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Abstract 

Background:  Cocoa butter (CB) extracted from cocoa beans (Theobroma cacao) is the main raw material for choco-
late production, but CB supply is insufficient due to the increased chocolate demand and limited CB production. 
CB is mainly composed of three different kinds of triacylglycerols (TAGs), 1,3-dipalmitoyl-2-oleoyl-glycerol (POP, 
C16:0-C18:1-C16:0), 1-palmitoyl-3-stearoyl-2-oleoyl-glycerol (POS, C16:0-C18:1-C18:0) and 1,3-distearoyl-2-oleoyl-
glycerol (SOS, C18:0-C18:1-C18:0). In general, Saccharomyces cerevisiae produces TAGs as storage lipids, which consist 
of C16 and C18 fatty acids. However, cocoa butter-like lipids (CBL, which are composed of POP, POS and SOS) are not 
among the major TAG forms in yeast. TAG biosynthesis is mainly catalyzed by three enzymes: glycerol-3-phosphate 
acyltransferase (GPAT), lysophospholipid acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT), and it is 
essential to modulate the yeast TAG biosynthetic pathway for higher CBL production.

Results:  We cloned seven GPAT genes and three LPAT genes from cocoa cDNA, in order to screen for CBL biosyn-
thetic gene candidates. By expressing these cloned cocoa genes and two synthesized cocoa DGAT genes in S. cerevi-
siae, we successfully increased total fatty acid production, TAG production and CBL production in some of the strains. 
In the best producer, the potential CBL content was eightfold higher than the control strain, suggesting the cocoa 
genes expressed in this strain were functional and might be responsible for CBL biosynthesis. Moreover, the potential 
CBL content increased 134-fold over the control Y29-TcD1 (IMX581 sct1Δ ale1Δ lro1Δ dga1Δ with TcDGAT1 expression) 
in strain Y29-441 (IMX581 sct1Δ ale1Δ lro1Δ dga1Δ with TcGPAT4, TcLPAT4 and TcDGAT1 expression) further suggesting 
cocoa GPAT and LPAT genes functioned in yeast.

Conclusions:  We demonstrated that cocoa TAG biosynthetic genes functioned in S. cerevisiae and identified cocoa 
genes that may be involved in CBL production. Moreover, we found that expression of some cocoa CBL biosynthetic 
genes improved potential CBL production in S. cerevisiae, showing that metabolic engineering of yeast for cocoa 
butter production can be realized by manipulating the key enzymes GPAT, LPAT and DGAT in the TAG biosynthetic 
pathway.
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engineering, Synthetic biology
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Background
Theobroma cacao, also known as cacao tree or cocoa 
tree, is an evergreen tree distributed in tropical areas [1, 
2]. Its seeds, cocoa beans, can be used for extraction of 

cocoa butter (CB), which is a raw material for chocolate 
production. With chocolate demand increasing, more CB 
is needed [2]. Considering that cocoa trees grow only in 
the tropics and that replacing tropical forest with cocoa 
trees is not acceptable, planting more cocoa trees is not 
the choice for increasing CB production [3]. Moreover, 
CB production is easily affected by climate change, pest 
harm and microbial disease [4, 5]. Therefore, CB supply is 
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limited and insufficient, and developing other stable and 
sustainable sources of CB supply is of interest [1].

Triacylglycerols (TAGs) of 1,3-dipalmitoyl-2-ole-
oyl-glycerol (POP, C16:0-C18:1-C16:0), 1-palmitoyl-
3-stearoyl-2-oleoyl-glycerol (POS, C16:0-C18:1-C18:0) 
and 1,3-distearoyl-2-oleoyl-glycerol (SOS, C18:0-C18:1-
C18:0) composed of C16 and C18 fatty acids are the three 
main components in CB [6]. Plant-derived CB-like lipids 
(CBL, mainly composed of POP, POS and SOS), such as 
illipe butter, shea butter and kokum butter, can be used 
as CB equivalents, but they are extracted from tropical 
plants as well and their lipid production is also limited 
[6]. In general, yeasts produce TAGs which consist of 
C16 and C18 fatty acids as storage lipids, making them 
good candidates for CBL production [7]. However, in 
the model yeast Saccharomyces cerevisiae, the naturally 
occurring CBL content is quite low [8]. Even though sev-
eral oleaginous yeasts contain high amounts of lipids and 
their lipids have been considered as potential CB sub-
stitutes before, the small amount of naturally occurring 
CBL hindered their application in chocolate production 
[8, 9].

