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Abstract

Microalgae are simple chlorophyll containing organisms, they have high photosynthetic efficiency and can synthesize
and accumulate large quantities of carbohydrate biomass. They can be cultivated in fresh water, seawater and waste-
water. They have been used as feedstock for producing biodiesel, bioethanol and biogas. The production of these
biofuels can be integrated with CO, mitigation, wastewater treatment, and the production of high-value chemicals.
Biohydrogen from microalgae is renewable. Microalgae have several advantages compared to terrestrial plants, such
as higher growth rate with superior CO, fixation capacity; they do not need arable land to grow; they do not contain
lignin. In this review, the biology of microalgae and the chemical composition of microalgae were briefly introduced,
the advantages and disadvantages of hydrogen production from microalgae were discussed, and the pretreatment
of microalgal biomass and the fermentative hydrogen production from microalgal biomass pretreated by different
methods (including physical, chemical, biological and combined methods) were summarized and evaluated. For the
production of biohydrogen from microalgae, the economic feasibility remains the most important aspect to consider.
Several technological and economic issues must be addressed to achieve success on a commercial scale.
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Background

The fossil fuels are depleting and resulting in serious
environment issues. Hydrogen gas is regarded as a poten-
tial candidate for a future energy economy. Hydrogen is
the only carbon-free fuel, with water as its final combus-
tion product. Therefore the application of hydrogen will
greatly contribute to the reduction of the energy-related
environmental issues, such as greenhouse emission or
acid rain [1, 2].

Biohydrogen is defined as hydrogen produced biologi-
cally, most commonly by algae, bacteria and archaea from
both cultivation and from waste organic materials [3].
Most biologically produced hydrogen in the biosphere
is evolved in microbial fermentation processes. These
organisms decompose organic matter to carbon dioxide

and hydrogen.
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Microalgal biomass, being rich in carbohydrates, has
great potential as feedstock for the production of various
biofuels such as biodiesel, bioethanol, biohydrogen and
biogas (Fig. 1), in an economically effective and environ-
mentally friendly way [4]. Microalgae are a high-potential
source of biomass for the production of food, industrial
materials, pharmaceuticals and energy [5].

Microalgae like cyanobacteria and green algae can pro-
duce biohydrogen after derivation of their photosynthetic
metabolism. Besides, microalgae can also be used as
feedstock for biohydrogen production by microbial dark
fermentation.

Biohydrogen from microalgae is renewable. The pro-
duction of biohydrogen by microalgae through photo-
fermentation is of interest, because it generates hydrogen
gas from the most plentiful resources, light and water.
However, the adaptation of the algae to an anaero-
bic atmosphere is prerequisite. Unfortunately, hydro-
gen production by this process is quite ineffective since
the simultaneously produced oxygen would inhibit the
hydrogenase enzyme. Therefore, accumulation of oxygen
will stop the hydrogen production process.
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Fig. 1 Potential pathways from microalgae to biofuels

The production of biohydrogen from microalgae
through dark fermentation has received increasing atten-
tion in recent years [6]. However, biohydrogen potentials
are usually low and a pretreatment step is often required
to convert polymeric carbohydrates into monomeric sug-
ars, to increase the microbial accessibility and further the
biohydrogen production. Thus, physical, chemical and
biological pretreatments are usually employed in order to
facilitate carbohydrates de-polymerization and enhance
biohydrogen production from microalgae.

The present mini-review will briefly introduce the bio-
hydrogen production from microalgal biomass through
dark fermentation, focusing on the pretreatments of
microalgae to enhance hydrogen production.

Biology of microalgae

Microalgae in this review refer to all microscopic oxy-
genic phototrophs. Microalgae are primitive plant, which
are one of the oldest life forms on earth. They are lack of
roots, stems and leaves, have chlorophyll a as their pri-
mary photosynthetic pigment. Microalgae are commonly
photosynthetic organisms that primarily use water, car-
bon dioxide, and sunlight to produce biomass and oxygen
(Fig. 2).

