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Abstract 

Background:  Cyanobacteria and other phototrophic microorganisms allow to couple the light-driven assimilation of 
atmospheric CO2 directly to the synthesis of carbon-based products, and are therefore attractive platforms for micro-
bial cell factories. While most current engineering efforts are performed using small-scale laboratory cultivation, the 
economic viability of phototrophic cultivation also crucially depends on photobioreactor design and culture param-
eters, such as the maximal areal and volumetric productivities. Based on recent insights into the cyanobacterial cell 
physiology and the resulting computational models of cyanobacterial growth, the aim of this study is to investigate 
the limits of cyanobacterial productivity in continuous culture with light as the limiting nutrient.

Results:  We integrate a coarse-grained model of cyanobacterial growth into a light-limited chemostat and its het-
erogeneous light gradient induced by self-shading of cells. We show that phototrophic growth in the light-limited 
chemostat can be described using the concept of an average light intensity. Different from previous models based on 
phenomenological growth equations, our model provides a mechanistic link between intracellular protein allocation, 
population growth and the resulting reactor productivity. Our computational framework thereby provides a novel 
approach to investigate and predict the maximal productivity of phototrophic cultivation, and identifies optimal 
proteome allocation strategies for developing maximally productive strains.

Conclusions:  Our results have implications for efficient phototrophic cultivation and the design of maximally pro-
ductive phototrophic cell factories. The model predicts that the use of dense cultures in well-mixed photobioreactors 
with short light-paths acts as an effective light dilution mechanism and alleviates the detrimental effects of photoin-
hibition even under very high light intensities. We recover the well-known trade-offs between a reduced light-har-
vesting apparatus and increased population density. Our results are discussed in the context of recent experimental 
efforts to increase the yield of phototrophic cultivation.

Keywords:  Cyanobacteria, Microalgae, Photobioreactor, Biofuels, Photosynthetic productivity, Resource allocation, 
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Background
Phototrophic microorganisms such as microalgae and 
cyanobacteria hold significant potential for the produc-
tion of industrially or medically relevant compounds, 
such as pigments, organic acids, or alcohols [17, 56], as 
well as secondary metabolites used for pharmaceutical 

purposes [26, 36]. The interest in cyanobacteria as plat-
forms for microbial cell factories originates from their 
capability for carbon-neutral production, easy accessi-
bility for genetic manipulation, and their relatively fast 
growth rates compared to land plants. A major challenge 
of cultivating phototrophic microorganisms on a com-
mercial scale, however, is still the low biomass density, 
and hence low volumetric productivity, compared to 
other biotechnologically relevant microorganisms [27, 
29, 51, 52].
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Previous research has established the critical role of the 
photobioreactor design for improving the overall perfor-
mance with a focus on parameters such as mixing rates, 
gas exchanges, temperature, pH, as well as light paths [22, 
40, 41]. In particular, there has been significant progress to 
model phototrophic culture systems making use of sophisti-
cated computational methods to describe reactor geometry, 
light transfer, and fluid dynamics [1, 9, 16, 38]. Concomi-
tantly, there have been significant efforts to obtain a better 
quantitative understanding of the photosynthetic produc-
tivity of cyanobacterial growth in photobioreactors [8, 43].

However, despite this progress, there remains a need 
for an improved computational framework to better 
understand the physiological acclimation of cyanobac-
teria in a heterogeneous light environment typically 
encountered in dense cultures. In this respect, we can 
build upon an established theory of the light-limited che-
mostat, originally developed by Huisman et  al. [23] and 
later refined by other authors [18, 30, 31]. These previ-
ous analyses, however, were almost all based on phe-
nomenological growth models, such as the Monod or 
Haldane-type equation, and only few works, such as the 
computational analysis of He et  al. [20], explicitly inte-
grate intra- and extracellular information to achieve a 
better understanding of bioreactor productivities.

The purpose of this work is therefore to integrate a 
recent coarse-grained model of cyanobacterial growth 
into a model of population dynamics within a light-lim-
ited chemostat. The coarse-grained computational model 
was previously parametrized using an in-depth quantita-
tive analysis of cyanobacterial growth in an optically thin 
turbidostat [54], and describes the relationship between 
intracellular protein allocation and cellular growth. Based 
on our previous experimental analyses [15, 54], our prem-
ise is that the model provides a reasonable description 
of cyanobacterial growth under different light intensi-
ties—and therefore represents a suitable starting point 
to investigate the relationship between the allocation 
of intracellular proteins, light absorption, self-shading, 
growth rate, and overall culture productivity. Combin-
ing our model of cyanobacterial growth with a model 
of a light-limited chemostat therefore allows us to com-
putationally investigate and compare different possible 
proteome allocation strategies, such as maximization of 
growth rate versus maximization of culture productivity, 
and provides insights into optimal strain design strategies.

Our results have profound consequences for the design 
of photobioreactors. The model predicts that high popula-
tion densities alleviate the detrimental effects of photoin-
hibition even under very high light intensities. The results 
therefore strongly support previous works by Richmond 
[41] and Qiang et  al. [40] who showed that a high areal 
phototrophic productivity can be achieved using reactors 

maximally exposed to light with a short light-path and tur-
bulent mixing. We further recover the well-known trade-
offs between a reduced light-harvesting apparatus and 
increased population density, and hence higher volumetric 
productivity. Our approach provides a general computa-
tional framework to integrate and solve models of cyano-
bacterial proteome allocation in a light-limited chemostat.

The paper is organized as follows: in the first two sec-
tions, we briefly introduce a model of the light-limited 
chemostat. In the subsequent sections, we describe the 
coarse-grained model of phototrophic growth and its 
solution using the assumption of parsimonious protein 
allocation. We then integrate both models and show that, 
as a nontrivial result, phototrophic growth in a light-lim-
ited chemostat can be described using the concept of an 
average light intensity. We then investigate culture prop-
erties, such as light attenuation, population density, and 
volumetric productivity, as well as the emergent bistabil-
ity of the culture induced by photoinhibition. In the sub-
sequent section, we consider hypothetical strains whose 
protein allocation is optimized for maximal culture pro-
ductivity—and highlight differences to proteome alloca-
tion in wild-type cells. Finally, we consider engineering 
strategies for heterologous production.

Results
A model of the light‑limited chemostat
To investigate cellular proteome allocation in dense cul-
tures, we make use of a mathematical description of con-
tinuous cultivation in a chemostat, as originally described 
by Novick and Szilard [37] and, independently, by Monod 
[35]. The dynamics of the population density  ̺ (in units 
of cells per milliliter) of genetically identical and well 
mixed cells is described by the differential equation,

where µ denotes the specific cellular growth rate and D 
denotes the dilution rate of the culture medium. Figure 1 
illustrates the concept of the chemostat.

Fresh medium and dissolved nutrients are continu-
ously fed into the culture with the same rate as the 
culture medium is removed, resulting in a constant 
operating volume. All dissolved nutrients are well mixed 
within the culture medium. The dynamics of the concen-
tration of a nutrient s depends on the inflow and outflow 
rates, as well as the uptake rate of the microorganisms,

where Vin,s denotes the inflow rate of the nutrient s, with 
Vin,s = [s0] · D for a soluble nutrient that is supplied with 

(1)
d̺

dt
= µ · ̺ − D · ̺,

(2)
d[s]

dt
= Vin,s − D · [s] −

1

Ys
· µ · ̺,
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a concentration [s0] via the medium. Gaseous nutrients, 
such as CO2 , are supplied by sparging. The uptake rate 
of nutrients by the microorganisms is typically assumed 
to be proportional to the specific growth rate µ and the 
yield coefficient Ys denoting the number of cells obtained 
per nutrient molecule.