TAG biosynthesis is mainly catalyzed by glycerol-
3-phosphate acyltransferase (GPAT), lysophospholipid 
acyltransferase (LPAT) and diacylglycerol acyltrans-
ferase (DGAT), which add acyl chains from acyl-coen-
zyme A (acyl-CoA) to the sn-1, sn-2 and sn-3 position 
of the backbone glycerol, respectively [10]. Therefore, 
besides sufficient C16 and C18 supply, modulation of 
yeast GPAT, LPAT and DGAT activity is essential for 
higher CBL production. There are two GPATs (Gpt2p 
and Sct1p), two LPATs (Slc1p and Ale1p), one DGAT 
(Dga1p) and one phospholipid:diacylglycerol acyltrans-
ferase, PDAT (Lro1p) that participate in TAG synthesis 
in S. cerevisiae (Fig.  1) [11–14]. The simultaneous dele-
tion of either the two GPAT genes or the two LPAT genes 
(SLC1 and ALE1) is lethal to S. cerevisiae, but double 
deletion of DGA1 and LRO1 genes does not affect yeast 
growth [11, 15]. Single deletion of one GPAT gene or one 
LPAT gene alters yeast fatty acid profiles. For example, 
Sct1p has a preference towards C16 fatty acids and sct1∆ 
cells showed a different distribution of fatty acids in the 
phospholipids with less C16 fatty acids [11, 15]. Thus, 
disruption of some genes of the yeast TAG biosynthetic 
pathway and introducing corresponding heterologous 
genes would likely alter yeast CBL production. Overex-
pression of several synthesized cocoa TAG biosynthetic 
genes increased the CBL content in S. cerevisiae, but CBL 
production of these S. cerevisiae strains was still low [9]. 
As there are thirteen GPAT and nine LPAT genes in the 
cocoa genome [16, 17], deep and global characteriza-
tion of cocoa GPAT and LPAT genes might reveal opti-
mal cocoa genes responsible for CB biosynthesis, and 

expressing them in S. cerevisiae could improve CBL pro-
duction [9].

Here, we cloned and expressed ten cocoa CB biosyn-
thetic genes individually in S. cerevisiae, and compared 
the lipid production of the engineered yeasts. We also 
expressed some of the cloned cocoa genes together with 
two previously characterized cocoa DGAT genes in 
order to increase yeast CBL production. Moreover, we 
improved CBL production by metabolic engineering of 
the TAG biosynthetic pathway of S. cerevisiae.

Methods
Strains, plasmids, and media
The cloning host in this study was Escherichia coli strain 
DH5α. The Lipomyces starkeyi strain DSM 70296 was 
purchased from the culture collection of the DSMZ 
(Braunschweig, Germany). The S. cerevisiae strain CEN.
PK 113-11C (MATa MAL2-8c SUC2 ura3-52 his3-Δ1), 
which was kindly provided by P. Kötter [18] and S. cerevi-
siae strain IMX581 (MATa ura3-52 can1∆::cas9-natNT2 
TRP1 LEU2 HIS3) [19] were used in this study. S. cerevi-
siae CEN.PK 113-11C was used to express cocoa genes 
and homologous recombination was used to construct S. 
cerevisiae CEN.PK 113-11C-derived strains (Additional 
file  1: Figure S1). The plasmids pMEL10 and pMEL13 
[19] were used for construction of strains derived from 
IMX581. All primers used to construct the yeast strains 
are listed in Additional file  1: Table S1, and all yeast 
strains constructed and used in this study are listed in 
Table 1. The strains YJ0 and SYJ0 were the same, but they 
were constructed and tested at different time as the con-
trol strain (Table 1).

