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Abstract 

Background:  Pine wilt disease, caused by the pinewood nematode Bursaphelenchus xylophilus (PWN), is an impor-
tant destructive disease of pine forests worldwide. In addition to behaving as a plant-parasitic nematode that feeds on 
epithelial cells of pines, this pest relies on fungal associates for completing its life cycle inside pine trees. Manipulating 
microbial symbionts to block pest transmission has exhibited an exciting prospect in recent years; however, trans-
forming the fungal mutualists to toxin delivery agents for suppressing PWN growth has received little attention.

Results:  In the present study, a nematicidal gene cry5Ba3, originally from a soil Bacillus thuringiensis (Bt) strain, was 
codon-preferred as cry5Ba3Φ and integrated into the genome of a fungus eaten by PWN, Botrytis cinerea, using 
Agrobacterium tumefaciens-mediated transformation. Supplementing wild-type B. cinerea extract with that from 
the cry5Ba3Φ transformant significantly suppressed PWN growth; moreover, the nematodes lost fitness significantly 
when feeding on the mycelia of the cry5Ba3Φ transformant. N-terminal deletion of Cry5Ba3Φ protein weakened the 
nematicidal activity more dramatically than did the C-terminal deletion, indicating that domain I (endotoxin-N) plays 
a more important role in its nematicidal function than domain III (endotoxin-C), which is similar to certain insecticidal 
Cry proteins.

Conclusions:  Transformation of Bt nematicidal cry genes in fungi can alter the fungivorous performance of B. xylophi-
lus and reduce nematode fitness. This finding provides a new prospect of developing strategies for breaking the life 
cycle of this pest in pines and controlling pine wilt disease.
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Background
Plant-parasitic nematodes (PPNs) are major pathogenic 
factors in many cash crops, including potato, soybean, 
and tomato [1, 2], and woody species, such as olive tree 
and pines [3, 4]. Destructive PPNs are very difficult to 
control because most of them are endoparasites. These 
nematodes spend most of their lives in the plant tissues, 
which can protect them from routine control strate-
gies. Traditional control using highly toxic synthetic 

nematicides caused severe environmental problems 
and induced the production of chemical-resistant PPN 
strains. Biological agents for the control of PPNs have 
received greater attention in recent years, because they 
appear to be better solutions for crop protection against 
these devastating parasites. Bioactive compounds from 
plants and microorganisms [5, 6], novel nanoparticle 
delivery systems for biopesticides [7], nematophagous 
fungi and bacteria [8, 9], as well as advances in in planta 
transgenic or RNA interference technology [10–12] have 
significantly extended the outlook for controlling PPNs. 
However, relatively little attention has been paid to the 
microbial mutualists of nematodes that could be explored 
as promising targets for achieving efficient control.
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The plant pathogenic pinewood nematode Bursap-
helenchus xylophilus (PWN) is in ecological balance 
with native pine species in North America [13], but it 
has become an invasive alien species in Japan, South 
Korea, and China, and spread into Portugal and Spain 
[4, 14]. This nematode is the major causal agent of pine 
wilt disease, which has devastated more than one million 
hectares of pine forests in China [15]. In recent years, 
compounds originally produced by Streptomyces species 
(such as avermectin, emamectin, milbemycin, and their 
derivatives) [16–18], nematicidal constituents screened 
from plants [19, 20], and endoparasitic fungi of nematode 
[21], were found applicable to be biopesticides for con-
trolling PWN.

Crystal (Cry) proteins, produced by the soil bacterium 
Bacillus thuringiensis (Bt), are effective to control insects 
that destroy crops, as are the Cry proteins expressed in 
transgenic plants [22]. Moreover, increasing evidence has 
shown that Bt Cry proteins kill a wide range of nematodes 
[23, 24] and their nematicidal activities can be effectively 
delivered to crops for controlling PPNs through trans-
genic modification [25–27]. This suggested that using 
Bt cry gene-modified pine trees may be a sustainable 
and effective strategy for the conifer-parasitic nematode, 
PWN. Nevertheless, genetic engineering of tree genomes 
is highly challenging owing to the large costs and long-
term evaluation of transgenic efficacy.

Although PWN mainly feeds on xylem parenchyma 
cells of pines during initial infection, the nematode eats 
blue stain fungi, which flourish later after the pine host 
is killed [28]. Spores of blue stain fungi could cling to 
the body surface of adult Monochamus alternatus and 
be transmitted to the twigs of healthy pine trees for the 
next cycle of PWN infection [29]. Ophiostomatoid fungi 
such as Ophiostoma and Sporothrix have been reported 
to be associated with PWN and the insect vector in dif-
ferent geographic regions [29–32]. PWN seems to ben-
efit from the proliferation of blue stain fungi around the 
insect pupal chambers, because nematode reproduction 
increases when feeding on the blue stain fungi. Moreover, 
the abundance of mutualistic fungi correlates with the 
severity of pinewood disease [32]. The nutritional symbi-
otic partnership between PWN and its fungal associates 
implies that expressing toxic Bt protein from the fungus 
eaten by PWN might be a favorable alternative method 
for breaking the multispecies interactions among insect 
vectors, fungi, and the nematodes.

