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Abstract 

Background:  Metabolic models are indispensable in guiding cellular engineering and in advancing our understand-
ing of systems biology. As not all enzymatic activities are fully known and/or annotated, metabolic models remain 
incomplete, resulting in suboptimal computational analysis and leading to unexpected experimental results. We posit 
that one major source of unaccounted metabolism is promiscuous enzymatic activity. It is now well-accepted that 
most, if not all, enzymes are promiscuous—i.e., they transform substrates other than their primary substrate. However, 
there have been no systematic analyses of genome-scale metabolic models to predict putative reactions and/or 
metabolites that arise from enzyme promiscuity.

Results:  Our workflow utilizes PROXIMAL—a tool that uses reactant–product transformation patterns from the KEGG 
database—to predict putative structural modifications due to promiscuous enzymes. Using iML1515 as a model 
system, we first utilized a computational workflow, referred to as Extended Metabolite Model Annotation (EMMA), to 
predict promiscuous reactions catalyzed, and metabolites produced, by natively encoded enzymes in Escherichia coli. 
We predict hundreds of new metabolites that can be used to augment iML1515. We then validated our method by 
comparing predicted metabolites with the Escherichia coli Metabolome Database (ECMDB).

Conclusions:  We utilized EMMA to augment the iML1515 metabolic model to more fully reflect cellular metabolic 
activity. This workflow uses enzyme promiscuity as basis to predict hundreds of reactions and metabolites that may 
exist in E. coli but may have not been documented in iML1515 or other databases. We provide detailed analysis of 23 
predicted reactions and 16 associated metabolites. Interestingly, nine of these metabolites, which are in ECMDB, have 
not previously been documented in any other E. coli databases. Four of the predicted reactions provide putative trans-
formations parallel to those already in iML1515. We suggest adding predicted metabolites and reactions to iML1515 
to create an extended metabolic model (EMM) for E. coli.

Keywords:  Metabolic engineering, Enzyme promiscuity, Extended metabolic model, Systems biology, Enzyme 
activity prediction
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Background
The engineering of metabolic networks has enabled the 
production of high-volume commodity chemicals such 
as biopolymers and fuels, therapeutics, and specialty 
products [1–5]. Producing such compounds requires 
transforming microorganisms into efficient cellular fac-
tories [6–9]. Biological engineering has been aided via 
computational tools for constructing synthesis pathways, 
strain optimization, elementary flux mode analysis, dis-
covery of hierarchical networked modules that elucidate 
function and cellular organization, and many others (e.g. 
[10–14]). These design tools rely on organism-specific 
metabolic models that represent cellular reactions and 
their substrates and products. Model reconstruction 
tools [15, 16] use homology search to assign function to 
Open Reading Frames obtained through sequencing and 
annotation. Once the function is identified, the corre-
sponding biochemical transformation is assigned to the 
gene. Additional biological information such as gene–
protein-reaction associations is utilized to refine the 
models. Exponential growth in sequencing has resulted 
in an “astronomical”, or better yet, “genomical”, number of 
sequenced organisms [17]. There are now databases (e.g. 
KEGG [18], BioCyc [19], and BiGG [20]) that catalogue 
organism-specific metabolic models. Despite progress 
in sequencing and model reconstruction, the complete 
characterizing of cellular activity remains elusive, and 
metabolic models remain incomplete. One major source 
of uncatalogued cellular activity is attributed to orphan 
genes. Because of limitations of homology-based pre-
diction of protein function, there are millions of protein 
sequences that are not assigned reliable functions [21]. 
Integrated strategies that utilize structural biology, com-
putational biology, and molecular enzymology continue 
to address assigning function to orphan genes [22].