Light attenuation in the chemostat
Different to other potentially limiting nutrients, light 
cannot be homogeneously distributed through the 
culture by vigorous mixing. Following  Huisman et  al. 
[23] and others [4, 18, 20, 30, 31], we describe light 
absorption according to the law of Lambert–Beer, i.e., 

ba

dc

Fig. 1  A model of the light-limited chemostat. a Schematic representation. The light source irradiates a culture vessel of depth zm . The culture 
is aerated with CO2-enriched air and nutrients are well mixed. Different from other nutrients, the photon flux is inhomogeneous and decays 
exponentially with depth. b A coarse-grained single-cell model. The model describes carbon assimilation and metabolism, light harvesting, 
photosynthesis, and protein translation by ribosomes. External inorganic carbon cxi  is transported into the cell ( vt ), assimilated ( vc ) into organic 
carbon precursors c3 from which amino acids aa are synthesized ( vm ). Amino acids serve as precursors for protein synthesis ( γj ). The model consists 
of seven coarse-grained protein complexes, including ribosomes R, transport proteins ET  , metabolic enzymes EC , EM , EQ , photosynthetic units 
PSU, and quota proteins PQ . All catalyzed reactions are fueled by energy units e that are produced by activated photosynthetic units PSU∗ ( v2 ). 
Activation of resting photosynthetic units PSU0 is facilitated by light. High light intensities cause photodamage ( vi ), i.e., the degradation of PSU 
into its constituent amino acids. The model also incorporates a general protein degradation term ( dp ), as well as an energy maintenance reaction 
( vme ). c The optimized specific growth rate as a function of light intensity, shown together with experimental values for Synechocystis sp. PCC 6803 
obtained from quantitative growth experiments in an optically thin turbidostat [15, 54]. d Proteome allocation within the system is formulated as an 
optimization problem (parsimonious allocation) such that the ribosome fractions βj translating the different proteins give rise to a maximal specific 
growth rate µ
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we assume that light absorption is proportional to the 
concentration of light-absorbing substances in the 
medium (including cells) and the local light intensity. 
The light intensity I(z) at a depth z is then given by

where I0 denotes the incident light intensity at the sur-
face, α denotes the species-specific light attenuation 
coefficient per cell, and Kbg denotes the background tur-
bidity of the medium including all other light-absorbing 
substances [23]. We note that Lambert-Beer’s law is an 
approximation and neglects aspects such as backscatter-
ing. In the following, we further assume monochromatic 
light and consider light as the only limiting nutrient. The 
latter assumption is motivated by the fact that in biotech-
nological applications mineral nutrients are typically sup-
plied in sufficient quantities. Suitable strategies to supply 
CO2 to dense cultures were recently proposed [3, 29].

To solve the equations for the light-limited chemo-
stat requires knowledge of the specific growth rate µ(I) 
as a function of the light intensity (and possibly other 
nutrients). To this end, previous works typically used 
well-known phenomenological rate equations, such as 
the Monod equation in Huisman et al. [23], to describe 
the light-limited growth of phototrophic microorgan-
isms. Following the original analysis of Huisman et al. 
[23], Gerla et  al. [18] and later Martínez et  al [31] 
provided a detailed analysis based on a Haldane-type 
equation,

where k1 and k2 denote species-specific parameters and 
µmax the maximal growth rate in the absence of photoin-
hibition ( k2 = 0 ). Equation  (4) can be derived using a 
simple model of photoinhibition [14, 19]. See, for exam-
ple, Westermark and Steuer [50] for a review.

A coarse‑grained model of phototrophic growth
Our aim is to replace the phenomenological growth 
equations used in previous works with a mechanistic 
model of cyanobacterial growth. To this end, we utilize 
the coarse-grained model of Faizi et al. [15] with minor 
modifications as described in “Methods” section. The 
model describes phototrophic growth of a single cyano-
bacterial cell in an optically thin culture and was recently 
subject to an in-depth analysis based on quantitative 
growth experiments [54]. Different to phenomenologi-
cal growth models, the model of Faizi et al. [15] describes 
growth in terms of the expression of a (coarse-grained) 
proteome and accounts for the acclimation of cells to dif-
ferent light intensities. Based on our previous experimen-
tal analysis [54], we consider the model to be a reasonable 

(3)I(z) = I0 · e
−(α·̺+Kbg )·z ,

(4)µ(I) =
µmax · I

k1 + I + k2 · I2
,

description of cyanobacterial growth, and therefore a 
suitable starting point to investigate growth in a light-
limited chemostat.

The model is conceptually similar to other recent 
models of cellular resource allocation [5, 24, 34, 49] and 
describes the uptake and conversion of extracellular 
nutrients into metabolic precursors (metabolism) as well 
as the synthesis of proteins from these metabolic precur-
sors (gene expression). The dynamics of all cellular con-
stituents are modelled as ordinary differential equations 
(ODEs). In brief, the model consists of 13 ODEs that 
describe the dynamics of 7 intracellular protein com-
plexes and 5 intracellular metabolites: inorganic carbon ci 
is taken up and assimilated into the metabolite c3 , which 
serves as a precursor for the synthesis of amino acids aa 
and other cellular components cq . Proteins are translated 
by ribosomes using available amino acids and cellular 
energy. Energy is provided by a photosynthetic unit PSU 
that integrates light harvesting and the electron trans-
port chain. The cellular energy unit e combines chemical 
energy and reductant (ATP and NADPH, respectively). 
Light absorption induces photodamage that results in a 
(light-dependent) degradation of PSU back into its con-
stituent amino acids. The model is depicted in Fig. 1 and 
a detailed description of the model equations is provided 
in “Methods” section.

Parsimonious resource allocation and growth
Similar to other models of cellular resource allocation, the 
model does not assume knowledge of regulatory interac-
tions but is formulated as an optimization problem that is 
solved based on the principle of parsimonious allocation of 
cellular resources to achieve a maximal growth rate. That is, 
we maximize the cellular growth rate under (steady-state) 
balanced growth conditions by varying the fractions βj of 
ribosomes that translate specific proteins Pj . The fractions 
βj govern the abundance of the respective proteins—and a 
different allocation of intracellular proteins will give rise to 
different physiological properties and growth rates under 
different environmental conditions. Hence, our framework 
goes beyond phenomenological growth functions and 
allows us to study the consequences of different proteome 
allocation strategies, including allocation strategies that are 
optimized for maximal culture productivity, as well as the 
trade-offs that arise from an heterologous synthesis and 
excretion of a metabolic compound of interest.

Assuming steady-state conditions and balanced growth, 
all intracellular components are subject to the mass balance 
constraint [11, 15],

(5)0 = N · v(β , x, I)− µ · x,



Page 5 of 18Faizi and Steuer ﻿Microb Cell Fact          (2019) 18:165 

where N denotes the stoichiometric matrix, v the vector 
of reaction fluxes, and x the vector of intracellular con-
centrations (including proteins). Equation (5) implies that 
the product of the stoichiometric matrix N and the vec-
tor of reaction fluxes v equals the dilution of intracellular 
compounds due to growth. With ω denoting the vector 
of specific weights of each intracellular compound, and 
the (reasonable) assumption of a constant cell density 
Dc = ω · x , the specific cellular growth rate is given by

Figure  1c shows the resulting maximal growth rate in 
dependence of the light intensity I. The growth curve 
emerges from the coarse-grained model using the 
assumption of parsimonious protein allocation and is in 
good agreement with Eq. (4), as well as with experimen-
tally determined growth curves obtained in an optically 
thin turbidostat. See Faizi et al. [15] and Zavřel et al. [54] 
for further discussion.