From the soil of the Tianmu Mountain, Bacillus thur-
ingiensis zjfc85 was isolated and found to produce an 
approximately 130  kDa crystal protein Cry5Ba3, which 
acts as a strong nematicide against PWN, causing abnor-
mal morphology within 48  h [33]. However, the char-
acteristics of Cry5Ba3 and its potential applicability in 

biocontrol of PWN has not been well understood. In the 
present study, a codon-preferred cry5Ba3Φ gene was 
transformed into the filamentous fungus Botrytis cinerea, 
which is a good diet fungus for the laboratory popula-
tion of PWN, via Agrobacterium tumefaciens-mediated 
transformation (ATMT). We demonstrate that fungal 
transformation with Bt expression provides significant 
nematicidal activity against PWN, suggesting a prospec-
tive strategy for delivering toxins by fungus to sites where 
the nematode forages. This method could be used to test 
the efficacies of the Cry protein family against parasitic 
nematodes with facultative fungivorous behavior.

Methods
PWN, Botrytis cinerea, and the cry5Ba3 gene from Bacillus 
thuringiensis zjfc85
The PWN Bursaphelenchus xylophilus was first isolated 
from dead Masson pine trees in Zhejiang Province by 
Baermann funnels in 2010, and then cultured in the labo-
ratory with the fungus B. cinerea (CGMCC NO.: 3.18906) 
on potato dextrose agar (PDA; BD Difco, Detroit, MI, 
USA).

Bacillus thuringiensis zjfc85 was one of 467 isolates in 
soils that were collected from Tianmu Mountain, Zhe-
jiang Province [33]. Isolate zjfc85 exhibited significantly 
higher nematicidal activity than did the other collected 
strains, because of the single crystal protein Cry5Ba3 it 
harbors, which is approximately 130 kDa in mass (Addi-
tional file 1: Figure S1) [33].

Construction of the plasmid pTFCM‑cry5Ba3Φ
According to the codon usage bias described previ-
ously [26], a new coding gene was designed to enhance 
Cry protein expression in filamentous fungi and named 
cry5Ba3Φ (GenBank Accession Number MG737676, 
Additional file  1: Figure S2), which encodes a protein 
consisting of 698 amino acids, with molecular mass 
approximately 78.5  kDa. The designed cry5Ba3Φ was 
then synthesized, combined with trpC promoter/ter-
minator and sticky ends XhoI/SpeI, and linked with a 
pUC57 plasmid to obtain pUC57-cry5Ba3Φ (Genscript 
Co. Ltd., Nanjing, Jiangsu Province, China) (Fig. 1a). The 
plasmid pTFCM containing the T-DNA border repeat 
sequence and the hph gene, with Aspergillus nidulans 
PtrpC/TtrpC (Fig. 1a), was maintained in Escherichia coli 
DH5α and kept in National Joint Engineering Laboratory 
of Biopesticide Preparation, Zhejiang A&F University.

Plasmids (pUC57-cry5Ba3Φ and pTFCM) were 
extracted using Plasmid Mini Prepare (Axygen Bio-
sciences, Union City, CA, USA) according to manufac-
turing instructions. These plasmids were then digested 
at the XhoI and SpeI sites, followed by dephosphoryla-
tion of the pTFCM plasmid and purifying the digested 
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DNA segment containing cry5Ba3Φ by AxyPrep DNA 
gel recycle kit (Axygen Biosciences). The cry5Ba3Φ gene 
with PtrpC and TtrpC was ligated to the plasmid pTFCM 
by the action of T4 ligase at 16  °C overnight to obtain 
the plasmid pTFCM-cry5Ba3Φ. The ligated product 
pTFCM-cry5Ba3Φ was then determined by XhoI/SpeI 
and another set of restriction enzyme XhoI/SacI.

Agrobacterium tumefaciens‑mediated transformation
Agrobacterium tumefaciens competent cells were pre-
pared using 10% glycerol and the plasmid pTFCM-
cry5Ba3Φ was transformed into A. tumefaciens AGL-1 
strain according to an electroporation method [34]. Cells 
of A. tumefaciens AGL-1 strain (100 μl) carrying the plas-
mid pTFCM-cry5Ba3Φ were grown in 5  ml Luria–Ber-
tani (LB) broth supplemented with 50 μg/ml kanamycin 
and streptomycin at 28  °C and 150  rpm for 12  h. After 
transferring 200 µl bacterial cells into 10 ml of induction 
medium (IM) [35] containing 200  µM acetosyringone 
(AS), they were grown for 6 h at 28  °C and 180 rpm. A. 
tumefaciens cells were finally diluted to achieve an optical 
density at 600 nm (OD600) of 0.15–0.3. The bacterial cells 
were mixed with an equal volume of B. cinerea (1 × 106 
conidia/ml); thereafter, 200 µl of the mixture was spread 
onto sterilized cellulose membranes (cellulose nitrate) 
with a pore size of 0.45  µm, overlaid on co-cultivation 
medium (IM + AS, 10 mmol/l glucose). After co-cultiva-
tion at 28 °C for 2 days, the membranes were transferred 
to PDA medium amended with 100 μg/ml hygromycin B 
and 50  μg/ml cefotaxime to select fungal transformants 
and to kill A. tumefaciens cells. After incubation at 28 °C 
for 3–5 days, individual colonies were cultured on potato 
dextrose broth (PDB) containing hygromycin B (100 μg/
ml) and cefotaxime (50  μg/ml) at 28  °C for another 
5 days.