We focus in this paper on another major source of 
uncatalogued cellular activity–promiscuous enzymatic 
activity, which has recently been referred to as ‘under-
ground metabolism’ [23–25]. While enzymes have widely 
been held as highly-specific catalysts that only transform 
their annotated substrate to product, recent studies show 
that enzymatic promiscuity—enzymes catalyzing reac-
tions other than their main reactions—is not an excep-
tion but can be a secondary task for enzymes [26–31]. 
More than two-fifths (44%) of KEGG enzymes are asso-
ciated with more than one reaction [32]. Promiscuous 
activities however are not easily detectable in vivo since, 
(i) metabolites produced due to enzyme promiscu-
ity may be unknown, (ii) product concentration due to 
promiscuous activity may be low, (iii) there is no high-
throughput way to relate formed products to specific 
enzymes, and (iv) it is difficult to identify potentially 
unknown metabolites in complex biological samples. 

Outside of in  vitro biochemical characterization studies 
to predict promiscuous activities, there are few resources 
that record details about promiscuous enzymes such as 
MINEs Database [33], and ATLAS [34]. Despite the cur-
rent wide-spread acceptance of enzyme promiscuity, and 
its prominent utilization to engineer catalyzing enzymes 
in metabolic engineering practice [35–38], promiscuous 
enzymatic activity is not currently fully documented in 
metabolic models. Advances in computing and the ability 
to collect large sets of metabolomics data through untar-
geted metabolomics provide an exciting opportunity to 
develop methods to identify promiscuous reactions, their 
catalyzing enzymes, and their products that are specific 
to the sample under study. The identified reactions can 
then be used to complete existing metabolic models.

We describe in this paper a computational workflow 
that aims to extend preexisting models with reactions 
catalyzed by promiscuous native enzymes and validate 
the outcomes using published metabolomics datasets. 
We refer to the augmented models as extended metabolic 
models (EMMs), and to the workflow to create them as 
EMMA (EMM annotation). Each metabolic model is 
assumed to have a set of reactions and their compounds 
and KEGG reaction IDs. Each reaction, and thus trans-
formation, is assumed to be reversible unless indicated 
otherwise. EMMA utilizes PROXIMAL [39], a method 
for creating biotransformation operators from KEGG 
reactions IDs using RDM (Reaction Center, Difference 
Region, and Matched Region) patterns [40], and then 
applying the operators to given molecules. While initially 
developed to investigate products of Cytochrome P450 
(CYP) enzymes, highly promiscuous enzymes utilized 
for detoxification, the PROXIMAL method is generic. To 
create an EMM for a known metabolic model, PROXI-
MAL generates biotransformation operators for each 
reaction in the model and then applies the operators to 
known metabolites within the model. The outcome of our 
workflow is a list of putative metabolites due to promis-
cuous enzymatic activity and their catalyzing enzymes 
and reactions. In this work, we apply EMMA to iML1515, 
a genome-scale model of Escherichia coli MG1655 [41]. 
EMMA predicts hundreds of putative reactions and 
their products due to promiscuous activities in E. coli. 
The putative products are then compared to measured 
metabolites as reported in Escherichia coli Metabolome 
Database, ECMDB [42, 43]. We identify 23 new reactions 
and 16 new metabolites that we recommend adding to 
the E. coli model iML1515. Four of these reactions have 
not been catalogued prior for E. coli or other organisms, 
suggesting novel undocumented promiscuous transfor-
mations, while five other reactions are catalogued for 
species other than E. coli. Further, there were ten reac-
tions that were cataloged in other E. coli databases (e.g. 
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EcoCyc [44], and KEGG), but not in iML1515. These 19 
reactions led to the addition of the 16 metabolites that 
are new to iML1515. Additionally, there were four new 
reactions that present putative transformation routes 
that are in parallel to existing reactions in E. coli. No new 
metabolites are added due to these four reactions.

Results
The application of PROXIMAL to iML1515 yielded 
a lookup table with 1875 biotransformation opera-
tor entries. The operators were applied on two sets of 
metabolites. One set consisted of 106 iML1515 metabo-
lites with predicted or measured concentration values 
above 1 µM [45]. We focused on these metabolites as the 
assumption is that high concentration metabolites are 
more likely to undergo transformation by promiscuous 
enzymatic activity and form detectible derivatives. When 
applied to this set, the operators predicted the forma-
tion of 1423 known (with PubChem IDs) metabolites of 
which 57 were identified to exist in E. coli per ECMDB. 
After manual curation (per Step 1 in the “Methods” 
section), our workflow recommended 16 new metabo-
lites and 23 reactions that can be used to augment the 
iML1515 model. The second set of metabolites consisted 
of the non-high concentration metabolites in iML1515. 