Phototrophic growth in the light‑limited chemostat
To describe phototrophic growth in a light-limited che-
mostat, we aim to incorporate the coarse-grained growth 
model into a heterogeneous light environment induced by 
self-shading of the culture. According to Eq.  (3), the local 
light intensity decreases exponentially as a function of ves-
sel depth zm and depends on the density of light-absorbing 
organisms  ̺ and their species-specific light attenuation 
coefficient α . Within our model the species-specific cellular 
light attenuation coefficient is given by

where α0 denotes a basal light absorption per cell inde-
pendent of photosynthesis, and the product σ̂ · PSUtot 
describes the absorption per cell for photosynthesis, with 
σ̂ denoting the effective cross section per PSU. The spe-
cific light attenuation coefficient α therefore depends on 
the expression of the protein complex PSU, and hence on 
the acclimation state of the cell.

We further assume that the culture is rapidly mixed, 
i.e., we only consider a single cell type and acclimation 
state within the culture. The concentrations of intracellu-
lar compounds do not depend on the (momentary) posi-
tion of a cell within the chemostat. Individual metabolic 
reactions, however, in particular reactions that directly 
depend on light, will proceed with rates that depend 
on the local light intensity—the overall metabolism is 
required to be balanced with respect to energy uptake 
and growth. As noted by Pirt [39], this assumption 
implies a certain buffering capacity to permit each cell to 
grow with a constant rate even though it is intermittently 
exposed to radiation.

(6)µ(β , x, I) =
ω ·N · v(β , x, I)

Dc
.

(7)α = α0 + σ̂ · PSUtot ,

To solve the model, we consider the steady-state con-
dition for the chemostat, Eq.  (1), and integrate over the 
vessel depth zm,

Using the definition of the specific growth rate, Eq.  (6), 
we obtain an expression for the effective growth rate µ̂ in 
the chemostat,

with

Using a substitution of variables, as suggested by Huis-
man et  al. [23], Eq.  (10) can be rewritten as an integral 
over light intensity and solved analytically for all reaction 
rates (see “Methods” section). The solution reveals that it 
is possible to express the effective specific growth rate µ̂ 
in the light-limited chemostat as a function of an effec-
tive average light intensity Î,

Since ln(I0)− ln(I(zm)) = (α · ̺ + Kbg ) · zm , the average 
light intensity Î depends on the incident light intensity 
I0 , the cell-specific attenuation coefficient α , the back-
ground turbidity Kbg , the population density  ̺ and the 
vessel depth zm . As already noted by Huisman et al. [23], 
the value of Î can also be readily estimated experimen-
tally from measuring the incident and transmitted light 
intensities, I0 and I(zm) , respectively.

The solution of Eq.  (10) is a nontrivial result and cru-
cially depends on the assumption of rapid mixing and the 
fact that light absorption and photoinhibition are mod-
elled as first-order reactions. There is indeed significant 
empirical evidence for the latter assumption, which is 
contrary to the belief that photoinhibition does not occur 
under low light [6, 44, 45]. While previous models also 
used the concept of an average light intensity as a con-
venient approximation [7, 13], the description emerges 
here as a consequence of the functional form of the intra-
cellular rate equations.

Growth, population density and bistability
Given the definitions above, a solution of the model of 
the light-limited chemostat requires to solve the steady-
state equation 0 = µ̂(β , x, Î) · ̺ − D ·  ̺ for the effective 
growth rate µ̂ as a function of the average light inten-
sity Î . A solution requires knowledge about the cellular 

(8)0 =
1

zm

∫ zm

0
µ · ̺ · dz − D · ̺.

(9)µ̂(β , x, Î) =
ω ·N

Dc
· v̂(β , x, Î),

(10)v̂(β , x, Î) :=
1

zm

∫ zm

0
v(β , x, I(z)) dz.

(11)Î :=
I0 − I(zm)

ln(I0)− ln(I(zm))
.



Page 6 of 18Faizi and Steuer ﻿Microb Cell Fact          (2019) 18:165 

proteome allocation, or, as described above, a suitable 
optimization objective. As our first optimization sce-
nario, we therefore assume that the cyanobacterial cells 
acclimate to the average light intensity Î only. That is, 
we assume that the cells have no explicit information 
about the culture density or other culture parameters, 
but adjust their intracellular proteome such that it maxi-
mizes the effective growth rate µ̂ for the respective aver-
age light intensity Î . This allocation strategy is identical to 
the proteome allocation strategy previously used in Faizi 
et  al. [15], with results that are in excellent agreement 
with measurements in an optically thin turbidostat [54]. 
Our premise is therefore that the cyanobacterial wild-
type (WT) strain has evolved to allocate its proteome 
such that the specific growth rate in the respective light 
environment is maximized. We denote this optimization 
objective as WT-strategy.

Figure 2 illustrates the solution obtained for the light-
limited chemostat for the WT-strategy. All extracel-
lular culture parameters are summarized in Table  1. 
Figure 2a shows the maximal effective growth rate µ̂ as 
a function of the effective average light intensity Î  . For 
any value of Î  , sub-optimal proteome allocation strat-
egies result in growth rates beneath the curve (indi-
cated by the shaded area in Fig. 2a). The maximal value 
of the effective average light intensity Î  is bound from 
above by (a function of ) the incident light intensity I0 . 
Figure  2a also indicates that the WT-strategy is (evo-
lutionary) stable with respect to changes in proteome 
allocation: any sub-optimal proteome allocation strat-
egy results in a lower growth rate for the respective 
average light intensity. The respective strain would be 
outcompeted by a strain that attains a higher specific 
growth rate at the same average light intensity. Fig-
ure 2b shows the effective growth rate µ̂ as a function 
of the population density. We note that the values are 
identical to those shown in Fig. 2a, µ̂ is not subject to 
any explicit optimization with respect to the population 
density .̺

Different to phenomenological models, the assump-
tion of parsimonious protein allocation implies that 
cells acclimate to different average light intensities Î  . 
The respective changes in the cellular light attenuation 
coefficient α are shown in Fig. 2c. Higher average light 
intensities result in the lower expression of photosyn-
thetic units, resulting in lower values of the cellular 
light attenuation coefficient α . Figure 2d shows the cul-
ture productivity PE = µ̂ · ̺ as a function of the popu-
lation density for different incident light intensities I0 . 
The steady-state productivity is given by the intersec-
tion between the curve and the straight line defined by 
D · ̺ . The culture productivity PE has a maximum for 

intermediate values of D that depends on the incident 
light intensity I0.

The chemostat is in steady state when the effective 
growth rate µ̂ equals the dilution rate D. For any inci-
dent light intensity I0 , we must therefore distinguish 
between three possible cases (see Fig.  2a, b): (i) For a 
sufficiently low dilution rate D, there is a single steady 
state. In this case, the average light intensity Î  corre-
sponds to the nutrient concentration in the classical 
chemostat. Any perturbation towards a higher culture 
density reduces the average light intensity, resulting 
in a lower growth rate and hence a decreasing culture 
density: the steady state is stable. (ii) For a dilution rate 
D that exceeds the maximal growth rate µ̂max , no posi-
tive steady state is feasible, the culture is washed out 
( ̺ = 0 ). (iii) For intermediate values of D, and for suf-
ficiently high I0 , the effects of photoinhibition induce a 
second potential steady state: the chemostat is bistable. 
In the second state, however, an increase in the aver-
age light intensity results in a decrease of the effective 
growth rate, resulting in a decrease of the population 
density, and hence a further increase in the resulting 
average light intensity: the second steady state is unsta-
ble and the culture is washed out ( ̺ = 0).

