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Abstract 

Background:  Lignocellulosic ethanol could offer a sustainable source to meet the increasing worldwide demand for 
fuel. However, efficient and simultaneous metabolism of all types of sugars in lignocellulosic hydrolysates by ethanol-
producing strains is still a challenge.

Results:  An engineered strain Escherichia coli B0013-2021HPA with regulated glucose utilization, which could use all 
monosaccharides in lignocellulosic hydrolysates except glucose for cell growth and glucose for ethanol production, 
was constructed. In E. coli B0013-2021HPA, pta-ackA, ldhA and pflB were deleted to block the formation of acetate, 
lactate and formate and additional three mutations at glk, ptsG and manZ generated to block the glucose uptake and 
catabolism, followed by the replacement of the wild-type frdA locus with the ptsG expression cassette under the con-
trol of the temperature-inducible λ pR and pL promoters, and the final introduction of pEtac-PA carrying Zymomonas 
mobilis pdc and adhB for the ethanol pathway. B0013-2021HPA was able to utilize almost all xylose, galactose and 
arabinose but not glucose for cell propagation at 34 °C and converted all sugars to ethanol at 42 °C under oxygen-
limited fermentation conditions.

Conclusions:  Engineered E. coli strain with regulated glucose utilization showed efficient metabolism of mixed sug-
ars in lignocellulosic hydrolysates and thus higher productivity of ethanol production.
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Background
Lignocellulosic biomass holds tremendous potential for 
sustainable ethanol production to meet the increasing 
worldwide demand for ethanol, which is currently pro-
duced from starch- and sugar-based foodstuff materials 
[1]. Lignocellulose is composed of various hexose and 
pentose sugars, such as glucose and xylose [2, 3]. Eco-
nomic feasibility of ethanol production from biomass, 
however, remains a challenge, though significant progress 
has been made in bioconversion of lignocellulose bio-
mass to ethanol since 1970s, including: (1) pretreatment 

techniques of biomass, (2) enzymes for efficient sacchari-
fication, (3) new strains for metabolizing all or most of 
monosaccharides in lignocellulose hydrolysates, and (4) 
novel integrated processes for ethanol production and 
recovery.

Of all the components of lignocellulose-based ethanol 
production considered, strain development is still one 
of the most crucial elements for practical commercial 
process [4]. No single natural microorganism is known 
to be capable of efficiently converting all sugars from 
lignocellulose to ethanol [5, 6]. Although engineered 
ethanologenic Escherichia coli strains have the ability to 
metabolize various sugars from lignocellulosic biomass, 
their xylose utilization lags far behind that of glucose due 
to the preferential use of glucose as carbon and energy 
source by E. coli, a physiological phenomenon known as 
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carbon catabolite repression (CCR) [7, 8]. Thus, a great 
deal of effort has been devoted to developing a single 
microorganism that can consume xylose and glucose 
simultaneously [9–14]. For example, to eliminate the 
CCR effect, strategies to disrupt CCR by inactivating 
phosphoenolpyruvate:glucose phosphotransferase sys-
tem (PTS) components have been explored by various 
researchers [15–17].

In the present study, a metabolically engineered E. coli 
strain with regulated glucose utilization, which uses all 
monosaccharides from lignocellulose except glucose for 
cell propagation and all sugars for ethanol production, 
was constructed. The newly developed strain could uti-
lize xylose, galactose and arabinose but glucose for cell 
duplication and its glucose catabolism pathway could be 
re-activated through switching-on transcription of ptsG 
at elevated temperature after cell duplication completed. 
A novel bioprocess for ethanol production from biomass 
was developed. This could provide an alternative route to 
highly efficient bioconversion of all sugars from biomass 
hydrolysates to ethanol.

Methods
Strains and plasmids
Strains and plasmids used in this study are listed in 
Table  1. Primers used in this study are listed in Addi-
tional file 1: Table S1. Cultures were stored at − 70 °C in 
15% glycerol in the Culture and Information Center of 
Industrial Microorganism of China Universities at Jiang-
nan University (CICIM-CU, http://CICIM​-CU.jiang​nan.
edu.cn). Unless otherwise stated, standard molecular 
biology protocols [18] were used for DNA manipulation.