Microalgae are a diverse group of prokaryotic and
eukaryotic photosynthetic microorganisms, which are
normally found in marine and freshwater habitats. They
can be grouped into prokaryotic microalgae (Cyanobac-
teria), eukaryotic microalgae (green algae Chlorophyta),
red algae (Rhodophyta), and diatoms (Bacillariophyta),
which are capable of growing rapidly due to their low
nutrient requirement and simple structure. Besides to
natural environments, microalgae can be cultivated in
freshwater, seawater, and wastewater within open ponds
(raceway) and closed photo-bioreactors.

Microalgae structures are primarily for energy conver-
sion, and their simple development makes them to adapt
to prevailing environmental conditions.
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Fig. 2 Roadmap from microalgae to hydrogen

Microalgae are autotrophic, heterotrophic and mixo-
trophic. The autotrophic algae require only inorganic car-
bon source such as CO,, salts and a light energy source
for growth; while the heterotrophic ones are non-pho-
tosynthetic, they require an external source of organic
compounds as an energy source; the mixotrophic algae
are capable of performing photosynthesis and acquiring
exogenous organic nutrients. For autotrophic algae, pho-
tosynthesis is a key component of their survival, whereby
they convert solar light and CO, into adenosine triphos-
phate (ATP) and O,, which is then used in respiration to
produce energy to support growth.

Microalgal chemical composition

Components of microalgae vary according to their spe-
cies and cultivation environment. Microalgae contain
approximately 50% carbon by dry weight, which is typi-
cally derived from carbon dioxide. Production of 100 g of
microalgal biomass can fix about 183 g of carbon dioxide.

In terms of chemical composition, microalgal biomass
is mainly composed of proteins, carbohydrates and lipids.
In general, proteins account for 40-60% of dry biomass,
followed by carbohydrate (20-30%) and lipids (10-20%).
Table 1 presents the general compositions of different
microalgae [7-9].

Table 1 shows that the distribution of biochemical frac-
tions of a microalgae cell is as follows: proteins 28—71%,
carbohydrates 10-57%, lipids 4—22%. It is worth noting
that the figures presented in Table 1 are estimates, since
the proportion of individual cell constituents largely
depends on environmental parameters. The chemical
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Table 1 General composition of different microalgae (%
of dry matter)

Microalgae Protein Carbohydrate Lipid
Anabaena cylindrica 43-56 25-30 4-7
Chlamydomonas reinhardtii 48 17 21
Chlorella vulgaris 51-58 12-17 14-22
Dunaliella salina 57 32 6
Porphyridium cruentum 28-39 40-57 9-14
Scenedesmus obliquus 50-56 10-17 12-14
Spirulina maxima 60-71 13-16 6-7
Synechococcus sp. 63 15 il

composition of microalgae is high variable, largely
depending on species, environmental conditions and cul-
tivation methods. For instance, nutritional limitation and
deprivation can induce and maximize lipid and carbo-
hydrates synthesis by changing the metabolic strategies
of microalgae. Microalgal cells tend to synthesize lipid
instead of the starch at nitrogen-limited and high light
conditions. In addition to these three major components,
microalgal cells also contain small amount of nucleic
acids (1-5%), and other valuable components (foe exam-
ple, pigments, anti-oxidants, fatty acids and vitamins)
[10-14].

Advantages and disadvantages of hydrogen
production from microalgae

The components of microalgae are valuable for a wide
range of applications. Carbohydrates in microalgae can
exist in the form of glucose and some polysaccharides
like starch, agar, carrageenan, etc., which are considered
to be an appropriate feedstock for generation of various
fermentation products. Algal lipids are composed of glyc-
erol, sugars or bases esterified to saturated or unsaturated
fatty acids, which can be used for biodiesel production.
The related long-chain fatty acids, pigments, and pro-
teins have their own nutraceutical and pharmaceutical
applications.