Genomic DNA isolation, polymerase chain reaction 
confirmation, and Southern blotting
Transformed and wild-type B. cinerea strains (100 μl of 
1 × 106 conidia/ml) were grown in 50 ml of PDB at 25 °C 

and 180  rpm for 7  days. The mycelia were filtered with 
autoclaved gauze, washed with sterile ddH2O three times, 
and then ground to powder in liquid nitrogen. Genomic 
DNA of B. cinerea was extracted using the Cetyltrimeth-
ylammonium Bromide (CTAB) method. Polymerase 
chain reaction (PCR) was used to confirm the presence 
of cry5Ba3Φ gene by amplifying a 1.2  kb region com-
prising portions of hph and cry5Ba3Φ genes. Primers 
cry-F (5ʹ-ACT​ACC​TCA​GAC​CAC​CAC​A-3ʹ) and cry-R 
(5ʹ-TCT​CAA​GCC​TAC​AGG​ACA​C-3ʹ) were internal in 
cry5Ba3Φ and hph, respectively. Each PCR consisted of 
1 µg of genomic DNA, 2.5 U Taq DNA polymerase, 10 µl 
10 × polymerase buffer, 1.5  µM MgCl2, 200  µM dNTP, 
and 0.5 µM each primer, adding ddH2O to adjust the vol-
ume of the reaction mixture to 50 µl. The cycling condi-
tions were as follows: an initial denaturation of 5 min at 
94  °C, followed by 35 cycles of 45  s for denaturation at 
92 °C, 1 min for annealing at 58 °C, and 1 min for polym-
erization at 72  °C, with a final extension at 72  °C for 
10 min.

Southern blotting was done to analyze the frequency 
of cry5Ba3Φ gene insertion in B. cinerea. Genomic DNA 
of the transformant and wild-type strains was extracted 
by DNeasy Mini Kit (Qiagen, Valencia, CA, USA). One 
hundred microgram of DNA from the strains and plas-
mid pTFCM-cry5Ba3Φ were digested with HindIII for 
24 h, followed by electrophoresis on a 0.8% agarose gel at 
1 V/cm for over 10 h in 0.5% Tris–acetate-ethylenediami-
netetraacetic acid (EDTA) buffer. DNA fragments were 
transferred to a Nylon membrane using 10× SSC (saline 
sodium citrate; 1.5 M NaCl plus 0.15 M sodium citrate). 
The probe was prepared by PCR amplification using the 
primers of cry-Sf (5ʹ-TGC​TGA​AGC​TGC​TGTTC-3ʹ) and 
cry-Sr (5ʹ-CCT​TGA​TGG​TAG​TTA​TGG​GT-3ʹ) with the 
DIG-High prime DNA Labeling Kit I (Roche, Mannheim, 
Germany), according to the manufacturer’s instructions. 
Hybridizations were performed at 42 °C for 12–16 h and 
detected using the DIG-High Detection Kit I (Roche). 
After hybridization, the blots were washed twice in 2× 
SSC plus 0.1% sodium dodecyl sulfate (SDS) for 5 min at 

Fig. 1  Recombination of cry5Ba3Φ-transgenic Botrytis cinerea. a Construction of the plasmid pTFCM-cry5Ba3Φ. HYG: hygromycin B resistant 
(hygromycin B phosphotransferase) gene; PtrpC and TtrpC: promoter and terminator of Aspergillus nidulans, respectively. b Plasmid pUC57-cry5Ba3Φ 
digested by SpeI and XhoI. M: DNA marker; 1: plasmid pUC57; 2: plasmid pUC57-cry5Ba3Φ. c Certification of the plasmid pTFCM-cry5Ba3Φ. M: DNA 
marker; 1–2: plasmid pTFCM-cry5Ba3Φ digested by SacI and XhoI; 3–4: plasmid pTFCM-cry5Ba3Φ digested by SpeI and XhoI. d Identification of the 
AGL-1 pTFCM-cry5Ba3Φ by PCR amplification with cry-F/cry-R primers. M: DNA Marker; 1: plasmid pTFCM-cry5Ba3Φ; 2–4: AGL-1 pTFCM-cry5Ba3Φ; 
5: AGL-1 pTFCM. e Southern blot analysis of genomic DNA of cry5Ba3Φ-transgenic Botrytis cinerea. DNA was digested with HindIII and probed with 
cry5Ba3Φ. 1: cry5Ba3Φ-transgenic Botrytis cinerea; 2: wild-type Botrytis cinerea; 3: plasmid pTFCM-cry5Ba3Φ. f Confirmation of cry5Ba3Φ-transgenic 
Botrytis cinerea by PCR amplification with cry-F/cry-R primers. M: DNA marker; 1: cry5Ba3Φ-transgenic Botrytis cinerea; 2: plasmid pTFCM-cry5Ba3Φ; 3: 
wild-type Botrytis cinerea. g Expression quantity of cry5Ba3Φ gene in cry5Ba3Φ-transgenic and wild-type Botrytis cinerea strains (P < 0.05). h SDS-PAGE 
analysis of soluble proteins produced by cry5Ba3Φ-transgenic Botrytis cinerea. An asterisk indicates the protein band of Cry5Ba3Φ protein. MW: 
protein molecular weight; M: pre-stained protein marker; C: Botrytis cinerea (pTFCM); T: Botrytis cinerea (pTFCM-cry5Ba3Φ)

(See figure on previous page.)
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25 °C. Thereafter, they were washed twice again in 0.5× 
SSC plus 0.1% SDS for 15 min at 42 °C.