Escherichia coli B0013-1030 [19] was used as par-
ent strain, in which xylH, encoding membrane compo-
nent of high affinity xylose transporter [3], is naturally 
mutated [20]. Its XylH function was restored by homolo-
gous replacement of xylH to obtain E. coli B0013-1030H 
[20]. The ptsG coding for the enzyme IICBGlc of the 
phosphoenolpyruvate:glucose phosphotransferase sys-
tem for carbohydrate transport, manZ coding for the 
IIDMan domain of the mannose PTS permease, and glk 
coding for glucokinase [16, 21, 22] were disrupted in 
B0013-1030H to create the glucose-nonutilizing strain 
E. coli B0013-2020H according to the method described 
previously [23].

Integration of ptsG expression cassette under control 
of the temperature-inducible λ pR and pL promoters 
into the frdA of B0013-2020H to create B0013-2021H 
was performed according to the method described 
previously [24]. Briefly, fragment kan-cIts857-pR–pL 
from plasmid pPL-kan was spliced with ptsG amplified 
from the chromosomal DNA of B0013 and cloned into 
pMD19T-vector to construct pT-kan-cIts857-pR–pL-ptsG, 
in which λ pR and pL promoters was located before start 
codon of ptsG. The recombinant plasmid was digested 
with EcoRV and ligated with the fragment containing 
upstream and downstream homologous arms of frdA to 
obtain recombinant plasmid pT-frdA’::kan-cIts857-pR–
pL-ptsG. The cassette frdA’::kan-cIts857-pR–pL-ptsG was 
amplified using primers frdA-p1 and frdA-p2, purified 
and integrated into the locus of frdA in the chromosome 
of B0013-2020H by electroporation [24] and frdA was 
simultaneously disrupted. Kanamycin resistant colonies 
were then selected on plates with 50 μg/ml of kanamycin. 

Table 1  Strains and plasmids used in this study

a   xylH* represents reversely mutated xylH ([20])

Strains or plasmids Genotype/relevant characteristics Source or references

Strains

 E. coli B0013 Wild isolate [20]

 E. coli B0013-1030 B0013, Δpta-ackA::dif,ΔldhA::dif, ΔpflB::dif [19]

 E. coli B0013-1030H B0013-1030, xylH*a [20]

 E. coli B0013-1031H B0013-1030H, ΔfrdA::dif This study

 E. coli B0013-1031HPA B0013-1031H, pEtac-PA This study

 E. coli B0013-2020H B0013-1030H, ∆ptsG::dif, ∆glk::dif, ∆manZ::dif This study

 E. coli B0013-2021H B0013-2020H ∆frdA::kan-cIts857-pR–pL-ptsG This study

 E. coli B0013-2021HPA B0013-2021H, pEtac-PA This study

Plasmid

 pMD19-T bla; TA cloning vector TaKaRa

 pPL-kan bla, kan, λcIts857, pR pL [24]

 pT-kan-cIts857-pR–pL-ptsG bla, kan, frdA::kan-cIts857-pR–pL This study

 pT-frdA’::kan-cIts857-pR–pL-ptsG bla, kan, frdA::kan-cIts857-pR–pL-ptsG This study

 pEtac-PA kan, pdc and adhB from Zymomonas mobilis [13]

http://CICIM-CU.jiangnan.edu.cn
http://CICIM-CU.jiangnan.edu.cn
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Integration of the cassette into frdA was confirmed by 
colony PCR (1785-bp for the wild-type frdA and 4034-
bp after inactivation due to insertion of ptsG with λ pR 
and pL promoters) and by nucleotide sequencing. The 
resulting recombinant strain was designated B0013-
2021H. The ethanol pathway encoded by pEtac-PA car-
rying Z. mobilis pdc and adhB [11] was transformed into 
B0013-2021H to develop ethanologenic recombinant 
B0013-2021HPA. As a control, B0013-1031HPA was con-
structed by disrupting frdA in B0013-1030H [24] and by 
subsequent introduction of pEtac-PA.