Yeast strains were selected on synthetic complete (SC) 
dropout medium (Formedium Ltd) or YPD medium 
(10  g  l−1. Bacto yeast extract, 20  g  l−1 Bacto peptone 
and 20  g  l−1 glucose) (Merck Millipore or Difco) con-
taining 200 mg ml−1 G418. L. starkeyi was cultivated on 

Fig. 1  Three Enzymes, GPAT, LPAT and DGAT, determine the TAG 
structure in the TAG biosynthetic pathway. G3P glycerol-3-phosphate, 
LPA lysophosphatidic acid, PA phosphatidic acid, DAG diacylglycerol, 
TAG triacylglycerol, GPAT glycerol-3-phosphate acyltransferase, LPAT 
lysophosphatidic acid acyltransferase, DGAT acyl-CoA:diacylglycerol 
acyltransferase, PDAT phospholipid:diacylglycerol acyltransferase. 
SCT1 and GPT2 are GPAT genes, SLC1 and ALE1 are LPAT genes, DGA1 
is the DGAT gene, LRO1 is the PDAT gene. The genes in red were 
deleted in some of the yeast strains used in this study
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YPD medium. Minimal medium (7.5  g  l−1 (NH4)2SO4, 
14.4 g  l−1 KH2PO4, 0.5 g  l−1 MgSO4·7H2O, 20 g  l−1 glu-
cose, trace metal solution and vitamin solution), sup-
plemented with 100 mg l−1 histidine or 200 mg l−1 G418 
(Formedium), was used for 20 ml shake flask batch cul-
tivations [20, 21]. A nitrogen-limited medium (named 
NLM medium in the text) [22] was used for large-scale 
(1 l) shake flask batch cultivations.

Cocoa sample collection
The cocoa fruit samples were collected from the same 
tree in the Gothenburg Botanical Garden in a nearly 
ripe (May 26, 2015) and unripe (October 12, 2015) state, 
respectively (Additional file 1: Figure S2). One ripe cocoa 
fruit and several unripe cocoa fruits including small 
and big fruits were collected, respectively. After collec-
tion, the cocoa samples were cut into small pieces and 

immediately put into liquid nitrogen. The samples were 
kept at − 80 °C before use.

RNA preparation and cDNA synthesis
Cocoa fruits were grinded to fine powder in liquid N2 
using mortar and pestle, and the fine powder was divided 
into 100  mg aliquots in 1.5  ml Eppendorf tubes. Subse-
quently, 0.5 ml cold (4  °C) PureLink plant RNA reagent 
(Life Technologies) was added to each tube, mixed briefly 
by vortexing until the sample was thoroughly resus-
pended, and then the tubes were incubated for 5 min at 
room temperature. The resulting solution was cleared by 
centrifuging at 12,000g in a microcentrifuge for 2 min at 
room temperature. Next, the lysate was transferred to a 
QIAshredder spin column placed in a 2 ml collection tube 
and the instructions of the RNeasy plant mini kit (Qia-
gen) were followed to obtain total RNA. For extraction 

Table 1  List of strains used in this study

Strains Parent strains Expression plasmids Properties

YJ0 CEN.PK 113-11C [18] pBS01A Empty plasmid pBS01A

YJ-G03 CEN.PK 113-11C PYJ-G03 TcGPAT3 expression

YJ-G04 CEN.PK 113-11C PYJ-G04 TcGPAT4 expression

YJ-G05 CEN.PK 113-11C PYJ-G05 TcGPAT5 expression

YJ-G09 CEN.PK 113-11C PYJ-G09 TcGPAT9 expression

YJ-G10 CEN.PK 113-11C PYJ-G10 TcGPAT10 expression

YJ-G12-3 CEN.PK 113-11C PYJ-G12 TcGPAT12 expression

YJ-G12-4 CEN.PK 113-11C PYJ-G12-4 TcGPAT12-4 expression

YJ-L03 CEN.PK 113-11C PYJ-L03 TcLPAT3 expression

YJ-L04 CEN.PK 113-11C PYJ-L04 TcLPAT4 expression

YJ-L05 CEN.PK 113-11C PYJ-L05 TcLPAT5 expression

SYJ0 CEN.PK 113-11C pBS01A Empty plasmid pBS01A, same as YJ0, but SYJ0 was constructed and tested at a different 
time compared to YJ0