Real‑time PCR analysis
Mycelia of the B. cinerea transformant and wild-type 
strains were collected, and the total RNA was extracted 
using AxyPrep™ multisource total RNA miniprep Kit 
(Axygen), followed by reverse transcription of mRNA 
with PrimeScript™ RT reagent Kit (TaKaRa, Tokyo, 
Japan). The PCR primers used were cry-rtF (5ʹ-CTC​
CCA​CTC​ACC​CAA​CTC​-3ʹ) and cry-rtR (5ʹ-TCA​CCC​
TTG​GAA​GCG​TAT​-3ʹ) and quantification of cry5Ba3Φ 
expression was performed using an Applied Biosystems 
7300 Real-time PCR system (ABI, Foster City, CA, USA) 
with SYBR® Premix Ex Taq™ II (TaKaRa). The house-
keeping gene β-actin (GenBank Accession No. AJ000335) 
was chosen as control using the primers Bcactin-F (5ʹ-
AAG​TGT​GAT​GTT​GAT​GTC​C-3ʹ) and Bcactin-R (5ʹ-
CTG​TTG​GAA​AGT​AGA​CAA​AG-3ʹ).

Mitotic stability of Botrytis cinerea transformant
To determine the mitotic stability of the B. cinerea trans-
formants with cry5Ba3Φ, they were cultured on PDA 
without hygromycin B for 5  days. After nine successive 
transfers, the colonies were tested for growth on PDA 
amended with 100 µg/ml hygromycin B. PCR amplifica-
tion was further applied to confirm cry5Ba3Φ insertion 
using the primers cry-F and cry-R following the proce-
dures mentioned above.

Nematicidal activity of Botrytis cinerea transformant
Botrytis cinerea wild-type and transformant strains were 
cultured on PDB for 5 days at 25  °C and 180  rpm. Cul-
ture extracts from both the strains were filtered using 
0.22  µm sterile filters. The solutions prepared for this 
test comprised 1  ml of extracts with different wild-
type:transformant ratios: 1:0, 0.9:0.1, 0.5:0.5, 0.1:0.9, 
and 0:1. PWNs with mixed juvenile stages were washed 
out with sterile ddH2O from B. cinerea wild-type plates 
that have been fed by nematodes for 5 days. Thereafter, 
50  µl of the suspensions (containing 600 nematodes on 
an average) were added into the extracts. Following 24 
and 48  h of contact with extracts, live or dead nema-
todes were recorded. Five replicates were used in all the 
treatments.

In another experiment, 50 µl of the nematode suspen-
sions were added to PDA freshly grown with wild-type 
and cry5Ba3Φ-transgenic B. cinerea strains, respectively. 
After 5 days, the nematodes were flushed with 3 ml ster-
ile distilled H2O and the number of live or dead nema-
todes were recorded. Six replicates were used for each 
treatment.

Botrytis cinerea transformants with different lengths 
of cry5Ba3Φ
National Center for Biotechnology Information (NCBI) 
Conserved Domain search (CD-search) analysis pre-
dicted that Cry5Ba3Φ contains an endotoxin-N (aa 
91–327) and an endotoxin-C (aa 562–695). According 
to the structure of homologous crystal protein Cry5Ba 
(GenBank no. Q45712, Additional file  1: Figure S1), 
endotoxin-N of Cry5Ba3Φ may contain several heli-
cal regions (aa 115–161, 175–177, 187–207, 208–211, 
222–256, 262–290, 299–315, 321–326) and endotoxin-
C may consist of two helical regions (aa 571–573 and 
584–586) and several beta-strand regions. Based on this 
information, aa 115, 202, 560, and 572 were selected 
to break down endotoxin-N and endotoxin-C, respec-
tively. To determine whether integrity of segments 
anterior to endotoxin-N affects Cry5Ba3Φ nematicidal 
activity, another locus, aa 74, was selected.

Six pairs of primers were prepared to amplify frag-
ments of cry5Ba3Φ aa 74–698 (1875  bp), 115–698 
(1758 bp), 202–698 (1497 bp), 1–572 (1719 bp), 1–560 
(1683 bp), and 74–572 (1503 bp). The pTFCM-TRP vec-
tor backbone was amplified using pTFCM-cry5Ba3Φ as 
template and pTFCM-phiF/-phiR as primers (pTFCM-
phiF: 5ʹ-TAC​CTA​TTC​TAC​CCA​AGC​ATC​CAA​GAT​
ATC​AGT​AGA​TGC​CGA​CCG​GGA​-3ʹ; pTFCM-phiR: 
5ʹ-TTG​GAT​GCT​TGG​GTA​GAA​TAGGT-3ʹ). The steps 
mentioned above have been described in detail in 
Additional file  1: Methods. Vector (300  ng) and DNA 
fragment (1.20 µg) were ligated using GIBSON Assem-
bly Cloning Kit (New England Biolabs, Ipswich, MA, 
USA). The ligated products were transformed into 
E. coli XL10-Gold for multiplication followed by A. 
tumefaciens-mediated transformation as described 
above, which resulted in the six B. cinerea transfor-
mant strains with different lengths of cry5Ba3Φ genes. 
During the above process, primers hph-F (5ʹ-TTC​GAT​
GTA​GGA​GGG​CGT​GGAT-3ʹ) and hph-R (5ʹ-CAT​TGC​
AGA​TGA​GCT​GTA​TCTGG-3ʹ) were used to determine 
whether truncated cry5Ba3Φ genes were successfully 
transformed into AGL-1.