Our workflow predicted the formation of 3694 known 
(with PubChem IDs) metabolites. Out of the predicted 
metabolites of the second set 210 derivatives are found in 
ECMDB. We provide a listing of all derivatives in Addi-
tional file  1. For the remainder of the “Results” section, 
we focus on detailed analysis of derivative products due 
to high-concentration metabolites. Results of flux bal-
ance analysis and flux variability analysis for the added 
EMMA reactions are reported in Additional file 2.

Identified reactions were divided into four catego-
ries, C1–C4. The rationale for the various categories is 
explained using a decision tree (Fig. 1), a machine learn-
ing model that classifies data into groupings that share 
similar attributes [46]. With the exception of leaf nodes, 
each node in the tree tests the presence or absence of a 
particular attribute. Left branches represent the pres-
ence of the attribute, while the right branch represents 
the attribute’s absence. Each leaf node represents a clas-
sification category and is associated with a subset of 
the 23 reactions. At the root node of the decision tree, 
we tested if a PROXIMAL predicted metabolite is in the 
iML1515 model. If it is, and if the enzyme catalyzing the 
reaction within iML1515 model producing this metabo-
lite is different than the enzyme PROXIMAL used to pre-
dict the relevant biotransformation, then it is classified in 

Fig. 1  Decision tree for classifying reactions identified based on enzyme promiscuity. When analyzing the iML1515 E. coli model, reaction 
categories C1, C2, C3, and C4 had 4, 10, 5, and 4 predicted reactions, respectively
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Category 1 (C1). Reactions belonging to C1 are parallel 
transformation to the ones in the model. They represent 
novel biotransformation routes between existing metab-
olites since they are generated using a different gene/
enzyme than what is reported in iML1515. If previous 
conditions do not apply to the predicted product, then it 
is discarded as the reaction is already in iML1515.

If a predicted metabolite is not one of the known 
metabolites in iML1515, the decision tree determines 
whether the predicted metabolite and reaction are associ-
ated with E. coli in other databases (KEGG and EcoCyc). 
If the biotransformation is present in KEGG or EcoCyc, 
then the predicted metabolite is classified into Category 
2 (C2), reflecting a curation issue where some reactions 
were not included in the iML1515 model. If the predicted 
metabolite is not in iML1515 and not associated with E. 
coli in KEGG nor listed in EcoCyc, then the decision tree 
determines if the same chemical transformation (same 
substrate and same product) is documented to occur in 
other organisms. Predicted biotransformations docu-
mented in KEGG for organisms other than E. coli are 
classified in Category 3 (C3). While biotransformations 
not found in KEGG are classified as Category 4 (C4).

Each category consists of a set of reactions. C1 con-
sists of four reactions that are predicted to be catalyzed 
by enzymes that are different than those in iML1515. The 

details of the predicted reactions are shown in Fig. 2, and 
Table  1 details a comparison between those predicted 
reactions and their parallel reactions in iML1515. The 
phosphoribosyltransferase reaction between cytosine 
and cytidine-5′-monophosphate (CMP) is predicted to 
occur in E. coli due to EC 2.4.2.10 (orotate phospho-
ribosyltransferase) (Fig.  2a) and that between 2-oxoglu-
tarate and 2-hydroxyglutarate by EC 1.1.1.79 (glyoxylate 
reductase) (Fig. 2b). We also predict the transformation 
between bicarbonate and carboxyphosphate catalyzed 
by EC 3.6.1.7 (acylphosphatase) (Fig.  2c). While car-
boxyphosphate is not in iML1515, the transformation is 
considered parallel to a reaction catalyzed by EC 6.3.5.5 
that is documented to occur for E. coli in KEGG (see 
Fig. 3j). The last prediction is the coenzyme A transferase 
reaction between acetoacetyl-CoA and acetoacetate due 
to EC 2.8.3.10 (citrate CoA-transferase) (Fig. 2d).