Comparing with the cellulose-based biomass and waste
activated sludge produced from wastewater treatment
plant, microalgae are a relatively new energy source.
They have many advantages, for example, they have
high growth rate with the fixation of CO,, cultivation
of microalgae can be beneficial to the environment by
combining with wastewater treatment, they can be eas-
ily used as substrate with high carbohydrate content and
simple structure and so on (Table 2) [7, 9, 10, 14].

One of the major disadvantages of microalgae for bio-
hydrogen production is the low biomass concentration
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in the microalgal culture due to the limit of light pen-
etration, which in combination with the small size of
algal cells makes the harvest of algal biomass relatively
costly. The large water content of harvested algal bio-
mass also means its drying would be an energy-con-
suming process. The higher capital costs and the rather
intensive care required by a microalgal farming facil-
ity compared to a conventional agricultural farm is
another factor that impedes the commercial implemen-
tation of the biofuels from microalgae strategy.

Nevertheless, these problems are expected to be over-
come or minimized by technology development. Given
the vast potential of microalgae as the most efficient
primary producers of biomass, there is little doubt that
they will eventually become one of the most important
alternative energy sources.

Pretreatment of microalgal biomass

Since the hydrolytic enzymatic activity of hydrogen-
producing bacteria is usually low, in order to enhance
the biohydrogen production efficiency of fermentation
process, the pretreatment step is often required for the
hydrolysis of algal biomass to release the organic sub-
stances from the algal cells and make them readily bio-
degraded. A variety of pretreatment technologies that
are researched and developed for treating other waste
materials (e.g., animal waste and municipal sewage
sludge) can be used to pretreat microalgal biomass for
biohydrogen production.

Pretreatment methods can be divided into four cat-
egories: physical (mechanical, heat and ultrasonic
treatment), chemical (acid, base and ozone), biological
(enzymatic and microbiological treatment) and a com-
bination of different treatments.

The most commonly used for pretreatment of micro-
algae to enhance carbohydrates hydrolysis include mill-
ing, ultrasonic, microwave, steam explosion, chemical
oxidation and enzymatic hydrolysis.

In fact, the objective of all these pretreatment meth-
ods is the disruption of the cell wall to release the
organic substances from the cells. Therefore they are
applicable to biohydrogen production.

Hydrogen production from microalgae

Microalgae have been used as feedstock for produc-
ing biodiesel, bioethanol and biogas. Various microbial
species have been used as feedstock for biohydrogen
production, among which Chlorella sp., Scenedesmus
sp. and Saccharina sp. have been extensively studied.
To enhance the hydrogen production efficiency, differ-
ent pretreatment methods were explored.
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Table 2 Advantages and disadvantages of microalgae as feedstock for biohydrogen production

Advantages

Disadvantages

1. High growth rate

Microalgae can proliferate rapidly and are capable of all year round
production, and be obtained in large amount easily, which makes it
possible to satisfy the massive demand on biofuels using limited land
resources without causing potential biomass deficit. Their exponential
growth rates can double their biomass in periods as short as 3.5 h

2. Superior CO, fixation capacity

Microalgae are quite efficient in utilizing inorganic carbon sources to
synthesize cell biomass, and their tolerance to high CO, content in gas
streams allows high-efficiency CO, mitigation (1 kg of dry algal biomass
utilize about 1.83 kg of CO,)

3. Benefit to the environment

The cultivation of microalgae does not require herbicides or pesticides
application. Nitrous oxide release could be minimized when they are
used for biofuel production

4. Strong adaptation to environment

Microalgae have strong adaptation to various environments without
competing with fertile soils for agriculture

5. Growth in aqueous media, less water required

Microalgae do not need arable land to grow, they grow in aqueous
media, therefore may not incur land-use change, minimizing the associ-
ated environmental impacts, and their cultivation consumes less water
than terrestrial crops, thus reducing the load on freshwater sources