These results recapitulate the results previously 
obtained for phenomenological rate equations. In par-
ticular,  Gerla  et al. [18] and others [30, 31] provided a 
detailed theoretical analysis of the light-limited chemo-
stat using Haldane-type models and highlight the conse-
quences of bistability induced by photoinhibition. In the 
following, we focus on the stable steady state only and 
make use of the plasticity of our model to investigate dif-
ferent proteome allocation strategies.

Maximizing photosynthetic productivity
For many biotechnological applications the overall cul-
ture productivity is a crucial process parameter that 
determines the economic viability of phototrophic culti-
vation. We are therefore interested in the maximal volu-
metric productivity of a light-limited chemostat, as well 
as the optimal proteome allocation strategy to achieve 
maximal productivity—and how this strategy differs 
from proteome allocation in wild-type cells. To this end, 
we consider a hypothetical strain that is engineered (or 
selected) to adjust its intracellular protein allocation such 
that it maximizes the steady-state volumetric biomass 
productivity of the culture, defined as

We denote this optimization objective as PE-strategy.
Figure  3a shows the maximal biomass productivity 

of the hypothetical PE-strain as a function of the dilu-
tion rate D for two different incident light intensities I0 . 

(12)PE = µ̂ · ̺.
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The curves reflect a trade-off between maximizing the 
dilution rate and maximizing culture density  ̺. With 
increasing dilution rates (Fig. 3b) the steady-state popu-
lation density decreases, resulting in a maximal biomass 

productivity PE for intermediate values of D. We note 
that the dilution rates at which the maximal productiv-
ity is attained are well below the maximal growth rate 
of the strain. For example, for an incident light inten-
sity of I0 = 440 µE m−2 s−1 , the maximal productivity 
PE = 0.16 gDW L−1 h−1 is achieved for a dilution rate 
Dopt = 0.026 h−1.

Figure 4a shows the optimal dilution rate Dopt for dif-
ferent incident light intensities I0 . The dilution rate Dopt 
for which the maximal productivity is attained initially 
increases with the incident light intensity and converges 
to Dopt ≈ 0.027 h−1 . Similar, as shown in Fig.  4b, the 
photosynthetic efficiency YE , defined as the photosyn-
thetic yield in gDW per photon [57],

(13)YE =
PE · zm

I0
,

a b

c d

Fig. 2  Properties of the light-limited chemostat. a The maximal effective growth rate µ̂ as a function of the average light intensity. The shaded 
area indicates sub-optimal proteome allocation strategies. The average light intensity Î  is bound from above by the (a function of the) incident 
light intensity I0 . The limits for three different incident light intensities are shown. A steady state is attained if the effective growth rate µ̂ equals the 
dilution rate. b The maximal effective growth rate µ̂ as a function of the population density for three different incident light intensities I0 . Higher 
incident light intensities result in a higher steady-state population density for an identical dilution rate D. For certain dilution rates, bistability 
emerges. c The cellular light attenuation coefficient α as a function of the average light intensity Î  . Parsimonious allocation results in an acclimation 
of cells to different light intensities. d The culture productivity PE = µ̂ ·  ̺as a function of the population density for three incident light intensities I0 
. At steady-state, the effective growth rate equals the dilution rate, hence PE = D ·  ̺. Higher incident light intensities result in a higher steady-state 
productivity

Table 1  Extracellular parameters for  the  light-limited 
chemostat

For definitions and derivations see “Methods” section

Name Definition Value

cxi External inorganic carbon 100 mM

zm Depth of culture vessel 2.4 cm

Kbg Background turbidity 0.06 cm−1

α0 Basal light attenuation 0.01 µm2 cell−1
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first increases with increasing incident light intensity 
and then saturates at YE ≈ 2.37 gDWmol photons−1 , 
approximately double that of the measured efficiencies 
from Touloupakis et al. [43] (see “Methods” section for a 

discussion of error ranges). These results suggest that the 
operation of a light-limited chemostat is more efficient 
at high light intensities and that the efficiency is also not 
decreasing for incident light intensities under which the 
individual cells already exhibit strong photoinhibition.

Finally, we consider the impact of the vessel depth zm 
on the (maximal) productivity. As expected, and shown 
in Fig. 4c, the culture density and hence the volumetric 
biomass productivity decreases with increasing vessel 
depth. However, the productivity per surface area (as 
well as the total biomass within the bioreactor) remains 
approximately constant for different vessel depths. 
The small decrease of the per surface area is due to the 
increasing effect of the background absorption [ Kbg in 
Eq.  (3)]. Hence, the model predictions agree with previ-
ous reports from Qiang et  al. [40], Richmond [41], and 
Cuaresma et  al. [10] that cultivation in short light-path 
bioreactors is advantageous.

Engineering strategies for maximal biomass productivity
Different from phenomenological growth models, the 
coarse-grained model allows us to investigate the pro-
teome allocation strategies that maximize culture pro-
ductivity ( PE-strategy)—and to compare the respective 
differences from the allocation strategy that maximizes 
growth rate (WT-strategy). Figure  5 shows the optimal 
proteome allocation for both optimization strategies, 
performed at a dilution rate of D = 0.026 h−1 for an inci-
dent light intensity I0 = 440 µE m−2 s−1 . For simplicity, 

the figure neglects quota components ( 55% of cell mass 
corresponds to non-protein components, represented 
by the metabolic compound cq , 50% of protein mass cor-
responds to quota protein). Cells optimized for culture 

a

b

Fig. 3  Maximizing photosynthetic productivity. a The maximal 
volumetric biomass productivity PE as a function of the dilution rate 
D for two different incident light intensities I0 . b The population 
density  ̺as a function of D. The maximal productivity PE represents a 
trade-off between a high population density and a high dilution rate 
D, resulting in a maximal value for intermediate dilution rates, well 
below the maximal growth rate of the strain

a b c

Fig. 4  Photosynthetic efficiency, optimal dilution, and effects of the mixing depths. a The optimal dilution rate Dopt for which a maximal biomass 
productivity PE is attained. Dopt increases with increasing incident light intensity I0 and saturates at a value Dmax ≈ 0.027 h−1 . b The photosynthetic 
efficiency as a function of the incident light intensity for a maximally productive chemostat. The photosynthetic efficiency increases with increasing 
incident light intensity and saturates at YE ,max ≈ 2.474 gDWmol photons−1 . c The consequences of different mixing depths on the maximal 
biomass productivity PE . While the volumetric productivity decreases, the surface productivity PE · zm remains approximately constant. The slight 
decrease is due to the increasing effect of the background turbidity
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productivity exhibit a reduced expression of the photo-
synthetic unit (PSU), and instead accumulate free metab-
olites. Other proteome components are similar for both 
optimization strategies.

Figure 6 provides a more detailed comparison between 
both optimization strategies for different dilution rates D. 
The results are shown as a function of the resulting aver-
age light intensity. Figure 6a shows that strains optimized 
for culture productivity ( PE-strategy) exhibit a slightly 
lower effective growth rate µ̂ as a function of the effective 
average light intensity compared to strains optimized for 
maximal growth (WT-strategy). This difference is due to 
different proteome allocation. As shown in Fig. 6b, cells 
optimized for culture productivity also exhibit a lower 
light attenuation coefficient α . Correspondingly, the cul-
ture exhibit a higher population density  ̺ at the same 
effective light intensity (Fig.  6d). The optical depth of 
both cultures, defined as θ = α ·  ̺, remains unchanged 
(Fig. 6e) and the overall light absorption of both cultures 
is identical.