C2 consists of 10 reactions known to be in E. coli but 
missing from the iML1515 model. The first predicted 
reaction is the aminoacyltransferase reaction between 
l-glutamate and γ-glutamyl-β-cyanoalanine due to 
EC 2.3.2.2 (γ-glutamyltransferase) (Fig.  3a). The sec-
ond is a predicted ligase reaction between l-glutamic 
acid and THF to form/consume THF-l-glutamic acid 
by EC 6.3.2.17 (tetrahydrofolate synthase) (Fig.  3b). 
The third is an acyltransferase transformation between 

Fig. 2  The set of four reactions, panels a–d, belonging to Category 1 (C1). Reactions in C1 are predicted to be catalyzed by enzymes different 
than those in iML1515. Each of the four panels is divided into three sections (I) the balanced reaction developed by our workflow indicating the 
reactants, products, and the promiscuous enzyme, (II) the RDM pattern showing the Reaction Center (R) in red where the biotransformation occurs, 
and (III) the native reaction catalyzed by the potentially promiscuous enzyme, as catalogued in KEGG
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propanoyl-CoA and 2-methylacetoacetyl-CoA cata-
lyzed by EC 2.3.1.9 (acetoacetyl-CoA thiolase) (Fig.  3c). 
Fourth, PROXIMAL predicted the phosphotransferase 
reaction between of d-ribulose-5-phosphate and d-rib-
ulose-1,5-bisphosphate by EC 2.7.1.19 (phosphoribuloki-
nase) (Fig. 3d). The fifth predicted reaction known to be 
in E. coli is the redox transformation of d-gluconic acid 
to 2-keto-d-gluconic acid by EC 1.1.1.215 (gluconate 
2-dehydrogenase) (Fig. 3e). The workflow also predicted 
glycosyltransferase transformation of 5-amino-4-im-
idazolecarboxamide to/from 1-(5′-phosphoribosyl)-
5-amino-4-imidazolecarboxamide by EC 2.4.2.7 (AMP 
pyrophosphorylase) (Fig.  3f ). The seventh predicted 
reaction is the transformation between pyruvate and 
4-hydroxy-2-oxoglutarate by EC 4.1.3.24 (Fig.  3g). The 
eighth reaction is catalyzed by EC 2.4.2.10 to transform 
guanine to/from GMP (Fig.  3h). Also, PROXIMAL pre-
dicted the transformation between glycerate and tartrate 
by EC 4.1.1.73 (Fig. 3i). Lastly, bicarbonate is transformed 
to/from carboxyphosphate by EC 3.6.1.7 (Fig. 3j).

C3 consists of five predicted reactions that are not doc-
umented in E. coli but are known in other organisms. The 
first of these, the transformation between pyruvate and 
4-carboxy-4-hydroxy-2-oxoadipate (Fig. 4a) catalyzed by 
EC 4.1.3.17 (HMG aldolase), is present in many organ-
isms, including bacteria, as part of the benzoate degra-
dation pathway (KEGG R00350). The transformation is 
predicted to occur in E. coli due to EC 4.1.3.34 (citryl-
CoA lyase). Both EC 4.1.3.17 and EC 4.1.3.34 are lyases 
enzymes that form carbon–carbon bonds. 4-Carboxy-
4-hydroxy-2-oxoadipate is known to be formed/con-
sumed by EC 4.2.1.80 (2-keto-4-pentenoate hydratase) in 
E. coli (KEGG R04781). Another predicted reaction is the 
(de)aminating redox transformation between l-histidine 
and imidazol-5-yl-pyruvate, catalyzed by EC 1.4.1.4 (glu-
tamate dehydrogenase) (Fig. 4b). Imidazol-5-yl-pyruvate 
is not known to be produced in any other way in E. coli, 
according to ECMDB and KEGG databases. The trans-
formation of l-histidine to/from imidazol-5-yl-pyruvate 