Confirmation of Botrytis cinerea with truncated cry5Ba3Φ 
by PCR and SDS‑PAGE
Each of the six B. cinerea transformant strains were cul-
tivated in 5 ml of PDB supplemented with the antibiot-
ics hygromycin B and cefotaxime at 28  °C for 5  days. 
Genomic DNA was then extracted for PCR amplifica-
tion using primers IDF (5ʹ-ACT​AGT​CAT​TGC​AGA​
TGA​GCTG-3ʹ) and IDR (5ʹ-ACT​AGT​CAT​TGC​AGA​
TGA​GCT​GTA​TCT​GGA​-3ʹ) to certify the presence of 
truncated cry5Ba3Φ genes with different lengths. The 
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PCR program has been presented in Additional file  1: 
Methods.

A colony of each of the successfully transformed B. 
cinerea strains was transferred to 50 ml of PDB contain-
ing hygromycin B and cefotaxime at 28  °C for 5  days. 
After centrifugation, the pellet of each strain was resus-
pended in 0.5% NaOH for repeated freeze–thaw cycles. 
Soluble proteins, including the Cry proteins, were 
detected by sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE) followed by Coomassie blue 
staining.

Nematicidal activity of Botrytis cinerea transformants 
with truncated cry5Ba3Φ
Botrytis cinerea transformed with pTFCM and the six 
cry5Ba3Φ-mutant strains were grown on PDB at 25  °C 
for 3 days to obtain fungal extracts. Nematodes cultivated 
on wild-type B. cinerea plates (containing approximately 
600 nematodes in 50 µl ddH2O) were added into each of 
the extracts. Following 24 and 48  h of contact with the 
extracts, live or dead nematodes were recorded. Five rep-
licates were used for all the strains studied.

Wild-type and cry5Ba3Φ-transgenic B. cinerea strains 
were cultured to collect fungal extracts. The extract of 
the cry5Ba3Φ-transgenic B. cinerea strain was supple-
mented either with 100 µl of 20 mg/ml elastase (Sangon 
Biotech, Shanghai, China) or with 100 µl sterile ddH2O. 
Forty microliter of PWNs (containing approximately 600 
nematodes) was added into each of the extracts (1  ml) 
mentioned above. Following 48  h of contact with the 
extracts, live or dead nematodes were recorded. Five rep-
licates were used in all the treatments.

Statistical analysis
Differences in cry5Ba3Φ gene expression and effects on 
nematode fitness between transformant and wild-type 
strains were compared by independent samples t test. 
Differences in number of live nematodes and ratio of 
live:dead nematodes among treatments were performed 
by one-way analysis of variance (ANOVA). When data 
were not normally distributed or had no variance homo-
geneity, the data were rank transformed, log transformed, 
or were applied for non-parametric Kruskal–Wallis test. 
The Student–Newman–Keuls (SNK) method or Mann–
Whitney U test (with adjusted α-level) was used for pair-
wise comparisons.

Results
Transformation and expression of cry5Ba3Φ in Botrytis 
cinerea, the diet fungus of PWN in laboratory
The plasmid pUC57-cry5Ba3Φ, prepared by whole-
sequence synthesis, was validated by digestion with 
the restriction enzymes XhoI and SpeI, resulting in an 

approximately 2600 bp DNA fragment (PtrpC, cry5Ba3Φ, 
and TtrpC), which was absent from the gel in case of the 
plasmid pUC57 (Fig.  1b). The ligated product pTFCM-
cry5Ba3Φ, combining plasmid pUC57-cry5Ba3Φ with 
plasmid pTFCM, was confirmed by the restriction 
enzymes Xho I and Sac I, which cut off an approximately 
5600  bp DNA fragment containing expression elements 
of both cry5Ba3Φ and the hygromycin B resistant (hph) 
gene (Fig. 1c). PCR amplification using primers cry-F and 
cry-R showed that plasmid pTFCM-cry5Ba3Φ was suc-
cessfully carried by A. tumefaciens AGL-1 (Fig. 1d).

After co-cultivation of AGL-1 (carrying pTFCM-
cry5Ba3Φ) and B. cinerea conidia on IM with acetosyrin-
gone, five B. cinerea transformants were picked out from 
hygromycin B-containing PDA medium. To make sure 
that the cry5Ba3Φ-transgenic fungus received the cor-
rect gene for transcription, one of the five fungal trans-
formants was randomly selected for PCR amplification, 
Southern blotting, and qRT-PCR analyses. Using prim-
ers cry-F and cry-R, internal regions of cry5Ba3Φ and 
hph were amplified. As shown in Fig.  1e, the expected 
1.2  kb fragments were observed at the correct size for 
cry5Ba3Φ-containing B. cinerea and plasmid pTFCM-
cry5Ba3Φ, but not for the wild-type strain of B. cinerea. 
The PCR products were sequenced for confirming the 
presence of cry5Ba3Φ and hph genes further. South-
ern hybridization using the cry5Ba3Φ gene fragment 
as a probe showed that a single copy of T-DNA was 
integrated into the genome of the B. cinerea transfor-
mant (Fig.  1f ). The qRT-PCR further determined that 
cry5Ba3Φ was expressed only in B. cinerea transformant, 
with an expression quantity approximately six times 
higher than that of the housekeeping gene actin (Fig. 1g).