SYJ-331 CEN.PK 113-11C PYJ-331 TcGPAT3, TcLPAT3 and TcDGAT1 gene combination expression

SYJ-332 CEN.PK 113-11C PYJ-332 TcGPAT3, TcLPAT3 and TcDGAT2 gene combination expression

SYJ-341 CEN.PK 113-11C PYJ-341 TcGPAT3, TcLPAT4 and TcDGAT1 gene combination expression

SYJ-342 CEN.PK 113-11C PYJ-342 TcGPAT3, TcLPAT4 and TcDGAT2 gene combination expression

SYJ-431 CEN.PK 113-11C PYJ-431 TcGPAT4, TcLPAT3 and TcDGAT1 gene combination expression

SYJ-432 CEN.PK 113-11C PYJ-432 TcGPAT4, TcLPAT3 and TcDGAT2 gene combination expression

SYJ-441 CEN.PK 113-11C PYJ-441 TcGPAT4, TcLPAT4 and TcDGAT1 gene combination expression

SYJ-442 CEN.PK 113-11C PYJ-442 TcGPAT4, TcLPAT4 and TcDGAT2 gene combination expression

Y29 IMX581 [19] None IMX581 sct1Δale1Δ lro1Δ dga1Δ

Y29-pBS01A Y29 pBS01A Empty plasmid pBS01A

Y29-TcD1 Y29 PYJ-TcDGAT1 TcDGAT1 expression

Y29-TcD2 Y29 PYJ-TcDGAT2 TcDGAT2 expression

Y29-331 Y29 PYJ-331 TcGPAT3, TcLPAT3 and TcDGAT1 gene combination expression

Y29-441 Y29 PYJ-441 TcGPAT4, TcLPAT4 and TcDGAT1 gene combination expression

YJW01 CEN.PK 113-11C None CEN.PK 113-11C sct1Δ

YJW02 CEN.PK 113-11C None CEN.PK 113-11C sct1Δ::LsGPAT

YJW09 CEN.PK 113-11C None CEN.PK 113-11C sct1Δ::LsGPAT gpt2Δ
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of RNA from L. starkeyi, the yeast was cultivated in YPD 
medium for 48 h at 30 °C and 200 rpm, and the biomass 
was collected by centrifugation at 12,000 rpm for 1 min. 
The yeast RNA was extracted using the Qiagen RNeasy 
mini kit. The cocoa and yeast RNA was transcribed into 
cDNA by reverse transcriptase using the Qiagen Quanti-
Tect Reverse Transcription Kit.

Phylogenetic analysis of cocoa GPAT, LPAT and DGAT genes
The GPAT and LPAT gene sequences of T. cacao were 
downloaded from the Genbank database. Reference 
GPAT and LPAT genes sequences of Arabidopsis thaliana, 
Homo sapiens and S. cerevisiae were downloaded from the 
KEGG database [23]. Amino acid sequences of GPATs, 
LPATs or DGATs were aligned using the MAFFT online 
version [24], and the multiple alignment results were used 
to create phylogenetic trees using the MEGA 7.0.21 soft-
ware [25]. The Neighbor-Joining method with Poisson 
correction was used to create the tree and the bootstrap 
confidence values were based on 1000 replicates. Moreo-
ver, gaps in the alignment of GPAT and LPAT sequences 
were treated with the pairwise deletion option.

Plasmid and yeast strain construction
Cocoa genes encoding GPATs and LPATs were ampli-
fied using primers described in Additional file 1: Table S1 
from cocoa fruit cDNA using the PrimeSTAR HS DNA 
polymerase (Takara) according to the manufacturer’s 
instruction. The one GPAT and one LPAT sequences 
amplified from cocoa cDNA, which were different from 
the available annotated genes, were deposited at the Gen-
Bank database under the accession numbers MF352000-
MF352001. The primers used to amplify cocoa genes, 
promoters and terminators are listed in Additional 
file  1: Table S1 and some primers used for cocoa gene 

combination expression were the same as described 
before [9]. The LsGPAT gene was cloned from L. starkeyi 
cDNA using PrimeSTAR HS DNA polymerase (Takara) 
and the sequence was the same as described before [26].