is known to occur in the bacterium Delftia acidovorans 
by EC 2.6.1.38 (histidine transaminase) [47]. C3 also 
includes the predicted aryltransferase reaction between 
geranyl diphosphate and geranyl hydroxybenzoate by EC 
2.5.1.39 (4-hydroxybenzoate transferase) (Fig. 4c). While 
the general reaction of all-trans-polyprenyl diphosphate 
to 4-hydroxy-3-polyprenylbenzoate is known to occur 
in E. coli, the specific transformation between geranyl 
diphosphate to geranyl hydroxybenzoate is known to 
occur in plants as part of shikonin biosynthesis, by EC 
2.5.1.93 (4-hydroxybenzoate geranyltransferase) [48]. 
The fourth predicted reaction is the redox transforma-
tion between d-alanine and 2-aminoacrylic acid (Fig. 4d). 
This reaction is predicted to be catalyzed by EC 1.3.1.98 
(UDP-N-acetylmuramate dehydrogenase). While 2-ami-
noacrylic acid is not known to be produced in E. coli in 
any other way, the transformation between d-alanine and 
2-aminoacrylic acid occurs in other organisms such as 
Staphylococcus aureus [49]. Lastly, our workflow predicts 
the transformation between phenylpyruvate and phenyl-
lactate by EC 1.1.1.100 (Fig.  4e). This transformation is 
known to occur in plants by EC 1.1.1.237 [50].

C4 consists of four predicted reactions that are 
not currently catalogued in KEGG for any organism 
(Fig. 5). The first reaction (Fig. 5a) is the oxidoreductive 
interconversion between aminomalonate and l-serine 
by EC 1.1.1.23 (histidinol dehydrogenase). There is 
one reaction (KEGG R02970) catalyzed by EC 2.6.1.47 
(l-alanine:oxomalonate aminotransferase) that pro-
duces aminomalonate; but it is not a redox reaction and 
is associated with rat and silkworm, not E. coli [51]. The 
second is a hydrolytic decarboxylation reaction between 
N-acetylputrescine and N-acetylornithine (Fig. 5b) pre-
dicted to be catalyzed by EC 4.1.1.36 (PPC decarboxy-
lase). The product, N-acetylputrescine, is involved in a 
number of enzymatic reactions—ECs 1.4.3.4 (mono-
amine oxidase), 2.3.1.57 (spermidine acetyltransferase), 
and 3.5.1.62 (acetylputrescine deacetylase)—in many 
organisms that include both eukaryotes and bacteria 

Table 1  List of C1 reactions predicted by EMMA and their parallel reactions in E. coli iML1515

Each of the predicted/iML1515 reaction pair occurs between the same substrate and product but utilize different co-substrate or cofactors

EC number (gene) Reaction

Predicted
iML1515

2.4.2.10 (b3642)
3.2.2.10 (b2795)

Cytosine + 5-phospho-α-d-ribose-1-diphosphate ⇋ CMP + diphosphate
Cytosine + d-ribose-5-phosphate ⇋ CMP + H2O

Predicted
iML1515

1.1.1.79 (b1033)
1.1.1.95 (b2913)

2-Oxoglutarate + NADPH + H+ ⇋ 2-hydroxyglutarate + NADP+

2-Oxoglutarate + NADH + H+ ⇋ 2-hydroxyglutarate + NAD+

Predicted
KEGG

3.6.1.7 (b0968)
6.3.5.5 (b0032 or b0033)

Bicarbonate + orthophosphate ⇋ carboxyphosphate + H2O
Bicarbonate + ATP ⇋ carboxyphosphate + ADP

Predicted
iML1515

2.8.3.10 (b0615)
2.8.3.8 (b2221 and b2222 or b1694) or 2.8.3.9 

(b2221 and b2222)

Acetoacetyl-CoA + citrate ⇋ acetoacetate + (3S)-citryl-CoA
Acetoacetyl-CoA + acetate ⇋ acetoacetate + acetyl-CoA
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[16]. The third reaction in this category is the hydro-
lytic decarboxylation reaction between 3-ureidopropi-
onate and N-carbamoyl-l-aspartate also catalyzed by 
EC 4.1.1.36 (PPC decarboxylase). 3-Ureidopropionate 
is present in eukaryotes and bacteria (but not E. coli) 
and is involved in reactions catalyzed by ECs 3.5.1.6 

(β-ureidopropionase) and 3.5.2.2 (dihydropyrimidi-
nase). The last reaction is the transformation between 
d-gluconic acid and d-galactarate by EC 1.1.1.23. 
d-Galactarate is involved in reactions catalyzed by 
4.2.1.158 that is present in Oceanobacillus iheyensis 
[52].