The difference in proteome allocation as a function 
of the dilution rate is again shown Fig.  6c: the lower 
light absorption coefficient of cells optimized for maxi-
mal culture productivity results from the fact that these 
cells express less PSU. The differences in protein alloca-
tion between both strains are restricted to low dilution 
rates (including the dilution rate at which the maximal 
productivity is attained). For higher dilution rates, both 
optimization strategies give rise to an identical proteome 
allocation. The reason for the observed convergence of 
allocation strategies is that for higher dilution rates D, 
the cells have to allocate increasing resources to ribo-
somal and metabolic proteins to match the growth rate 
imposed by the dilution rate.

As shown in Fig.  6f, however, the quantitative differ-
ences between the volumetric productivities of both opti-
mization strategies as a function of the dilution rate, are 
rather small—despite the significant differences in pro-
teome allocation. We note that the absolute quantitative 
difference in maximal productivity may also be strain-
specific and may depend on the parameterization of the 
model. Figures 5 and 6 show results for an incident light 
intensity of I0 = 440 µE m−2 s−1 , all results remain qual-
itatively identical for other values of I0.

Sensitivity analysis
To obtain further insights to what extend parameters 
other than proteome allocation affect the maximal 
productivity, we performed a sensitivity analysis of 
the maximal productivity with respect to the model 
parameters. For details on the estimation see “Meth-
ods” section. The results, shown in Fig. 7, indicate that 
parameters that positively influence growth rate also 
improve overall productivity. In particular, a larger 
catalytic activity τ (catalytic cycles per second) of the 
PSU increases productivity. Likewise, an increase of the 
effective cross section σ̂ per PSU results in an increased 
productivity, contrary to arguments suggested in the 
context of antennae truncation. The influence of most 
other catalytic activities kcat is modest. From a mecha-
nistic perspective, parameter changes that increase the 
growth rate at a given average light intensity allow the 
model to attain the required growth rate (set by the 
dilution rate D) at a lower average light intensity, result-
ing in a higher culture density and hence a higher pro-
ductivity. Vice versa, parameters that are expected to 
negatively affect growth, such as an increased protein 
degradation constant dp , increased basal maintenance 

a b

Fig. 5  Comparison of the cellular composition for different proteome allocation strategies. a PE-strategy: the protein allocation optimized for 
maximal culture productivity at a dilution rate of D = 0.026 h−1 with I0 = 440 µE m−2 s−1 . b WT-strategy: the protein allocation is optimized to give 
rise to a maximal effective growth rate for the respective average light intensity at the same dilution rate and incident light intensity. The PE-strategy 
results in a significant reduction of light-harvesting protein complexes (PSU). Instead, intracellular metabolites are accumulated. For simplicity, 
the cellular composition is shown without (protein and metabolic) quota components (quota components correspond to ≈ 77.2% of cellular dry 
weight)
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vme , and increased photoinhibition constant kd , as well 
as an increased basal light attenuation α0 all reduce the 
maximal productivity.

Engineering strategies for heterologous production
In addition to the production of biomass, cyanobac-
teria are potential host organisms for the light-driven 

heterologous synthesis of bioproducts. Metabolic engi-
neering for heterologous production, however, requires 
optimal expression strategies. To explore the trade-offs 
between growth and optimal product synthesis, we 
extend the coarse-grained model with an additional 
enzyme complex EX (representing a set of heterologous 
proteins) that catalyzes the synthesis and excretion of a 

a b c

d e f

Fig. 6  Comparison of cellular and culture properties between the PE-strategy and WT-strategy. Proteome allocation was optimized for culture 
productivity for different dilution rates D and I0 = 440 µE m−2 s−1 , and compared to the respective values obtained for the WT-strategy. a The 
effective growth rate as a function of the average light intensity Î  . The PE-strategy results in a reduced effective growth rate at low effective light 
intensities. b The cellular light attenuation coefficient α . c The fraction of protein PSU (light harvesting and photosynthesis) as a fraction of cell 
mass. d The resulting population density  ̺as a function of the average light intensity. e The optical depth θ = α ·  ̺of both cultures. f The overall 
volumetric productivity of both optimization strategies as a function of the dilution rate. Despite the significant differences in proteome allocation, 
the differences in volumetric productivity remain small

Fig. 7  Sensitivity analysis of the maximal productivity PE with respect to model parameters. Shown is the relative (logarithmic) sensitivity of PE with 
respect to variation in kinetic parameters, using an incident light intensity of I0 = 440 µE m−2 s−1 . The results for other incident light intensities are 
qualitatively similar. The dilution rate D was allowed to vary as part of the optimization problem
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product of interest. In brief, we introduce a reaction vx , 
catalyzed by EX , that uses the carbon precursor c3 as sub-
strate and exports a metabolite mx into the extracellular 
medium. The compound mx represents a small molecule 
of interest, such as lactate [2], ethanol [12], or a volatile 
product [55], whose heterologous production has been 
achieved in cyanobacteria. For simplicity, we neglect 
effects of product inhibition or toxicity [25], but these 
could be readily incorporated into the definition of vx if 
the respective data are available. See “Methods” section 
for model definitions.

We are interested in the (maximal) volumetric produc-
tivity PX = vx ·  ̺, defined as the synthesis rate per cell 
multiplied by the population density. We note that the 
definition of PX holds independently on how the product 
is removed from the medium, i.e., whether the product 
is removed as part of the output flux ( Dx = D ) or with 
a separate rate Dx  = D . In either case, the mass-balance 
equation holds,

and the concentration of mx adjusts accordingly.
We first consider the trade-off between expression 

of the heterologous protein EX , biomass productivity 
(the ‘protein burden’), and PX respectively. To this end, 
we force the heterologous expression of the protein EX 
within the WT-strain by introducing a lower bound on 
its concentration (in molecules per cell) as an additional 
constraint into the optimization objective, and subse-
quently use the WT-strategy to maximize the effective 
growth rate. The optimization establishes a ’best case’ 
scenario for growth under the constraint of heterologous 
expression. Fig. 8a shows the resulting trade-off between 
biomass productivity and expression for three differ-
ent dilution rates D. As expected, biomass productivity 
decreases with increasing heterologous expression and 
there is a maximal expression after which the biomass 

(14)0 = vx · ̺ − Dx · [mx],

productivity ceases: the remaining proteome resources 
are not sufficient to ensure a specific growth rate that 
matches the dilution rate D and the culture is washed 
out. Figure  8b shows the resulting productivity PX as 
a function of protein expression. The productivity PX 
exhibits a maximum for a specific expression of EX that 
depends on the dilution rate D.

Beyond enforced expression, we are interested in the 
predicted proteome allocation of a hypothetical PX-strain 
that maximizes the productivity PX—and how this pre-
dicted proteome differs from the proteome of a WT-
strain. To this end, PX is maximized for different dilution 
rates D as a function of protein expression, i.e., by vary-
ing the fraction βj of ribosomes that translate a specific 
protein Pj . The results are summarized in Fig. 9. Figure 9a 
shows the maximal productivity PX of the optimized 
PX-strain as a function of dilution rate D. The maximal 
productivity PX decreases with increasing dilution rates: 
for heterologous production cyanobacteria act as cata-
lysts and the maximally productive state of the culture 
is attained when growth (almost) ceases (i.e., the reac-
tor has a low dilution rate) and all cellular resources are 
directed to carbon assimilation and product synthesis. 
This finding holds independently of the removal rate of 
the product. In practice, however, product inhibition and 
possible toxicity of the accumulated dissolved products 
will either prohibit very low dilution rates or necessitate 
fast removal of the product. Fig.  9b shows the optimal 
heterologous expression necessary for a maximal produc-
tivity PX . Figures 9c, d compare the cellular composition 
of cells optimized for maximal growth (WT-strategy) and 
maximal productivity PX ( PX-strategy) at the same dilu-
tion rate D. In the latter case, protein complexes associ-
ated to light harvesting and photosynthesis (PSU) are 
again reduced, whereas protein complexes associated to 
carbon uptake and assimilation are increased.