The cocoa gene expression cassettes were verified by 
sequencing and illustrated in Fig.  2. Gibson assembly 
(NEB) was used to construct cocoa gene expression plas-
mids by ligation of the gene expression cassettes and the 
amplified linear backbone fragment of plasmid pBS01A, 
and were further verified by PCR and Sanger sequencing 
(Additional file  1: Table S2). The constructed plasmids 
were used to transform S. cerevisiae to construct the 
strains listed in Table 1.

Shake flask cultivation and lipid analysis
Shake flask fermentations were carried out in 20 ml mini-
mal medium and cultivated at 30 °C and 200 rpm for 24 h. 
[9, 27]. Each strain was cultivated in three replicates, and 
the fatty acid methyl ester (FAME) and lipid profiles were 
analyzed using a microwave-assisted method [28, 29]. 
In order to obtain sufficient lipids for TAG analyses, 5  l 
shake flasks containing 1  l NLM medium were used for 
yeast biomass collection [9, 27]. The lipids extracted from 
each strain were used to analyze yeast TAG profiles by 
UPLC using RI detection [30]. The TAG compositions of 
each strain were expressed in relative area percentages 
[27, 30]. CB standards and TAG composition sequences 
were completed by AAK, and TAG standards were pur-
chased from Larodan by AAK.

Results
Seven cocoa GPAT and three cocoa LPAT were cloned 
from cocoa cDNA
Usually, there are many GPAT and LPAT genes in one 
plant species, and 13 genes were annotated as GPAT 

Fig. 2  Schematic organization of cocoa gene expression cassettes in each of the expression plasmids
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genes and nine genes were annotated as LPAT genes 
(TcLPAT10 was removed as a result of standard genome 
annotation processing) in T. cacao [16, 17]. To charac-
terize potential GPAT and LPAT genes, we designed 
primers to clone all the possible GPAT and LPAT genes 
except two GPAT (TcGPAT1 and TcGPAT2) and two 
LPAT (TcLPAT1 and TcLPAT2) genes, which had been 
synthesized and characterized in yeast before [9]. A total 
of seven GPAT and three LPAT genes were cloned from 
cocoa fruit cDNA. Most of the gene sequences were con-
sistent with the genes described in the genomic data, 
except two genes, TcGPAT12-4 and TcLPAT3-2, which 
were different from the published corresponding gene 
sequences (Fig.  3). TcGPAT12-4 and TcLPAT3-2 were 
231 and 114  bp shorter than TcGPAT12 and TcLPAT3, 
respectively, this might be due to the alternative splic-
ing in plants [31]. Though we tried several different PCR 
conditions to clone more cocoa GPAT and LPAT genes, 
no other genes were further cloned from cocoa cDNA 
samples.

All cocoa GPAT sequences and their reference 
sequences can be divided into five clades in a phylo-
genetic tree, and the cocoa GPAT sequences were dis-
tributed in four clades except Clade 4 which contained 
yeast GPAT genes (Fig. 3a). The highest level of identity 
between the amino acids sequence of any cocoa GPAT 
gene and the yeast GPAT genes is less than 15%. At the 
same time, the identities between yeast GPAT genes and 
the Lipomyces starkeyi GPAT gene are 45% (Gpt2p and 
LsGPAT) and 41% (Sct1p and LsGPAT), respectively 
(Fig.  3a). We successfully cloned TcGPAT3, TcGPAT4, 
TcGPAT5, TcGPAT9, TcGPAT10, and TcGPAT12. TcG-
PAT2 had been characterized before, so that each clade 
had at least one representative cloned or synthesized 
cocoa GPAT sequence (Fig. 3a). The LPAT sequences can 
be divided into four clades, and the cocoa genes TcLPAT3, 
TcLPAT4 and TcLPAT5 all formed part of LPAT clade 
1 (Fig.  3b). The two cocoa DGAT genes, TcDGAT1 and 
TcDGAT2, have been characterized before. Additional 
annotated DGATs (TcDGAT3-TcDGAT11) were similar 