Fig. 3  The set of ten reactions, panels a–j,  belonging to Category 2 (C2). Reactions in C2 are associated with derivatives not present in iML1515 
but are associated with E. coli in KEGG and/or EcoCyc. Each of the ten panels is divided into two sections (I) the balanced reaction developed by our 
workflow, that is also documented in KEGG, indicating the reactants, products, and the promiscuous enzyme, and (II) the RDM pattern showing the 
Reaction Center (R) in red where the biotransformation occurs
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Discussion
Current practices for reconstructing genome-scale 
metabolic models, which are derived using sequencing 
and functional annotation, can be improved by utilizing 
metabolomics data. However, directly utilizing metabo-
lomics measurements to augment existing models is 
challenging. Not every metabolite is measurable due 
to limited resolution and fidelity of mass spectrometry 
instruments. Further, assigning chemical identities to 
measured metabolites remains a challenge. Even if new 
metabolites are identified, their formation cannot be 

easily assigned to enzymes without significant experi-
mental effort involving either genetic or biochemical 
screens. Additionally, metabolomics data alone cannot 
differentiate reactions catalyzed by different enzymes 
yet between the same substrates–product pairs without 
additional experimental efforts. Computational tools 
and workflows, as presented in this paper, can signifi-
cantly guide such studies and aid in metabolic model 
construction and augmentation based on metabolomics 
data.

Fig. 4  The set of five reactions, panels a–e, belonging to Category 3 (C3). C3 reactions and derivatives are neither present in iML1515 nor associated 
with E. coli in KEGG and EcoCyc. However, according to KEGG, the reactions occur in other organisms. Each of the five panels is divided into three 
sections (I) the balanced reaction developed by our workflow indicating the reactants, products, and the promiscuous enzyme, (II) the RDM pattern 
showing the Reaction Center (R) in red, and (III) the native reaction catalyzed by the potentially promiscuous enzyme, as catalogued in KEGG
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The workflow we developed here is designed to iden-
tify metabolites that can form due to promiscuous enzy-
matic activity within a specific model organism. Further, 
the workflow provides balanced reactions to document 
such enzymatic activities. We utilized PROXIMAL [39], 
which first identifies patterns of structural transforma-
tions associated with enzymes in the biological sample 
and then applies these transformations to known sample 
metabolites to predict putative metabolic products. Using 
PROXIMAL in this way allows attributing putative meta-
bolic products to specific enzymatic activity and deriving 
balanced biochemical reactions that capture the promis-
cuous activity. Using PROXIMAL offers an additional 
advantage—the derived promiscuous transformations 
are specific to the sample under study and are not limited 
to hand-curated biotransformation operators as in prior 
works [33, 34]. PROXIMAL therefore allows exploration 
of a variety of biotransformations that are commensurate 
with the biochemical diversity of the biological sample. 
The EMMA workflow, which utilized PROXIMAL, was 
previously developed to engineer a candidate set from 
a metabolic model for metabolite identification [53]. 
EMMA did not aim to augment existing metabolic mod-
els or derive balanced reactions as utilized in this study.

Future experimental and computational efforts can 
further advance this work. Experimentally, the list of 

putative products generated by PROXIMAL but not 
documented in any metabolomics databases can be used 
as a resource to identify as yet unidentified metabo-
lites. Experimental validation of reactions in the C1, C3 
and C4 categories would provide further evidence of 
the suggested reactions, and would provide a means for 
expanding existing databases such as KEGG and EcoCyc. 
Computationally, PROXIMAL can be upgraded to con-
sider enzymes that act on more than one Reaction Center 
(R) within a metabolite (e.g. transketolase). This would 
produce multiple operators per reaction and generate a 
more comprehensive list of putative reactions and prod-
ucts. When applying PROXIMAL, we did not consider 
whether products of promiscuous reactions can them-
selves act as new substrates for promiscuous reactions. 
This is due to the large number of putative products. We 
are currently developing machine learning techniques to 
improve the prediction accuracy of PROXIMAL.