Media
Luria–Bertani medium (LB) (5  g/l yeast extract, 10  g/l 
tryptone, and 5 g/l NaCl) is used for activation and cul-
tivation of strains. Modified M9 medium [24] supple-
mented with 5 g/l of glucose or xylose was used for strain 
selection. As for solid medium, agar (15  g/l) is added. 
Modified M9 medium supplemented with 5 g/l of xylose 
and 50 g/l of glucose was used for shaking flask fermen-
tation. Glucose and xylose were sterilized separately by 
autoclaving at 115  °C for 20  min. When it was neces-
sary 100 μg/ml of ampicillin, 30 μg/ml of gentamycin or 
50 μg/ml of kanamycin was added into the media.

Fermentation experiments
Shaking flask fermentation was performed in 500-ml 
flasks containing 100  ml of medium. To prepare inocu-
lum, one single colony from a fresh LB plate was trans-
ferred into 50 ml of LB medium in 250-ml flasks and then 
cultivated at 37 °C, 200 rpm for 10–12 h to an OD600 of 
2.0–2.5. Cells were harvested by centrifugation (4300g, 
10  min), washed and re-suspended with M9 medium, 
and then inoculated into 100 ml of fermentation medium 
to initial cell density of 0.1 at OD600. Fermentation was 
conducted using a “two-phase-two-temperature” strat-
egy (aerobic cell growth at 34 °C, 200 rpm and then static 
oxygen-limited fermentation at 42 °C). The flask cultures 
were first cultivated in shaker at 34 °C, 200 rpm for 12 h 
and then transferred to static incubation for ethanol fer-
mentation at 42 °C.

Ethanol fermentation experiments in a 7-l bioreactor 
(Bioflo110; New Brunswick Scientific Co., Inc., Edison, 
NJ) were accomplished with an initial 3 l working volume. 
Cells were cultured and collected as mentioned above 
and inoculated into 250-ml flasks containing 50  ml of 
modified M9 medium with 5 g/l of xylose to an initial cell 
density of 0.1 (OD600) and cultivated at 37  °C. Cultures 
were inoculated into 3  l of modified M9 medium con-
taining 300 ml of corncob hydrolysate syrup. Using “two-
phase-two-temperature” strategy as mentioned above, 
cell growth phase was carried out at 34 °C under aerobic 
conditions with agitation at 200–1000 rpm and sparging 

sterile air continuously at a rate of 0.1–1 vvm. When the 
cell mass reached OD600 of approximately 20, the incu-
bation temperature was raised to 42  °C and maintained 
for 45  min. And then the oxygen limited fermentation 
was initiated by stopping air flow and reducing agita-
tion speed to 100 rpm and additional 300 ml of corncob 
hydrolysate was added at this moment. The same fermen-
tation was carried out with B0013-1031HPA as control 
except that incubation temperature for cell growth and 
fermentation was both at 37 °C. The pH was maintained 
at 7.0 by automatically feeding concentrated NH4OH or 
10% H2SO4 (v/v) during the fermentation. The corncob 
hydrolysate syrup used in this study was prepared based 
on 70% (w/w) concentrated xylose crystallization mother 
liquid (Futian Pharmaceutical Company Ltd., China) sup-
plemented with 364 g/l glucose with the volume ratio 1:1. 
The final syrup contained 266  g/l of glucose, 200  g/l of 
xylose, 114.5 g/l of arabinose and 27 g/l of galactose.