Fig. 3  Phylogenetic analysis of GPAT (a) and LPAT (b) amino acid sequences with an unrooted tree. All neighbor-joining trees were constructed 
using the MEGA 7.0.21 software (bootstrap values: 1000) with the peptide sequences. Cocoa genes are marked with rhombuses, genes marked 
with red rhombuses are genes cloned from cDNA of T. cacao in this study, genes marked with green rhombuses are genes synthesized in a previous 
study, genes marked with black rhombuses are genes which were not cloned or synthesized in this study; yeast genes are marked with purple 
triangles; genes of A. thaliana and H. sapiens are not marked. The bootstrap values are marked above the nodes and the scale bar is indicated under 
each tree
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with wax ester synthase genes of A. thaliana, hinting they 
would not participate in TAG biosynthesis [9].

Expression of single cocoa genes in S. cerevisiae changed 
its total fatty acid production
The cloned cocoa genes were assembled in expression 
cassettes with strong constitutive promoters and ligated 
into plasmid pBS01A as described in Fig.  2 and Addi-
tional file  1: Table S2. The empty plasmid pBS01A and 
10 other plasmids harboring cocoa genes were intro-
duced into S. cerevisiae CEN.PK 113-11C, resulting in the 
control strain YJ0 and another 10 yeast strains, respec-
tively (Table 1). Fatty acid analysis showed that the most 
abundant fatty acids in each strain were C16 and C18 
fatty acids and some yeast strains harboring cocoa genes 
produced more fatty acids than the control strain YJ0 
(Fig. 4). Especially, yeast strains YJ-G03, YJ-G04, YJ-L03 
and YJ-L04 displayed a significant increase of the total 
fatty acid amount compared to YJ0, indicating that TcG-
PAT3, TcGPAT4, TcLPAT3-2 and TcLPAT4 were active in 
the yeast and might be engaged in cocoa CB biosynthesis.

Expression of several cocoa gene combinations in S. 
cerevisiae altered lipid production and compositions
Six cocoa genes (including the four cDNA-derived cocoa 
genes TcGPAT3, TcGPAT4, TcLPAT3-2, TcLPAT4, and the 
two cocoa DGAT genes TcDGAT1 and TcDGAT2) were 
assembled in eight different combinations to generate 8 
additional yeast strains (Table 1). Among all these strains, 
four (SYJ-331, SYJ-341, SYJ-441 and SYJ-442) displayed a 
significant increase of total fatty acids (19–84% increase) 
over the control strain SYJ0 (Fig.  5a). For C16 and C18 

fatty acids of the eight strains, C16:0, C16:1 and C18:0 
contents of SYJ-331, C18:0 and C18:1 contents of SYJ-
432, C16:0, C16:1, C18:0 and C18:1 contents of SYJ-
441, and C16:0, C16:1 and C18:1 contents of SYJ-442 
increased and showed significant difference compared 
with SYJ0.