Conclusion
This study investigates creating extended metabolic 
models (EMMs) through the augmentation of existing 
metabolic models with reactions due to promiscuous 
enzymatic activity. Our workflow, EMMA, first utilizes 
PROXIMAL to predict putative metabolic products, and 
then compares these products against metabolomics 

Fig. 5  The set of four reactions, panels a–d, belonging to Category 4 (C4). C4 reactions and derivatives are neither present in iML1515 nor 
associated with any other organism in KEGG or EcoCyc. Each of the four panels is divided into three sections (I) the balanced reaction developed by 
our workflow indicating the reactants, products, and the promiscuous enzyme, (II) the RDM pattern showing the Reaction Center (R) in red, and (III) 
the native reaction catalyzed by the potentially promiscuous enzyme, as catalogued in KEGG
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data. EMMA was applied to iML1515, the genome-scale 
model of E. coli MG1655. PROXIMAL generated 1875 
biochemical operators based on reactions in iML1515 
and predicted 1423 derivatives of 106 high-concentra-
tion metabolites. To validate these products, EMMA 
compared the set of putative derivatives with the set of 
metabolites documented in ECMDB as part of E. coli 
metabolism. For the overlapping set, we generated cor-
responding atom-balanced reactions by adding suitable 
cofactors and/or co-substrates to the substrate-derivative 
pair suggested by PROXIMAL. The balanced reactions 
were compared with data recorded in EcoCyc and KEGG. 
Our workflow generated a list of 23 new reactions that 
should be utilized to extend the iML1515 model, includ-
ing parallel reactions between existing metabolites, 
novel routes to existing metabolites, and new paths to 
new metabolites. Importantly, this study is foundational 
in providing a systemic way of coupling computational 
predictions with metabolomics data to explore the com-
plete metabolic repertoire of organisms. The described 
workflow can be applied to any organism utilizing its 
metabolic model to predict sample-specific promiscuous 
enzymatic byproducts. Applying this workflow to other 
biological samples and their metabolomics data promise 
to enhance our understanding of natural, synthetic, and 
xenobiotic metabolism.

Methods
The EMMA workflow was customized to augment the E. 
coli iML1515 model based on the availability of the meta-
bolic measurements in ECMDB, and the availability of 
cataloged reactions and metabolites for E. coli in other 
databases (EcoCyc and KEGG) (Fig.  6). The iML1515 
model consists of 1877 metabolites, 2712 reactions and 
1516 genes. Our workflow consists of the following three 
steps.

Step 1—Predict promiscuous products using PROXIMAL
EMMA used PROXIMAL to predict putative products 
that can be added to the model. PROXIMAL utilizes 
RDM patterns [40] specific to the model’s reactions to 
create lookup tables that map reaction centers to struc-
tural transformation patterns. An RDM pattern speci-
fies local regions of structural similarities/differences 
for reactant–product pairs based on a given biochemi-
cal reaction. An RDM pattern consists of three parts: (i) 
A Reaction Center (R) atom exists in both the substrate 
and reactant molecule and is the center of the molecu-
lar transformation. (ii) Difference Region (D) atoms are 
adjacent to the R atom and are distinct between substrate 
and product. (iii) Matched Region (M) atoms are adja-
cent to the R atom but remain unmodified by the trans-
formation. All atoms are labelled using KEGG atom types 
[54]. PROXIMAL constructs a lookup table of all possible 
biotransformations that can occur due to promiscuous 

Fig. 6  Main steps of EMMA workflow customized to extend the E. coli iML1515 model with predicted reactions. Step 1: predict promiscuous 
transformations and derivatives using PROXIMAL. Step 2: compare derivatives with measured metabolic dataset(s). Step 3: curation and 
stoichiometric balancing of reactions
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activity of enzymes based on the RDM patterns of reac-
tions catalyzed by enzymes associated with genes in the 
iML1515 gene list. The “key” in the lookup table con-
sisted of the R and M atom(s) in the reactant, while the 
“value” is the R and D atom(s) in the product. The bio-
transformation operators in the lookup table were then 
applied to model metabolites. The outcome of this step 
is a list of predicted products due to putative enzymatic 
activity.