Analysis of relative expression levels of ptsG using 
real‑time quantitative PCR
Cells grown in LB medium at 34 °C overnight were col-
lected and washed 3 times with cold M9 medium. 
The cells were then resuspended in cold modified M9 
medium containing 5 g/l glucose to OD600 of 0.1 and then 
incubated for 2 h at 34 or 42 °C. The cells were recovered 
and total RNA was extracted using the ChargeSwitch® 
Total RNA Cell Kits (Invitrogen) according to the pro-
tocol with on-column DNase digestion. RNA was eluted 
with Elution Buffer to a sterile microcentrifuge tube. 
cDNA synthesis was performed using 3  μg of total 
RNA with PrimeScript Reverse Transcriptase (TaKaRa, 
Dalian, China) in a 20  μl reaction volume according to 
the manufacturer’s instructions. Real-time quantitative 
PCR was performed on Step One System (ABI, USA) to 
determine mRNA level of ptsG. The PCR reaction system 
(20 μl) and conditions were according to the method as 
described [25]. The Ct values were used to quantify the 
relative expression levels of ptsG by the 2−ΔCt method 
with the constitutively expressed gapA, encoding glycer-
aldehyde-3-phosphate dehydrogenase A, as the internal 
control [26].

Preparation of cell extract and activity assay 
of phosphoenolpyruvate:glucose phosphotransferase 
(PTase), pyruvate decarboxylase (PDC) and alcohol 
dehydrogenase II (ADH II)
Cells grown in LB medium at 34 °C overnight were col-
lected and washed 3 times with sodium chloride solution 
(0.85%, w/v). The cells were then resuspended in modi-
fied M9 medium containing 5 g/l glucose and incubated 
for 2 h at 34 or 42 °C. The cells were recovered for enzyme 
activity assay. The cell lysates were prepared according to 
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the method as described previously with some modifi-
cation [27]. Briefly, about 0.2 g of wet cells were washed 
with ice-cold sodium chloride solution (0.85%, w/v) and 
resuspended in 2 ml of 50 mM morpholinepropane-sul-
fonic acid (MOPS; pH 7.5) buffer containing 10% (v/v) 
glycerol, 5  mM EDTA, 1  mM benzamidine and 2  mM 
dithiothreitol. After passage through a French Press Cell 
(Aminco, USA) and incubation with RNase and DNase 
for 1 h at room temperature, the solution was centrifuged 
at 27,000×g and 4  °C for 30  min, and the supernatant 
was desalted by passing through a PD-10 column (Amer-
sham, GE-Beijing, China).

PTase activity was measured in 50  mM MOPS buffer 
(pH 7.5) containing 5 mM MgCl2, 10 mM NADH (San-
gon Biotech, Shanghai, China) and 100  μg cell extract 
at 25  °C. The reaction was started by addition of 5 mM 
glucose, 5  mM phosphoenolpyruvate and 10  U lac-
tate dehydrogenase (Sangon Biotech, Shanghai, China). 
The concentration of NADH was measured at 340  nm. 
One unit of PTase activity was defined as the quan-
tity of enzyme required to transform 1  μmol of NADH 
to NAD+ per minute. PDC and ADH II activities were 
measured according to the procedure as described pre-
viously [13, 28]. Protein concentrations were determined 
by the method of Bradford with crystalline bovine serum 
albumin fraction V (Sangon Biotech, Shanghai, China) as 
described [13, 24].

Analytical methods
Sampling was conducted periodically. Glucose, xylose, 
arabinose, galactose and ethanol were measured by 
HPLC according to the method described previously [23] 
using a HPLC system equipped with Dionex p680 pump 
(Dionex Corporation, Sunnyvale, CA), a Shodex SH-1011 
column (Shodex SH-1011 H610009; Showa Denko K.K., 
Kawasaki, Japan), and a refractive index detector. The 
samples were run at 60 °C and eluted at 1.0 ml/min with 
0.01 M sulfuric acid. Cell density was monitored turbidi-
metrically at 600  nm (1  cm light path) using a UNICO 
UV2000 spectrophotometer. Dry cells weight was calcu-
lated using a standard curve (1 OD600 = 0.38 g/l DCW) 
[24].