6. High carbohydrate content

Microalgae have high carbohydrate content, which is helpful in enhanc-
ing the hydrogen production efficiency

7. Simple structure

Microalgae are lack of hemicellulose and lignin, thus, the required pre-
treatments can be milder

8. Easy cultivation

Microalgae are unicellular or simple-multicellular microorganisms, which
are adaptive to various environment conditions, and can be cultivated
in fresh water, seawater and wastewater. The biochemical composition
of the algal biomass can be modulated by varying growth conditions.
The nutrients for microalgae cultivation (especially nitrogen and phos-
phorus) can be obtained from wastewater. Therefore, apart from provid-
ing growth medium, there is dual potential for treatment of wastewater

1. Low biomass concentration

The low biomass concentration in the microalgal culture, in combination

with the small size of algal cells, makes the harvest of algal biomasses
relatively costly

2. Large water content
The large water content of harvested algal biomass suggests that its drying

process would be energy-consuming

3. Higher capital cost
The higher capital costs and the rather intensive care required by

microalgal cultivation facility compared to a conventional agricultural
farm would impede the commercial application of the biofuels from
microalgae

Hydrogen production from un-pretreated microalgae
Table 3 summarizes the hydrogen production from
microalgae without pretreatment. It can be seen that
Chlorella vulgaris is the most widely used as substrate for
hydrogen production without treatment. Hydrogen yield
obtained ranges from 0.37 to 19 mL H,/g VS, and highest
hydrogen yield was achieved from C. vulgaris [15], fol-
lowed by the lipid extracted Scenedesmus sp. [16].

Hydrogen production from physically and chemically
pretreated microalgae

The physical and chemical pretreatments, including
mechanical, heat, ultrasonic, acid, base and ozonation,
have been widely applied to disrupt and disintegrate
the cell wall of microalgal biomass for enhancing the
subsequent biological conversion process. For example,

Ortigueira et al. [24] investigated fermentative hydro-
gen production using dry ground Scenedesmus obliquus
biomass as feedstock. Usually, the use of microalgae
biomass as a fermentable feedstock is determined by
the recovery of the intracellular sugars and those that
constitute the cell walls. Thermal pretreatment nor-
mally involves some additional pretreatment. For
instance, when increasing temperature by autoclaving
or microwaving, side pretreatments such as pressure
build-up or electromagnetic radiation, respectively, will
also have an effect on pretreated biomass. Chemical
pretreatment of different types of wastes was shown to
improve hydrogen production.

Table 4 summarizes the hydrogen production from
microalgae pretreated by physical and chemical
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methods. It can be seen that hydrogen yield obtained
from the physically and chemically treated microalgae
were obviously higher than microalgae without treat-
ment, indicating that both physical and chemical treat-
ment can help to disrupt the microalgal cell. Relatively
higher hydrogen yield was obtained from the heat
treated microalgae (94.3-338 mL H,/g VS) and high-
est hydrogen yield was obtained from the heat treated
Chlorella sorokiniana [25].

Hydrogen production from biologically pretreated
microalgae
The biological approaches use microbes and enzymes to
disrupt biomass and release intracellular materials, which
enhances the biohydrogen production rate. Depending
on cell wall composition, enzymes election is crucial.
Additionally, pH, temperatures, and the microalgae/
enzyme ratio are important parameters to control dur-
ing enzymatic treatment. The electrostatic bind enzyme-
microalgae are affected by acid or alkali conditions.
Under inappropriate pH conditions, enzymes can even
be inactivated by denaturing. Similarly, higher tempera-
ture results in increasing interactions enzyme-microalgae
until a certain level at which denaturalization may hap-
pen. Finally, the enzyme/microalgae ratio influences the
enzyme activity efficiency. High loading of microalgae
may result in high viscosity due to the release of insoluble
matter which in turn can hinder enzymatic activity.
Composition of microalgae cell walls include cellulose,
mucopolysaccharide and peptidoglycan, etc., therefore
research on microalgal biomass focus on the application
of macerozyme. Cellulases were proven to be suitable for
disruption of C. sorokiniana cell wall, and lysozyme was
found to be able to dissolve Cyanobacteria cell wall. Cell
wall lysis was supported by microscopic observation.
Table 5 summarizes the hydrogen production from
microalgae pretreated by biological method. It can be
seen that hydrogen yield varies greatly in the range of
11-135 mL H,/g VS. Higher hydrogen yield was obtained
by enzyme treated microalgae than microbial consor-
tium treated microalgae, and a combination of different
enzymes can significant enhance the hydrogen yield [15].