The neutral lipids steryl esters (SE) and TAG are the 
two main storage lipids in S. cerevisiae, whose production 
is affected by the expression of GPAT, LPAT and DGAT 
genes [14, 32, 33]. The SE content analysis showed that 
SYJ-341, SYJ-342 and SYJ-441 displayed a significant 
increase over the control strain SYJ0, while the TAG con-
tent analysis showed that SYJ-331, SYJ-341, SYJ-342 and 
SYJ-441 displayed a significant increase over the con-
trol (Fig. 5b), suggesting expression of some cocoa gene 
combinations were beneficial for yeast storage lipid pro-
duction. Among the eight strains, SYJ-341 and SYJ-441 
produced 150 and 320% more SE than SYJ0, respectively, 
and they also produced 210% and 290% more TAG than 
SYJ0, respectively.
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Cocoa gene expression partially restored neutral lipid 
production in a S. cerevisiae mutant with a partial TAG 
biosynthesis pathway
To further verify if the cloned cocoa GPAT and LPAT 
genes functioned in S. cerevisiae, we deleted parts of 
the yeast TAG biosynthetic pathway, including the 
GPAT gene SCT1, the LPAT gene ALE1, the DGAT gene 
DGA1 and the PDAT gene LRO1, to construct new yeast 
strain Y29 and expressed TAG biosynthetic genes in it 
(Table 1). Compared with the control strain SYJ0, the SE 
content was reduced, but specifically the TAG content 
drastically decreased (Figs. 5b, 6b). With regards to total 
fatty acids, Y29-TcD1 and Y29-441 displayed a significant 
difference with the control Y29-pBS01A, and the concen-
tration of C16:0 in Y29-TcD2 and Y29-331 increased and 
showed significant differences with the control (Fig. 6a). 
Concerning the neutral lipids, SE and TAG in Y29-331 
and Y29-441 displayed significant increase over the con-
trol strain. Besides, SE in Y29-TcD2 also showed signifi-
cant increase compared to the control strain (Fig.  6b). 
Moreover, we also attempted to delete one yeast GPAT 
gene (SCT1 or GPT2) and replace the other gene with 

one cocoa GPAT gene, but we failed to obtain viable 
colonies. However, when we used LsGPAT of L. star-
keyi to replace yeast SCT1 in the yeast strain carrying 
the GPT2 deletion, it succeeded and yeast fatty acid and 
lipid production changed, indicating that a single of the 
cloned or previously synthesized cocoa GPAT gene can-
not replace the function of yeast GPAT genes (Additional 
file  1: Figure S3). Unfortunately, the CBL production of 
yeast strain YJW09 was lower than the wild-type strain, 
though the CBL content of L starkeyi is higher than that 
of S. cerevisiae (Additional file 1: Figure S3B) [27].

Expression of cocoa gene combinations led to an increase 
in potential CBL production
We compared TAG production of four different yeast 
strains: control strain SYJ0, SYJ-331, which displayed 
a significantly higher fatty acid and TAG content com-
pared to SYJ0, SYJ-342, which had an increased SE and 
TAG content, and SYJ-441, which displayed the high-
est amounts of total fatty acids, SE and TAG of the eight 
strains. The TAG compositions changed after introduc-
ing the cocoa genes in S. cerevisiae (Additional file  1: 
Figure S4A). Though all the four yeast strains produced 
more than 20 different kinds of TAGs, most of the TAGs 
only accounted for less than 5% of the total TAGs (Addi-
tional file 1: Figure S4A).

Concerning the relative CBL production, SYJ-331 
(4.7%) and SYJ-441 (6.9%) produced 64 and 140% more 
potential CBL than the control strain SYJ0 (2.87%), 
respectively, but SYJ-342 produced less CBL than the 
control (Fig.  7a). The potential POP and POS of SYJ-
331 and SYJ-441 had increased by at least 30% and by 
at least 130%, respectively. The potential SOS (C18:0, 
C18:1, C18:0) proportion of SYJ-441 displayed a signifi-
cant difference compared with SYJ0 (Fig. 7a). In fact, the 
potential POP, POS and SOS proportions of SYJ-441 had 
increased 143, 130 and 164%, respectively, compared with 
SYJ0. Considering that SYJ-441 produced 288% more 
TAGs than SYJ0, its potential CBL production increased 
more than eightfold compared with SYJ0, showing this 
cocoa gene combination of TcGPAT4, TcLPAT4 and 
TcDGAT1 not only increased TAG production, but also 
helped S. cerevisiae accumulate more potential CBL.