Results and discussion
Construction of regulated glucose‑utilizing strain E. coli 
B0013‑2021H
To enable controllable glucose utilization by E. coli, glu-
cose-nonutilizing strain E. coli B0013-2020H was suc-
cessfully constructed by sequentially disrupting ptsG, 
manZ and glk, which were previously identified to be 
essential for glucose uptake and metabolism in E. coli 
[16, 17, 21, 22] (Fig.  1). B0013-2020H failed to grow 
on glucose (Fig.  1c). Growth characteristics of E. coli 

B0013-2020H on glucose were also examined by cultiva-
tion in M9 medium containing xylose or glucose in shak-
ing flasks at 37 °C and 200 rpm. After cultivation for 12 h, 
B0013-2020H proliferated to cell density of 3.78 on xylose 
but failed to grow on glucose (data not shown), indicating 
that its glucose metabolizing pathway was blocked.

To restore and artificially regulate glucose utilization 
of B0013-2020H, a new strain, designated B0013-2021H, 
was developed in which ptsG was expressed under the 
control of λ pR and pL promoters, a temperature-induci-
ble switch [24] (Fig. 1b). Growth characteristics of B0013-
2021H, B0013-2020H, and the parental strains B0013 and 
B0013-1031H were compared by cultivating on M9 plates 
supplemented with glucose at 34 or 42  °C. Both B0013-
2021H and B0013-2020H could not grow on glucose at 
34  °C, while B0013-2021H, B0013 and B0013-1031H 
showed robust growth on glucose at 42 °C except B0013-
2020H (Fig. 1c). Subsequently, real-time quantitative PCR 
was employed to determine the mRNA levels of ptsG at 
34 or 42  °C. The transcription of ptsG in B0013-2021H 
was highly induced at 42  °C with more than sixfolds of 
that in B0013-1031H (Fig.  1Da). The PTase activities in 
B0013-2021H and B0013-1031H incubated at 34 or 42 °C 
were further determined. B0013-2021H exhibited trace 
amounts of PTase activity at 34  °C and about threefolds 
of higher PTase activity at 42 °C in comparison to that of 
B0013-1031H (Fig. 1Db), illustrating that the expression 
of ptsG in B0013-2021H is fully controlled by λ pR–pL 
promoter.

Growth characteristics of B0013-2021H were further 
investigated by cultivation in M9 medium with 5  g/l of 
glucose at 34, 37 or 42 °C and 200 rpm (Fig. 1e). Cell den-
sity for B0013-2021H remained unchanged after incuba-
tion on glucose for 12 h at 34 °C because ptsG expression 
was not switched on (Fig.  1e). At 37  °C, B0013-2021H 
partially restored its growth on glucose with an increase 
in cell density to OD600 of 2.34, slightly slower growth 
than that of B0013-1031H (Fig.  1e). When incubation 
temperature was elevated to 42  °C, B0013-2021H grew 
more vigorously than B0013-1031H due to the full opera-
tion of temperature switch of ptsG at 42 °C (Fig. 1e). The 
results further confirmed that the expression of ptsG in 
B0013-2021H was strictly under the control of the tem-
perature-inducible tandem λ pL and pR promoters and 
elevated incubation temperature switched on the tran-
scription of ptsG in B0013-2021H.

Preferential use of glucose is a major factor limiting 
economical lignocellulose-based ethanol production. E. 
coli B0013-2021H with controllable metabolism of glu-
cose provides a simple solution to achieving efficient 
metabolism of all sugars from lignocellulosic biomass: 
under aerobic conditions, a relatively low tempera-
ture (34  °C) was adopted so that glucose utilization was 
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switched off and the strain utilized all sugars except 
glucose to grow and the inhibition effect of glucose on 
other sugars’ utilization was relieved. When the process 
was shifted to anaerobic conditions, the temperature 
switch was activated at elevated temperature (42  °C) 
and thus the expression of ptsG, leading to glucose 
uptake and catabolism, and efficient production of etha-
nol by fermenting glucose and other sugars in biomass 
hydrolysates.