Assessment of the genetic stability of cry5Ba3Φ-
containing B. cinerea showed that the transformant 
maintained hygromycin B resistance after being cultured 
on hygromycin B-free PDA for nine successive genera-
tions (5  days for one generation; Additional file  1: Fig-
ure S3). The ninth generation was confirmed to contain 
cry5Ba3Φ gene using PCR detection (data not shown).

Cry5Ba3Φ confers nematicidal activity to Botrytis cinerea
The cry5Ba3Φ-transgenic B. cinerea secreted soluble 
proteins, including the Cry5Ba3Φ protein, which was 
detected by SDS-PAGE (Fig.  1h). As compared with 
fungal extracts of the wild-type B. cinerea, those supple-
mented with over 10% extracts of cry5Ba3Φ-containing 
B. cinerea caused significantly lower number of live 
PWNs both after 24 h (Fig. 2a) and 48 h (Fig. 2b). After 
24  h, lower live:dead ratio of the nematode was found 
along with higher proportion of cry5Ba3Φ-transgenic 
B. cinerea extract (Fig. 2c). After 48 h, no significant dif-
ference in live:dead ratio was found among solutions 
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containing different proportions of transformant extract, 
but the live:dead ratios of them were all significantly 
lower than that of the wild-type extract (Fig.  2d). After 
5  days, the number of live nematodes feeding on 
cry5Ba3Φ-transgenic B. cinerea mycelia was significantly 
lower than that of live nematodes feeding on the wild-
type strain (Fig.  2e). Compared to PWNs on the wild-
type B. cinerea strain, dead:live ratio of the nematodes 
was much higher on the transgenic strain (Fig. 2f ).

Differential effects of truncated Cry5Ba3Φ proteins 
on nematicidal activity
Amplified DNA fragments of cry5Ba3Φ mutants (Fig. 3a) 
and pTFCM-TRP vector backbone were assembled 
and then transformed into E. coli XL10-Gold. Putative 
recombinant plasmids, which showed slower mobility 
rates than the control on gel, were confirmed by PCR 
amplification (Fig.  3b, c) and sequencing. The pTFCM 
plasmids with different lengths of cry5Ba3Φ were then 
extracted for transformation into A. tumefaciens AGL-1 
(Fig.  3d). Because of the co-occurrence of truncated 
cry5Ba3Φ and hph genes, PCR amplification using prim-
ers hph-F and hph-R indicated that cry5Ba3Φ-truncating 
genes on the plasmid pTFCM were successfully carried 
by A. tumefaciens AGL-1 (Fig. 3e). Transformant strains 
of B. cinerea containing truncated cry5Ba3Φ genes were 
constructed successfully (Additional file  1: Figure S4), 
because the cry5Ba3Φ gene fragments were amplified by 
the primers IDF and IDR, which targeted the cry5Ba3Φ 
expression cassette (Fig.  3f ). Furthermore, expressed 
proteins, including truncated Cry5Ba3Φ, were detected 
from corresponding mutants of B. cinerea by SDS-PAGE 
(Fig. 3g).

As compared with the treatment using the B. cinerea 
transformed with pTFCM, treatments with all the 
cry5Ba3Φ-truncating mutants resulted in a significantly 
lower number of live PWNs both after 24  h (Fig.  4a) 
and 48 h (Fig. 4b). Significant differences were found in 
dead:live ratio of PWNs among the B. cinerea mutant 
strains. After 24  h, N-terminal deletion of the first 114 
amino acids (mutant 2) significantly weakened the toxic-
ity against nematodes, which caused lower dead:live ratio 
of PWNs than did the C-terminal truncation (mutant 4 
and mutant 5; Fig. 4c). After 48 h, N-terminal truncated 

strains (mutants 1, 2, and 3) showed lower dead:live 
ratio of PWNs than did the C-terminal truncated strains 
(mutants 4, 5) (Fig. 4d). Supplementing the extract of the 
cry5Ba3Φ-transgenic strain of B. cinerea with elastase 
significantly alleviated Cry5Ba3Φ toxicity against PWN. 
After 48 h, as compared with the PWNs in the cry5Ba3Φ-
transgenic strain extract without elastase, the nematodes 
in the extract containing elastase had higher number of 
individuals in the population (Fig. 5a) and lower dead:live 
ratio (Fig. 5b).

Discussion
Bt crystal proteins are toxic to a variety of nematodes, 
particularly those from Cry5 subfamily [36–38]. Multi-
ple free-living nematode species exhibited susceptibilities 
to Cry5B, Cry14A, and Cry21A [38]. Cry5A, Cry5B, and 
Cry13 proteins were identified with significant inhibition 
against the free-living larval stages of nematode parasites 
of livestock [39]. Cry5B was isolated from supernatant of 
B. thuringiensis AB88 culture [40]. This protein was fur-
ther found to be highly active in vivo against the human 
nematode parasite Ancylostoma ceylanicum [41] and was 
shown to have excellent potential as a control agent of 
the root-knot nematode Meloidogyne incognita [26], sug-
gesting its wide-spectrum virulence on various parasitic 
nematodes. Phylogenetic analysis indicated high similar-
ity of amino acid sequences between Cry5Ba3 and Cry5B 
(Additional file  1: Figure S1), supporting the toxicity of 
Cry5Ba3 or Cry5Ba3Φ protein against the PWNs (Fig. 2). 
Other toxins, belonging to the Cry5 subfamily, such as 
Cry5Ca1, Cry5Da1, and Cry14 were recently found to act 
on PPNs, such as M. incognita and M. javanica [42, 43]. 
The nematicidal cry5 subfamily genes, however, appeared 
to occur in low frequency in natural environments [44]. 
This finding was consistent with our previous study, 
which showed that strikingly low frequency of cry genes 
in this subfamily can be detected in the soil samples col-
lected [33].