a b

Fig. 8  Engineering strategies for heterologous production. The heterologous expression of a protein EX that catalyses the synthesis and export of 
a product of interest is enforced. a Shown is the volumetric biomass productivity as a function of the expression of the heterologous protein. As 
expected, increasing expression results in lower biomass productivity (‘the protein burden’). b The resulting productivity PX of the compound of 
interest. PX exhibits a maximum as a function of heterologous expression. In both plots I0 = 440 µE m−2 s−1
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Discussion
In this study, our aim was to provide insights into the 
limits of phototrophic cultivation of microorganisms in 
a light-limited chemostat. To this end, we built upon an 
established theory of growth in a light-limited chemo-
stat, as developed by Huisman et al. [23] and others [18, 
30, 31]. Previous analyses, however, primarily relied on 
phenomenological growth models, such as the Monod 
or Haldane-type equation. In contrast, our starting point 
was a mechanistic model of cyanobacterial growth that 
connects intracellular resource allocation with physio-
logical properties and growth. The model was previously 
parameterized using data obtained from an (optically 
thin) turbidostat culture of the cyanobacterium Synecho-
cystis sp. PCC 6803, and was subject to a detailed analy-
sis with respect to the predicted physiological properties 
as a function of growth rate and light intensity [54]. Our 
premise was therefore that the model represents a rea-
sonable description of cyanobacterial growth at different 
light intensities. Our aim was to extrapolate the results 
obtained from the coarse-grained single-cell model to 
dense cultures that give rise to strong light gradients due 

to self-shading—motivated by the hypothesis that growth 
in an optically dense culture imposes different trade-offs 
on resource allocation. Following previous works [23], 
and the experimental setup used by Zavřel et al. [54], we 
only considered monochromatic light (the computational 
approach, however, can be straightforwardly extended to 
different light spectra).

Our first step was to integrate the coarse-grained 
growth model into a model of the light-limited chemo-
stat. The rate equations as a function of the light gradi-
ent were solved analytically, resulting in a description of 
phototrophic growth that only depends on the average 
light intensity within the chemostat. Such a description 
was previously utilized by several authors, for example 
Du et al. [13] and Clark et al. [7], as a reasonable approxi-
mation. Our results, however, provide a more stringent 
justification for this approximation: it emerges as a direct 
consequence of the model definitions. A crucial prereq-
uisite for this fact is that photodamage is assumed to hap-
pen at all light intensities and that the rate constant of 
photodamage (the degradation of the PSU protein com-
plex that represents the degradation of the D1 protein) 

a b

c d

Fig. 9  Maximal productivity of heterologous production. We consider a hypothetical strain whose protein allocation maximizes the productivity 
PX for different dilution rates D. Results are shown for an incident light intensity I0 = 440 µE m−2 s−1 . a The maximal productivity PX decreases with 
increasing dilution rate D. b The optimal expression of the heterologous protein as a function of dilution rate. c The cellular composition for the 
WT-strategy for I0 = 440 µE m−2 s−1 and a dilution rate D = 0.03 h−1 . d Optimal cellular composition under the PX-strategy for an identical incident 
light intensity and dilution rate



Page 13 of 18Faizi and Steuer ﻿Microb Cell Fact          (2019) 18:165 

is directly proportional to light intensity. There is indeed 
significant experimental evidence for this assertion: the 
finding that the rate constant of photodamage is directly 
proportional to light intensity has been confirmed several 
times in various organisms [6, 32, 44–46]. It has already 
been highlighted [44, 45] that the first-order behavior of 
photoinhibition is not a trivial result, and runs contrary 
to the belief that photoinhibitory damage does not occur 
under low light. We note that the first-order dependence 
is an empirical finding that is independent of details of 
the model implementation.

Within our computational framework, the first-order 
dependence allows us to solve the model analytically. The 
solution has strong implications for phototrophic culti-
vation and the design of photobioreactors. Firstly, these 
results provide a stringent justification for the photon-
fluxostat [13] as a suitable tool for quantitative growth 
experiments. In particular, the average light intensity, as 
defined in Eq. (11), can be readily estimated experimen-
tally using the incident and transmitted light intensi-
ties, I0 and I(zm) respectively, and therefore may provide 
direct feedback to a controller. The definition provided in 
Eq.  (11) also provides a more accurate description than 
the approximations previously used in phenomenological 
growth models [7].

Secondly, and more importantly, the dependence on 
the average light intensity implies that the culture density 
itself provides an effective mechanism of light dilution. If 
photodamage is directly proportional to light, then the 
average rate of photodamage equals the photodamage 
rate at the average light intensity—with the latter being 
determined by the culture density. For a rapidly mixed 
culture, our model therefore predicts maximally efficient 
growth for high densities at very high light intensities. 
Within the model, higher light intensity will always result 
in denser cultures with no obvious upper bound imposed 
by the model itself (a fact that is different to the analysis 
of Martínez et  al. [31] where the maximal productivity 
has an upper bound independent of the light intensity). 
In practice, however, we expect that at high culture den-
sities the supply of other nutrients, in particular inor-
ganic carbon, becomes limiting—resulting in a de facto 
upper bound on the feasible cell density that is outside 
the scope of the current model.

Our model predictions can be compared to growth data 
reported in the literature. Results obtained from conven-
tional cultivation typically report significantly lower cell 
densities compared to the values suggested here. See, 
for example, Straka and Rittmann [42] for typical values 
for Synechocystis sp. PCC 6803 cultured in conventional 
BG-11 medium (the comparison with our prediction is 
shown in Additional file  1: Figure S3). However, several 
recent works have shown that conventional BG-11 media 

is not suitable for high density cultivation and alterna-
tives are required [3, 29, 48, 52]. Previous works have 
shown that cultivation of Synechocystis sp. PCC 6803 is 
feasible at cell densities in excess of 20 gDW L−1 and light 
intensities in excess of 1000 µE m−2 s−1 with no apparent 
detrimental effects due to photoinhibition [3, 29]. Simi-
lar results were recently reported for other cyanobacte-
rial strains [52]. The predictions of our model in favor of 
cultivation at very high light intensities in shallow rapidly 
mixed cultures are also confirmed by the experiments of 
Qiang et al. [40] using Spirulina platensis. Therein a lin-
ear relationship was observed between the output rate 
(in gDW L−1 h−1 ) and the incident light intensity, up to 
a photon flux of 2500 µE m−2 s−1 , with areal productivi-
ties similar to the values computed here. Taken together, 
these results strongly support the previous arguments of 
Richmond [41] for cultivation at high light intensities in 
shallow rapidly mixed cultures with short light-paths for 
maximal phototrophic productivity.

Beyond the argument for dense cultures, the model 
recapitulates many of the results previously obtained 
for the light-limited chemostat using phenomenological 
growth models. In particular, we recover the observed 
bistability for incident light intensities that give rise to 
photoinhibition. While we were primarily interested in 
the steady-state properties, bistability has complex impli-
cations for the startup and dynamics of a culture [18, 30, 
31], for example a threshold in the (initial) population 
density below which the culture will wash out.