B0013‑2021HPA utilized xylose for growth and glucose 
for ethanol fermentation in shaking flasks
The ethanol synthesis pathway encoded by pEtac-PA 
was finally introduced into B0013-2021H, resulting in 
ethanologenic strain B0013-2021HPA (Fig.  1b). As a 
control, B0013-1031HPA was constructed by deleting 
frdA in B0013-1030H and the introduction of pEtac-PA 
(Fig. 1b). At 34 and 42 °C, the activities of PDC in B0013-
2021HPA were determined to be 6.8 ± 1.22 U/mg protein 
and 6.7 ± 1.35 U/mg protein of PDC, respectively, while 
the activities of ADH II were 3.1 ± 0.65 U/mg protein and 
3.2 ± 0.57 U/mg protein, respectively.

To evaluate fermentation performance of B0013-
2021HPA, ethanol fermentation was conducted in shak-
ing flasks using a “two-phase-two-temperature” strategy, 
as described in “Methods”, in M9 medium supplemented 
with 5 g/l of xylose and 50 g/l of glucose. B0013-2021HPA 
utilized all of the xylose for growth under aerobic con-
dition at 34  °C whereas glucose concentration remained 
approximately constant at 50 g/l (Fig. 2). B0013-2021HPA 
grew to a cell density of 4.9 (OD600) at 12 h and 34 °C and 
the cultures were then incubated at 42  °C for ethanol 
fermentation. After 18  h of fermentation, 50  g/l of glu-
cose was exhausted and converted to 24.3 g/l of ethanol 
(Fig. 2) with the yield of 48.4 g/100 g glucose. Under the 
same conditions, E. coli B0013-1031HPA mainly con-
sumed glucose for cell growth during the aerobic phase 
and converted residue glucose and xylose to ethanol dur-
ing fermentation phase, with the similar yield as that of 
B0013-2021HPA. Consumption rate of glucose of B0013-
1031HPA [2.51  g/(l·h)] was less than that of B0013-
2021HPA [3.08  g/(l·h)] because ptsG, under the control 
of λ pR and pL promoters, in B0013-2021HPA was acti-
vated and highly expressed.

Fig. 1  Construction and characterization of regulated glucose-utilizing E. coli B0013-2021H. A Modified metabolic pathways of E. coli B0013 and 
its derivatives; B development flowchart of E. coli B0013-2021H and relatives; C growth characterization of E. coli B0013-2021H on glucose at 
different temperatures. The cells were cultivated on M9 plates with 5 g/l of glucose at 34 or 42 °C. a: E. coli B0013; b: B0013-1031H; c: B0013-2020H; 
d: B0013-2021H; D (a) ptsG mRNA fold change quantified by real-time quantitative PCR; (b) Expression level of phosphoenolpyruvate:glucose 
phosphotransferase in E. coli B0013-2021H at different incubation temperatures; E growth characterization of E. coli B0013-2021H and B0013-1031H. 
The cells grew in M9 medium supplemented with 5 g/l of glucose at 34, 37 or 42 °C and 200 rpm for 12 h. The cell densities were determined at 
600 nm
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E. coli B0013‑2021HPA converted mixed sugars to ethanol 
in bioreactor
Ethanol fermentation performance of B0013-2021HPA 
on mixed sugars, from corncob hydrolysate for example, 
was further verified in a 7-l bioreactor with an initial 3 l 
working volume containing 300  ml of corncob hydro-
lysate for cell growth and additional 300  ml of corncob 
hydrolysate was supplemented for ethanol production. 
The results are summarized in Fig.  3 and Table  2. Sig-
nificantly, B0013-2021HPA utilized xylose, galactose and 
arabinose for growth, while glucose was not consumed at 
all during the aerobic growth at 34  °C and utilization of 
glucose was initiated after temperature switch to 42  °C. 
After 12  h of fermentation at 42  °C, the total amount 
of 260.9  g mixed sugars, including residual glucose and 
xylose as well as mixed sugars from added corncob 
hydrolysate were converted to 127.7  g ethanol with the 
productivity of 4.06  g/(l·h) and sugar consumption rate 
of 8.28  g/(l·h) (Fig.  3a, Table  2). All these performances 
are significantly improved in comparison to those of 
B0013-1031HPA, whose ethanol productivity was 2.85 g/
(l·h) and sugar consumption rate was 5.81 g/(l·h) (Fig. 3b, 
Table 2).