Insecticidal Cry proteins generally contain three 
domains, and the function of each domain has been stud-
ied. In previous studies, researchers argued that domain 
I of Cry proteins was involved in the perforation of the 
intestinal tract during the insecticidal process [45, 46]. 
Domain II determined the insecticidal specificity of the 

(See figure on previous page.)
Fig. 2  The cry5Ba3Φ gene confers strong nematicidal activity to Botrytis cinerea. a Diet fungus of pinewood nematode (PWN) in the laboratory. 
Decreased number of live nematodes (a 24 h, one-way ANOVA, F4,20 = 28.227, P < 0.0001; b 48 h, one-way ANOVA, F4,20 = 12.319, P < 0.0001) and 
live:dead ratio (c 24 h, one-way ANOVA, F4,20 = 11.735, P < 0.0001; d 48 h, one-way ANOVA, F4,20 = 11.168, P < 0.0001) with elevated proportion 
of extracts from cry5Ba3Φ-transgenic Botrytis cinerea. Fitness loss of PWN population (e number of live nematodes, t = 5.039, df = 10, P < 0.001; 
f dead:live ratio, t = − 9.573, df = 5.008, P < 0.001) feeding on mycelia of cry5Ba3Φ-transgenic Botrytis cinerea, after 5 days. *** Indicates P < 0.001. 
Different letters indicate significant differences among treatments (P < 0.05)
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Cry proteins [47, 48], binding to the gut cadherin recep-
tors of target insects [47, 49–51]. Domain III appeared 
to prevent Cry proteins from being excessively degraded 
by proteases in the intestine of insects [52] and to modu-
late the permeability of gut epithelial cell channels [47]. 
The nematicidal Cry5B has been crystallized for struc-
ture determination. It showed a familiar three-domain 

arrangement seen in insecticidal Cry proteins, but with a 
more structurally divergent domain II, which was impli-
cated in interaction with glycolipid receptors of nema-
todes [53, 54].

Considering the high similarity of amino acid 
sequences between Cry5Ba3 and Cry5B, the puta-
tive domain II of Cry5Ba3Φ was retained without any 
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excision, whereas domain I (in endotoxin-N) and III 
(in endotoxin-C) were designed to be broken down to 
detect weakening in nematicidal activity after the protein 
expression in B. cinerea. As compared with the wild-type 
B. cinerea strain, extracts from all the cry5Ba3Φ-mutant 
strains displayed stronger toxicities against PWNs 
(Fig. 4a, b). In contrast, differential virulence was found 
among the mutant strains of B. cinerea, particularly for 
their effect on dead:live ratio of the nematodes (Fig. 4c, 
d). The virulence of N-terminal mutants to nematodes 
was significantly impaired, while the mutant strains 
expressing C-terminal truncated Cry5Ba3Φ proteins had 
greater toxicities than other mutant types. This implied 
that N-terminal portion (domain I) was of greater sig-
nificance for the toxicity of Cry5Ba3Φ protein than was 
the C-terminal portion (domain III). For the closely 
related protein Cry5B, cleavage by elastase, which disin-
tegrated the N-terminal portion of this protein, yielded 
two residues of 112–170 and 173–698 amino acids [54]. 
In the present study, supplementing the extract of the 
cry5Ba3Φ-transgenic strain of B. cinerea with elastase 
caused a significant decrease in its toxicity against 
PWN (Fig.  5), which further supported the crucial role 
of domain I of Cry5Ba3Φ in nematicidal ability. In the 
future, variations in the glycolipid-binding activities 
of truncated Cry5Ba3Φ proteins and their structures 
should be determined. Interesting, the loss of segments 
anterior to endotoxin-N also affected Cry5Ba3Φ nemati-
cidal activity, which needs to be further demonstrated by 
experiments.

Mutagenesis using ATMT has been widely applied 
into filamentous fungi, including Aspergillus awamori, 
Penicillium digitatum, and Umbilicaria muehlenber-
gii [55–58]. In this study, ATMT was used to generate 
insertional mutation in the fungus, B. cinerea. The strong 
nematicidal cry5Ba3Φ gene was successfully carried 

and expressed by this diet fungus of PWNs. PCRs and 
Southern hybridizations demonstrated that cry5Ba3Φ 
gene was integrated into B. cinerea as a single copy, with 
expression level approximately six times higher than that 
of the housekeeping actin gene. These studies and our 
previous research might be among the first comprehen-
sive attempts of searching for a novel Bt-based control 
strategy against PWN. In this process, B. thuringiensis 
strains were isolated from soils, a Cry protein was iden-
tified to have efficient nematicidal effects on PWN, and 
the cry gene was transformed into B. cinerea. The cry-
transformed B. cinerea was found to be toxic to PWN, 
and finally, various cry mutant strains of B. cinerea were 
constructed to characterize the structure–function rela-
tionship of the Cry protein.