Step 2—Compare predicted products with metabolomics 
dataset
Metabolites predicted by PROXIMAL were compared 
with measured metabolic data in ECMDB. ECMDB con-
tains 3760 metabolites detected in E. coli strain K-12 and 
related information such as reactions, enzymes, path-
ways, and other properties. This information was either 
collected from resources and databases such as EcoCyc, 
KEGG, EchoBase [55], UniProt [56, 57], YMDB [58], 
and CCDB [59], or from literature, or validated experi-
mentally by the creators of ECMDB. Partial information 
about metabolites such as KEGG compound IDs, metab-
olites cell location, and chemical formulas is provided in 
ECMDB.

For each putative product, a mol file was generated 
and then converted to a SMILES string using Pybel [60], 
a python wrapper for the chemical toolbox Open Babel 
[61]. Based on the SMILES string, we initially retrieved 
the corresponding PubChem ID and InchiKey from 
PubChem using Pybel. To ensure consistency, we con-
firmed that retrieved PubChem IDs and InchiKeys of 
PROXIMAL predicted metabolites matched the cor-
responding entries in ECMDB. During this process, we 
noted some discrepancies. In some cases, the informa-
tion retrieved from PubChem, such as InchiKeys did 
not match those in ECMDB. In cases of a mismatch, 
we sought additional information to confirm metabo-
lite identities of ECMDB products. We utilized the val-
ues of the CAS ID, BioCyc ID, Chebi ID and KEGG ID 
fields to retrieve PubChem IDs using Pybel. The retrieved 
PubChem IDs are used to determine the ID through a 
majority vote. For example, if the PubChem ID associated 
with InchiKey, KEGG ID and CAS ID matched, but did 
not match the PubChem ID provided in ECMDB, then 
we considered the one retrieved by Pybel as the correct 
PubChem ID. Out of 3760 metabolites in ECMDB, we 
identified 3397 metabolites with consistent information 
with data retrieved from PubChem. Once PubChem IDs 
were identified for ECMDB metabolites, we compared 
our predicted metabolites against ECMDB metabolites 
using PubChem IDs.

Step 3—Curation of stoichiometric reactions
If a metabolite predicted by PROXIMAL was in 
ECMDB, then steps 1 and 2 resulted in the identifi-
cation of a verifiable predicted promiscuous trans-
formation of an E. coli metabolite. Each predicted 
transformation was manually examined and compared 
against the RDM pattern causing the transformation. 
Transformations were discarded if the they seemed 
infeasible, if the substrate was a cofactor, or if the 
RPAIR entry associated with the PROXIMAL opera-
tor required the presence of more than one Reaction 
Center (R). For each valid verifiable predicted transfor-
mation by PROXIMAL, we developed a new reaction by 
examining the reaction(s) template associated with the 
enzymatic transformation and adding suitable cofac-
tors to the reactant and product of the biotransforma-
tion identified. The set of developed balanced reactions, 
where the added cofactors to a reaction caused the 
number of atoms of reactants and products to match on 
both sides of the reaction, are then compared to reac-
tions recorded in EcoCyc, KEGG, or the literature.

The outcomes were divided into four categories. C1 
reactions consisted of metabolites predicted by PROXI-
MAL that are already in iML1515 but catalyzed by dif-
ferent enzymes than the ones already listed in the model. 
These reactions reflect promiscuous activity that enabled 
the same biotransformation catalyzed by a different gene 
in the model. C2 reactions already existed in EcoCyc and/
or KEGG but not in iML1515. This reflected a curation 
problem where some reactions were not included in the 
iML1515 model. C3 reactions were not in EcoCyc but 
documented in KEGG for other organisms. C4 reac-
tions did not exist in either EcoCyc nor in KEGG. These 
reactions were thus novel reactions that have not been 
reported in the literature.
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