In our analysis, we were further interested in the opti-
mal proteome allocation for phototrophic production. 
As a benchmark for comparison, we assume that wild-
type cells adjust their proteome composition such that 
they achieve the maximal growth rate at the respec-
tive average light intensity (WT-strategy). As shown 
in Fig.  6, the WT-strategy is (evolutionary) stable with 
respect to alternative proteome allocation strategies. 
Our results show that the composition of (hypothetical) 
strains optimized for maximal biomass productivity dif-
fers significantly from the composition of cells using the 
WT-strategy. Maximally productive strains exhibit a sig-
nificantly reduced expression of protein complexes asso-
ciated with light harvesting and photosynthesis (protein 
complex PSU). This reduction is reminiscent of antennae 
truncation strategies [33]: the WT-strategy maximized 
growth rate at the expense of culture efficiency. If the 
light absorption per cell is reduced, the population den-
sity of the culture increases, and hence the productivity 
increases. Interestingly, the reduction in light-harvesting 
proteins, however, does not result in an increase of other 
protein fractions, but rather in the accumulation of free 
metabolites (Fig. 5). This unintuitive result arises because 
the cellular growth rate within a chemostat is determined 
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by the dilution rate. Hence the required (minimal) capac-
ity for metabolic and ribosomal proteins is fixed. To ful-
fill the density constraints imposed within the model, the 
cell therefore accumulates free metabolites.

We further observed that, despite the significant differ-
ences in cellular composition, the quantitative differences 
in productivity between cells optimized for biomass 
productivity and the WT-strategy are rather small. 
This difference, however, may be strain-dependent and 
coarse-grained growth models parameterized for other 
data or strains data might exhibit larger differences. The 
small (and possible strain-dependent) difference in the 
overall productivity might also explain the mixed success 
reported for antenna truncation [28]. As shown in Fig. 7, 
a simple reduction in the effective cross section per PSU 
does not result in an enhanced productivity.

Noteworthy, the maximal culture productivity is typi-
cally attained at dilution rates well below the maximal 
growth rate of cells. This finding has implications for the 
current quest to identify the fastest growing cyanobac-
terium [47, 53]—with grow rates typically measured in 
optically thin cultures under optimal conditions. While 
growth rate still remains an important parameter, our 
results show that culture productivity is determined by a 
combination of factors, including maximal culture den-
sity, dilution rate, and incident light intensity. We envision 
that the computational framework presented here may be 
further developed into an automated “design-build-test-
learn” pipeline for microbial design strategies that allows 
to extrapolate the expected culture productivity of strains 
based on a defined set of screening experiments.

Conclusion
The results obtained from our computational model 
have strong implications for phototrophic cultivation 
and the design of photobioreactors. The (experimen-
tally well supported) fact that the rate of photodamage is 
directly dependent on light intensity implies that photo-
trophic growth in the light-limited chemostat can be effi-
ciently described using the concept of an average light 
intensity. Furthermore, the first-order dependency of 
photodamage implies that the culture density itself pro-
vides sufficient light dilution—given that the cells are 
rapidly mixed and other nutrients are available in non-
limiting concentrations. We have previously shown that 
suitable cultivation setups are indeed possible by combin-
ing short light-paths (up to 1 cm) with high light intensities 
( > 1000 µE m−2 s−1 ), turbulent mixing and sufficient sup-
ply of inorganic nutrients [3, 29]. As already emphasized by 
Richmond [41], such results rekindle the hope that growing 
algae and cyanobacteria in ultra high densities may boost 
economic viability of phototrophic cultivation. The early 
experimental results of Qiang et al. [40] are recovered here 

and put in the context of a thorough computational frame-
work that builds upon recent insights in the cellular econ-
omy of phototrophic growth [54].

The computational framework presented here provides 
a further step to guide phototrophic cultivation and the 
development of phototrophic cell factories. While our 
study was limited to steady-state conditions, further work 
may assess the dynamics of cellular proteome allocation 
and the resulting population dynamics. Furthermore, in 
future work, the model may be extended to incorporate 
further molecular details, in particular with respect to the 
photosynthetic light reaction, cycling of inorganic carbon, 
photorespiration, storage metabolism, oxygen accumula-
tion, as well as the potential effects of product toxicity and 
inhibition. We conjecture that our approach will prove use-
ful in understanding the limitations of phototrophic culture 
productivity and allows us to further optimize culture con-
ditions and cellular composition.

Methods
A model of phototrophic growth
We use the previously described model of Faizi et al. [15] 
with minor modifications. The model is implemented as 
an ordinary differential equation (ODE), all parameters 
are summarized in Additional file 1: Table S1. The model 
describes phototrophic growth of a cyanobacterial cell and 
consists of 7 coarse-grained protein complexes that cata-
lyze cellular reactions, as well as 5 intracellular metabolites. 
Cellular processes require a cellular energy unit e that com-
bines ATP and NADPH and is produced by the photosyn-
thetic light reactions.

The metabolic reactions and the stoichiometry of the 
translation reaction are summarized in Table 2. All meta-
bolic reactions vmet are assumed to follow irreversible 
Michaelis–Menten kinetics,

where [E] denotes the concentration of the respective 
catalyzing protein complex, [m] the concentration of the 
substrate, Km and kcat the respective kinetic constants. 
The Michaelis-Menten Ke constant with respect to the 
energy unit e is assumed to be equal for all reactions.

For each protein complex Pj , the translation rate γj 
depends on the length nj of the protein (in units of amino 
acids, aa) and the fraction βj · [R] of ribosomes that trans-
late protein Pj (with 

∑
βj ≤ 1),

where γmax denotes the maximal catalytic rate of the 
ribosome. The parameters βj determine cellular pro-
teome allocation.

(15)vmet = [E] · kcat ·
[m]

Km + [m]
·

[e]

Ke + [e]
,

(16)γj = βj · [R] ·
γmax

nj
·

[aa]

Ka + [aa]
·

[e]

Ke + [e]
,
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All intracellular compounds are subject to dilution by 
growth. The dynamics of the protein complexes are fur-
ther determined by their respective translation rate γj and 
an additional degradation term dp,

The equation holds for all protein complexes, except the 
PSU. The photosynthetic unit PSU additionally includes 
fast transitions between an activated PSU∗ and resting 
state PSUo with ODEs

and

The activated state PSU∗ may undergo light-dependent 
degradation with a rate vi (photodamage). The respective 
rate equations are

where τ denotes the catalytic turnover of the PSU, σ̂ the 
effective cross section for light absorption, and kd a rate 
constant for photodamage. These equations correspond 
to a three-state model of photosynthesis [14, 50] where 
degradation and recovery of PSU involves the constitu-
ent amino acids. The first-order light dependency of the 
reactions, in particular for photoinhibition, is strongly 
supported by data [6, 44]. We emphasize that this fact 
does not imply that the growth curve or the oxygen 

(17)
d[Pj]

dt
= γj − (µ+ dp) · [Pj].

(18)

d[PSUo]

dt
= γPSU + v2 −

v1

mhv
− (µ+ dp) · [PSU

o],

(19)

d[PSU∗]

dt
=

v1

mhv
− v2 − vi − (µ+ dp) · [PSU

∗].

(20)v1 = σ̂ · I · [PSUo],

(21)v2 = τ · [PSU∗],

(22)vi = kd · σ̂ · I · [PSU∗],

evolution rate exhibit first-order dependencies—both are 
outcomes of a trade-off between different constraints and 
objectives (see Fig.  1c). The overall equation for photo-
synthesis converts mhv = 8 photons into 8 energy units 
e (representing a total of 5 ATP and 2 NADPH, the lat-
ter are weighted as 1.5 e each) and one O2 . The model 
consists of 13 ODEs, an objective function (see below), 
and additional constraints to ensure synthesis of quota 
compounds (a quota protein PQ and the metabolic com-
pound cq ). External parameters are the concentration of 
extracellular inorganic carbon and the light intensity I0 . 
The former is assumed to be constant and saturating with 
respect to the Kt of the transporter reaction.