Botrytis cinerea may be applied as a prospective attract-
ant for PWN in the field, albeit in usual as a diet fungus 
for laboratory PWN population. B. cinerea, Pestalotia, and 
Microzyme have been compared in their capabilities to 
attract PWN. Botrytis cinerea was most attractive to PWN 
among these fungi, possibly through secretion of extracel-
lular active substances [59]. This implied that B. cinerea is 
a suitable expression receptor for nematicidal cry genes, 
which could be developed as a “sweet toxin” biocontrol 
agent for PWNs. Recently, the recombination of symbi-
otic microbes of pests for producing toxic molecules has 
attracted attention, and some of these achieved efficient 
control. For instance, with the purpose of controlling 
human malaria parasite Plasmodium falciparum, symbi-
otic bacteria of its vector (Anopheles mosquito) were genet-
ically engineered for secretion of anti-Plasmodium effector 
proteins to interfere with the development of P. falciparum 
in mosquitoes [60, 61]. Therefore, the platform we con-
structed using B. cinerea would inspire explorations of fun-
gal mutualists, naturally associated with the PWN-vector 
Monochamus complex, which are genetically engineered to 

Fig. 3  Construction of Botrytis cinerea transformants with different lengths of cry5Ba3Φ. a Six different lengths of cry5Ba3Φ gene amplified from 
the plasmid pTFCM-cry5Ba3Φ. 1: cry5Ba3Φ aa 74–698; 2: cry5Ba3Φ aa 115–698; 3: cry5Ba3Φ aa 202–698; 4: cry5Ba3Φ aa 1–572; 5: cry5Ba3Φ aa 1–560; 
6: cry5Ba3Φ aa 74–572. b, c Certification of plasmids pTFCM carrying different lengths of cry5Ba3Φ gene. The arrows indicate expected DNA bands 
amplified from successfully recombined plasmids. d Extraction of recombinant plasmids carrying different lengths of cry5Ba3Φ gene for AGL-1 
transformation. 1: plasmid pTFCM-cry5Ba3Φ aa 74–698; 2: pTFCM-cry5Ba3Φ aa 115–698; 3: pTFCM-cry5Ba3Φ aa 202–698; 4: pTFCM-cry5Ba3Φ aa 
1–572; 5: pTFCM-cry5Ba3Φ aa 1–560; 6: pTFCM-cry5Ba3Φ aa 74–572. e PCR analysis of AGL-1 transformation confirmed by amplifying the hph gene. 
1: AGL-1 pTFCM-cry5Ba3Φ aa 74–698; 2: AGL-1 pTFCM-cry5Ba3Φ aa 115–698; 3: AGL-1 pTFCM-cry5Ba3Φ aa 202–698; 4: AGL-1 pTFCM-cry5Ba3Φ aa 
1–572; 5: AGL-1 pTFCM-cry5Ba3Φ aa 1–560; 6: AGL-1 pTFCM-cry5Ba3Φ aa 74–572. 4ʹ, 5ʹ, and 6ʹ: failed AGL-1 transformations with corresponding 
pTFCM plasmids. f Identification of Botrytis cinerea transformants by amplifying cry5Ba3Φ gene of corresponding lengths. g SDS-PAGE analysis of 
soluble proteins produced by Botrytis cinerea transformants. Asterisks indicate the protein band of truncated Cry5Ba3Φ. MW: protein molecular 
weight; M: pre-stained protein marker; C: Botrytis cinerea (pTFCM). In (a–f), M: DNA marker; in f and g, 1: Botrytis cinerea (pTFCM-cry5Ba3Φ aa 74–698); 
2: Botrytis cinerea (pTFCM-cry5Ba3Φ aa 115–698); 3: Botrytis cinerea (pTFCM-cry5Ba3Φ aa 202–698); 4: Botrytis cinerea (pTFCM-cry5Ba3Φ aa 1–572); 5: 
Botrytis cinerea (pTFCM-cry5Ba3Φ aa 1–560); 6: Botrytis cinerea (pTFCM-cry5Ba3Φ aa 74–572)

(See figure on previous page.)
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secrete nematicidal Cry proteins. A recent study reported 
that a native fungal symbiont, Sporothrix sp. 1, was domi-
nant in the sites where tree infestation was higher, and its 
presence significantly improved the fitness of both PWN 
and the vector M. alternatus [32]. This finding may provide 
an opportunity for further genetic engineering to produce 
recombinant Sporothrix sp. 1 carrying cry genes in the 
future. Symbioses affect the pest status of many groups of 
insects and nematodes, signifying a wide prospect for the 
use of genetically modified symbiotic microbes as power-
ful tools for combating forest and agricultural animal pests.

Conclusions
The data presented in this study demonstrate that 
nematicidal Cry5Ba3 found in a soil B. thuringiensis 
strain can be successfully expressed in B. cinerea, a diet 
fungus of PWN in the laboratory, via ATMT technol-
ogy. The mortality of the nematodes exposed to extracts 
from cry5Ba3Φ-containing B. cinerea is comparable with 
that in the presence of purified Cry5Ba3, as previously 
reported. In addition, our results indicate that impair-
ing Cry5Ba3Φ at different loci result in distinct levels of 
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effects on its toxicity against PWN. These findings will 
not only inspire explorations into Bt-transgenic fungal 
mutualists of PWN, but also help in establishing a plat-
form suitable for characterizing the structure–function 
relationships of various candidate Cry proteins against 
this nematode pest.
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