Hydrogen production from microalgae pretreated

by combined methods

To disintegrate biomass more efficiently and to take

advantage of various pretreatment methods, the combi-

nation of different pretreatment methods has been used.

Most combined pretreatment methods comprise a physi-

cal treatment method and a chemical treatment method.
Combined heat and acid pretreatment is the most com-

monly used method. Besides acid pretreatment, heat pre-

treatment has also been combined with other methods

Page 9 of 16

such as base pretreatment, enzymatic treatment and
oxidizing agent addition. Other combination of pretreat-
ment methods has been also applied, such as combin-
ing ozone with ultrasonication and enzyme hydrolysis,
respectively; combining microwave with base and acid
pretreatment, respectively; combining ionizing radiation
and base pretreatment. All of them achieved enhanced
hydrogen production from pretreated biomass wastes. In
some cases, combinations of three or more pretreatment
methods were also used, such as acid-heat-enzyme pre-
treatment [28, 29], acid-microwave-enzyme pretreatment
[30], base-heat-enzyme pretreatment [31] and so on.

Table 6 summarized the hydrogen production from
microalgae pretreated by the combined methods. It can
be seen that the hydrogen yield varies in the range of
33.56-958 mL H,/g VS. The combination of acid and heat
showed the highest potential in enhancing the hydrogen
production from microalgae, and Chlorella sp. are more
preferable in achieving higher hydrogen yield.

Concluding remarks and perspectives
Microalgae are capable of producing high levels of car-
bohydrates such as starch or cellulose as reserve materi-
als, which are ideal feedstocks for hydrogen production.
Microalgae can potentially be employed for the produc-
tion of biohydrogen in an economically affective and
environmentally sustainable manner. The production
of biohydrogen from microalgae can be integrated with
flue gas (CO,) mitigation, wastewater treatment, and the
production of high-value chemicals. There is increasing
interest in using microalgae as the renewable feedstock
for the production of biohydrogen. In comparison with
terrestrial biofuel feedstocks, microalgae can convert
solar energy into fuels with higher photosynthetic effi-
ciency, can synthesize and accumulate large quantities of
carbohydrate biomass, and can thrive in seawater system.
Studies have shown that fermentative hydrogen pro-
duction from microalgae shows great potential in sus-
tainable energy generation. Hydrogen production can be
modified through disrupting the microalgal cells by some
pretreatment methods, and a proper combination of dif-
ferent treatment methods can achieve a synergistic effect
and thus significantly enhance the hydrogen yield.
However, there still remain some obstacles hindering
the wide application of hydrogen production from micro-
algae, and several technological and economic issues
must be addressed to achieve success on a commercial
scale. Studies have shown great variance in the hydro-
gen yield, some of the hydrogen yields are high, like 958
and 760 mL H,/g VS obtained from acid-heat treated C.
sorokiniana while some are far from industrial applica-
tion. Thus, further studies are needed to enhance the cost
effectiveness of the biohydrogen from microalgae, like
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the improvement in microalgal cultivation and down-
stream processing (e.g., harvesting, concentrating and
drying), optimization of nutritional structure of microal-
gae for hydrogen production through adding protein-rich
or mineral nutrient-rich wastes, operational conditions
optimization including inoculum, initial pH, temperature
as well as reactor structure, etc.
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