Solving the light gradient
To obtain an expression of the effective growth rate µ̂ 
in the light-limited chemostat, we require a solution of 
Eq.  (10) and integrate the rate equations over the mix-
ing depth of the photobioreactor. Following [23], we use a 
substitution of variables with

to replace the integral over the mixing depth with an 
integral over the light intensities,

and note that

We distinguish between light-independent reactions 
and reactions affected by light. The former remain 
unchanged, whereas the latter only consist of reactions 
that exhibit a first-order dependency on the light inten-
sity ( v1 and vi ). Consequently, the solution for each reac-
tion rate replaces the depth-dependent light intensity 
with the average light intensity Î , defined in Eq.  (11), in 
the chemostat. The derivation is based on the assump-
tion that no further variables depend on the (momen-
tary) position in the chemostat, i.e., the culture is rapidly 
mixed.

Sensitivity analysis
The sensitivity analysis is performed to quantify the influ-
ence of model parameters on culture productivity. The 
relative sensitivity ǫi of the culture productivity PE with 
respect to a given model parameter pi is defined as

(23)
dI

dz
= −(α · ̺ + Kbg ) · I ,

(24)

v̂(β , x, Î) =
1

zm · (α · ̺ + Kbg )
·

∫ I0

I(zm)

v(β , x, I)

I
dI ,

(25)ln(I0)− ln(I(zm)) = zm · (α · ̺ + Kbg ).

(26)ǫi =
�PE

PE
·

pi

�pi
,

Table 2  Summary of metabolic and translation reactions

The protein complex ET imports extracellular inorganic carbon and represents 
import and carbon concentrating mechanisms. The protein complex EC catalyzes 
assimilation of inorganic carbon into the carbon precursor c3 (Calvin–Benson 
cycle). The protein complex EM catalyzes the synthesis of amino acids (central 
metabolism), whereas the protein complex EQ catalyzes the synthesis of other 
metabolic compounds cq . The remaining two protein complexes are the 
photosynthetic unit (PSU) and a (non-functional) quota protein compound PQ

Protein Reaction Stoichiometry Description

ET vt cxi + e → ci Inorganic carbon uptake

EC vc 3 · ci + 23 · e → c3 Carbon assimilation

EM vm 2 · c3 + 22 · e → aa Metabolism

EQ vq c3 + e → cq Synthesis of quota 
compounds

R γj nj · aa+ 3 · nj · e → Pj Translation by ribosomes
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and approximated by a small variation ( ±0.1% ) of each 
parameter pi . A relative sensitivity of ǫi = 1 indicates 
a linear dependency of the culture productivity on the 
respective parameter pi.

Heterologous expression
The coarse-grained model is modular and allows for the 
addition of further enzymes of interest. We extend the 
model to include the synthesis and export of a desired 
product mx . For each enzyme complex EX the follow-
ing parameters have to be defined: enzyme length nx , its 
turnover rate kxcat and other kinetic parameters (here the 
half-saturation constant Kx with respect to its substrate). 
In this case, we assume irreversible Michaelis–Menten 
kinetics,

the new reaction has to be added to the ODEs for the 
respective substrates (here c3 and e) and product (here 
mx ). It is straightforward to also include, for example, a 
term for product inhibition into the equation provided 
the respective parameters are known. The model is aug-
mented by two additional ODEs,

and

with a translation rate γEX . The protein complex EX com-
petes with other proteins for ribosomal capacity and is 
included into the definition of the cell density.

Model parametrization
The model parameters are taken from the previously 
published models [15, 54], only the turnover rate of the 
photosynthetic unit τ , its effective absorption cross sec-
tion σ̂ and the photodamage constant kd are refitted in 
this study. We first performed a rough estimate for the 
photosynthetic turnover rate τ = 500 s−1 . Additional 
file  1: Figure S1 shows how different turnover rates 
effect the growth rate for arbitrarily chosen photodam-
age constant kd and absorption cross section σ̂ . Fitting 
of the remaining parameters kd and σ̂ was performed as 
described in Faizi et  al. [15] for a predefined set of val-
ues kd = {10−7, 1.1 · 10−7..., 4.9 · 10−7, 5 · 10−7} and 
σ̂ = {5, 10, ..., 25, 30} . The best fit was obtained with 
kd = 2.7 · 10−7 and σ̂ = 15 nm2 PSU−1.

(27)vx = [EX ] · k
x
cat ·

[c3]

Kx + [c3]
·

[e]

Ke + [e]
,

(28)
d[mx]

dt
= vx · ̺ − D · [mx] ,

(29)
d[EX ]

dt
= γEX − (µ+ dp) · [EX ] .

All parameters are listed in Additional file 1: Table S1. 
Unless otherwise noted, the average length of a pro-
tein is 300 amino acids, the average turnover rate is 
kcat = 20 s−1 and the average half-saturation constant 
is set to 104 molecules per cell. In addition, we assume 
that the amount of photons required to activate one PSU 
is mhv = 8 photons. With respect to the measurements 
from Zavřel et al. [54], we set the concentration of quota 
compounds to 1011 molecules of carbon per cell. The con-
centration of quota compounds represent the amount of 
carbon molecules contained in the dry weight per cell 
without proteins.

To parameterize the chemostat model we determined 
the light attenuation through the culture vessel filled 
only with medium. For this purpose, we fitted Eq.  3 to 
the light profile data in Additional file  1: Figure S2, for 
a vessel depth of zm = 2.4 cm without microorganisms 
( α · ̺ = 0 ) and obtain the background turbidity for the 
culture medium of Kbg = 0.06 cm−1 . The species-specific 
basal light attenuation coefficient is set to α0 = 0.01 µm2 
per cell, which is approximately one order of magnitude 
smaller than the varying light attenuation coefficient 
determined by the total photosynthetic unit amount and 
the absorption cross section at high light conditions.

The units for culture density are gram dry weight per 
liter (gDW/L). We note that the original measurements 
and parametrization of Zavřel et al. [54] was in cells per 
liter, and the conversion into gDW is subject to consid-
erable variance, owing to the experimental difficulties in 
the accurate estimation of dry weight. Replicate measure-
ments reported in Zavřel et al. [54] vary from 0.53 · 10−11 
gDW/cell to 1.13 · 10−11 gDW/cell. In this work, we 
assume a conversion factor of 10−11 gDW/cell, for visual 
clarity error bars are omitted in all plots (but see Addi-
tional file 1: Figure S3 for an example of error ranges). We 
emphasize that our aim is not a precise prediction of (the 
numerical value of ) a specific productivity, but rather to 
investigate the dependence of the (maximal) productivity 
on culture parameters—these results are independent of 
the conversion factor.

Model implementation
The model is implemented as an optimization problem 
to obtain the optimal proteome allocation for a specific 
environmental condition, characterized by the incident 
light intensity I0 , external inorganic carbon concentra-
tion cxi  , mixing depth zm and dilution rate D. The vari-
able parameters in our optimization problem are the 
population density  ̺and the ribosomal fractions βj . For 
the objective function of our optimization problem we 
first assume that the cell optimizes the internal composi-
tion such that the growth rate is maximal for the specific 
external condition (WT-strategy). In addition, we define 
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two further objective functions. The second objective 
function maximizes the product of the dilution rate and 
population density ( PE = D ·  ̺) to determine the opti-
mal proteome allocation that maximizes the volumetric 
biomass productivity of the culture. The third objective 
function maximizes the productivity of a desired product 
mx ( PX = vx · ̺).

The optimization problem is implemented with the 
APMonitor Optimization Suite [21] and solved using the 
IPOPT (Interior Point Optimizer) method. The model is 
written in the APMonitor modeling language and pro-
vided on https​://githu​b.com/marja​nfaiz​i/photo​autot​
rophi​c-growt​h (in the folder ‘Faizi2019’) together with 
a Python script (entitled optimization.py) to run the 
simulations.
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