Lignocellulosic hydrolysate, such as corncob hydro-
lysate, comprises a mixture of sugars, mainly glucose 
and xylose [29, 30]. In E. coli and many other microor-
ganisms, glucose is preferentially utilized and other sug-
ars would be used only when glucose is nearly depleted 
due to CCR [8, 15]. To realize simultaneous utilization 
of pentose and hexose, previous work focused on devel-
opment of engineered strains, including construction 

of catabolite repression mutant by mutation of ptsG to 
achieve simultaneous fermentation of mixed glucose, 
xylose and arabinose to ethanol with the yield of 0.45 g/g, 
the productivity of 0.75  g/(l·h) and sugar consumption 
rate of 1.31 g/(l·h) in 70 h [15]. Also, simultaneous con-
sumption of mixed sugars was achieved by strain adapta-
tion through substrate-selective inoculum preparation or 
late addition of saccharifying enzyme to delay releasing 
of glucose, resulting in maximum ethanol productivity of 
0.72 g/(l·h) in 40 h and 0.78 g/(l·h) in 48 h, respectively, 
from corn stover hydrolysate by E. coli FBR5 [31].

Aerobic condition is considered to be more beneficial 
to utilization of xylose in E. coli [32, 33]. In this work, 
the metabolic inefficiency for ethanol production from 
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xylose; solid circle: glucose; triangle: ethanol; circle: cell mass
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Fig. 3  Ethanol fermentation of E. coli B0013-2021HPA from 
corncob hydrolysate in a 7-l bioreactor. Pre-cultured cells of 
B0013-2021HPA (a) were inoculated into 3 l of modified M9 
medium supplemented with 300 ml of corncob hydrolysate. 
Using a “two-phase-two-temperature” strategy as mentioned in 
“Methods”, cell growth phase was controlled at 34 °C under aerobic 
conditions and ethanol fermentation was conducted at 42 °C under 
oxygen-limited conditions. As for B0013-1031HPA (b), temperature 
was set at 37 °C, its optimal temperature, for the two phases. Solid 
circle: glucose; solid triangle: galactose; solid diamond: arabinose; 
solid square: xylose; triangle: ethanol; circle: cell mass; dotted arrow: 
temperature switching point (from 34 to 42 °C), 45 min ahead of 
transition to oxygen-limited condition; arrow: time point of addition 
of 300 ml of the corncob hydrolysate
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mixed sugars in lignocellulosic hydrolysates was alterna-
tively solved by switching off glucose utilization to allow 
growth of cells on xylose and other sugars but glucose 
during the aerobic cell growth phase and by switching on 
glucose utilization to enable efficient conversion of glu-
cose and other sugars to ethanol.

Notably, sugars consumption patterns of our developed 
strain were different from other reports [15, 31, 34–36]. 
This may probably due to the differences in genetic back-
ground among E. coli strains.

Conclusions
An alternative bioprocess for ethanol production from 
biomass was successfully developed using a strain geneti-
cally engineered to turn on or off glucose utilization in 
E. coli by a temperature switch, thus relieving the inhibi-
tion effect of glucose on utilization of other sugars. The 
glucose-utilization switched-off cells can preferentially 
utilize xylose and other sugars present in lignocellulosic 
hydrolysates for cell growth, while glucose-utilization 
switched-on cells can efficiently convert glucose and 
other sugars to ethanol during anaerobic stage for etha-
nol fermentation. Significantly, utilization efficiency of 
sugars in lignocellulosic hydrolysates was improved and 
so was the economic feasibility of ethanol production 
from biomass.
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