade Rushton impellers. All tanks were batched 
with 960  mL of YPD media and autoclaved at 121  °C 
for 30  min. The bioreactors were inoculated with sec-
ond seed cultures with inoculum size of 4% (v/v) initial 
batch volume, i.e. 40  mL in 1 L. Temperature, agita-
tion and air flow were maintained constant at 30  °C, 
400  rpm and 0.5 vvm, respectively and pH was con-
trolled to 4.0 and 6.0 using 2 N NaOH and 2 N HCl. The 
batch bioreactor experiment started at 20 g/L glucose, 
which was consumed within the first 20 h of the study. 
Ethanol and other carbon sources generated in the first 
few hours lasted for up to 72 h, with DO not reaching 
100% until then. To mimic the shake flask studies, for 
BR, glucose was not replenished.

Glucose was replenished in fed-batch experiments: 
CF1, CF2, DF1, and DF2. Two different feeding strate-
gies, i.e. a linear feed profile (y = 0.117 mL/h2x + 4 mL/h) 
and a dissolved oxygen (DO) signal-triggered pulse feed-
ing loop (∆DO = 30%, Flow rate = 40 mL/h, Pump dura-
tion = 6  min). Linear feed was conducted at a constant 
rate that was chosen based on previous experience to 
avoid glucose starvation of the microbial culture. The DO 
signal-based pulse feeding can be explained as follows: 
Upon depletion of total available carbon (glucose, etha-
nol, organic acids, etc.), the metabolic activity stalls and 
consumption of oxygen is discontinued. This leads to a 
sharp increase in dissolved oxygen in the culture media. 
Once a certain threshold value in ΔDO is detected, a cus-
tomized LabVIEW (National Instruments, Austin, TX, 
USA) feed control software is triggered to administer 
predetermined bolus of substrate. This type of DO signal 
based pulsed feeding continues until the fermentation 
process is ended. The initial DO spikes for CF2, DF1, and 
DF3 occurred within a 2-h time period. The DO spike for 
CF1, however, occurred 8 h later due to the presence of 
excess ethanol in the media. The feed media composi-
tion was as follows: 10 g/L yeast extract, 20 g/L peptone 
and 250 g/L glucose. 1 ml samples were taken in regular 
intervals (5 h, 24 h, 33 h, 48 h, 72 h and 119 h) and centri-
fuged at 15,000×g for 5 min. The supernatant was filtered 
(0.2 mm) and stored at 4 °C. The cell pellet was stored at 
− 80 °C.

Preparation of genomic DNA and Bar‑seq analysis
Genomic DNA was extracted from dry, frozen cell pel-
lets using the “Smash- and- Grab” method published by 
Hoffman and Winston [72] and used for barcode verifi-
cation. Amplifications of the barcodes using previously 
published primers [31] and sequencing of the libraries 
using an Illumina MiSeq was performed at the Vincent 
J. Coates Genomics Sequencing Laboratory, California 
Institute for Quantitative Biosciences (QB3) (Berke-
ley, California, USA). Each barcode was reassigned 
to a gene using a standard binary search program as 
described by Payen et al. [31]. Only reads that matched 
perfectly to the reannotated yeast deletion collection 
were used [25]. Multiple genes with the same bar-
codes were discarded. Strains with less than 10 counts 
in the starting pool (t0) were discarded. The numbers 
of strains identified in the conditions are summarized 
in Additional file 1: Table S1. To avoid division by zero 
errors, each barcode count was increased by 10 before 
being normalized to the total number of reads for each 
sample. Distributions of barcode counts per mutants in 
each sample can be found in Additional file 1: Fig S6.

Statistical analysis
Pearson correlations were calculated with the SciPy 
Python library [73]. To identify the time points of “mass 
extinction” / biggest steps in loss of diversity (here, 
defined as gene richness), we looked at the number of 
genes either lost or retained during the time course for 
each of the bioreactors using different count thresholds 
for mutants present in the Seed train (> 0, 5, 10 or 20). 
Beta dispersion was calculated and PERMANOVAs 
were conducted using the Adonis function in the vegan 
R library [74].

Gene ontology enrichment
Gene ontology enrichment analysis was performed using 
the List analysis tool provided by YeastMine (https​://
yeast​mine.yeast​genom​e.org), populated by SGD and 
powered by InterMine [75] against the annotated S. cer-
evisiae S288C genome. The tests were corrected using 
the Benjamini–Hochberg procedure to decrease the false 
discovery rate of our analysis with a maximum acceptable 
p-value of 0.05 unless indicated otherwise.
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