As the TAG content of Y29-pBS01A was quite low, 
only TAG compositions in Y29-TcD1, Y29-331 and Y29-
441 were further checked and all of them could produce 
more than 17 different kinds of TAGs (Additional file 1: 
Figure S4B). The potential CBL proportion had increased 
from 0.48% of Y29-TcD1 to 2.02% in Y29-331 and to 
6.01% in Y29-441, which means an increase of 321 and 
1150%, respectively (Fig.  7b). For details, the potential 
POP and POS in Y29-331 had increased 334 and 331% 
compared with Y29-TcD1, respectively; the potential 
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POP, POS and SOS in Y29-441 had increased 898, 1543 
and 3012% compared with Y29-TcD1 (Fig. 7b). Consider-
ing the TAG content in Y29-331 (0.55 mg g−1) and Y29-
441 (0.48 mg g−1) was 11.5-fold and 9.8-fold higher than 
in Y29-TcD1 (Fig. 6b), the potential CBL content in Y29-
331 and Y29-441 was 51-fold and 134-fold higher than 
in Y29-TcD1. The significant increase of potential CBL 
proportion in Y29-331 and Y29-441 over in Y29-TcD1 
further suggested that cocoa GPAT and LPAT genes 
functioned in yeast and helped accumulate more TAGs.

Expression of cocoa genes in different yeast strains 
changed fatty acid profiles and TAG composition
The C16 and C18 fatty acids were the main fatty acids 
in the TAGs of four yeast strains (SYJ0, SYJ-331, -342 
and -441) and their proportions were similar, which is 
consistent with the total fatty acid composition analy-
ses (Figs.  5a, 6a). Generally, saturated fatty acids in the 
TAGs of SYJ-331 and -441 increased, but decreased in 
the TAGs of SYJ-342 (Fig. 8a). Compared with SYJ0, for 
SYJ-331, the C16:0 portion in the TAGs increased, while 

other C16 and C18 fatty acids in the TAGs were equal or 
decreased; for SYJ-342, the C16:1 fraction in the TAGs 
increased, while other C16 and C18 fatty acids in the 
TAGs were equal or decreased; for SYJ-441, both C16:0 
and C18:0 fatty acids in the TAGs increased with a sig-
nificant difference, while other C16 and C18 fatty acids in 
the TAGs were equal or decreased.

Though C16 and C18 fatty acids were the main fatty 
acids in the TAGs of three Y29 strains, the C16 fatty 
acid faction decreased in Y29-331 and Y29-441 and C18 
fatty acids showed an increase in the TAGs of Y29-331 
and Y29-441 compared with Y29-TcD1 (Fig. 8b). Besides, 
saturated fatty acids in the TAGs of Y29-331 and Y29-441 
decreased compared with Y29-TcD1. In details, C14:0, 
C16:0, C16:1 fractions in the TAGs of Y29-331 and -441 
decreased, while C18:0 and C18:1 increased. Besides, 
the C18:2 and C20:0 content in the TAGs of Y29-441 
increased. However, the content of unknown TAGs was 
higher in these three Y29 strains (Y29-TcD1, Y29-331 
and Y29-441) than in the four yeast strains (SYJ0, SYJ-
331, -342 and -441) and the TAG profiles of Y29-derived 
strains were different from the other four yeast strains, 
further suggesting that cocoa GPAT and LPAT enzymes 
were active and altered the TAG profiles in the yeast 
strains (Fig. 8).

Discussion
CB is mainly extracted from cocoa beans, but the genes 
of its biosynthetic pathway in cocoa tree are unknown, 
hampering their application for developing microbial 
based CBL production [1, 16, 17]. 13 GPAT, 9 LPAT and 
11 DGAT genes have been identified in the T. cacao 
genome [9, 16, 17]. Of the DGAT genes, only TcDGAT1 
and TcDGAT2 are similar to the yeast DGAT genes, the 
others are similar to LRO1 of S. cerevisiae or wax ester 
synthase genes, and they might not participate in CB 
production. Two GPAT (TcGPAT1 and TcGPAT2), two 
LPAT (TcLPAT1 and TcLPAT2) and two DGAT (TcD-
GAT1 and TcDGAT2) genes of T. cacao have been syn-
thesized and characterized before [9]. In this study, we 
cloned another seven GPAT genes and three LPAT genes 
from seeds of T. cacao. Expression of some of these 
genes (TcGPAT3, TcGPAT4, TcLPAT3-2 and TcLPAT4) 
in yeast resulted in an increased total fatty acid produc-
tion, indicating that these cocoa genes might play roles 
in cocoa CB production. Furthermore, expression of 
cocoa gene combinations including these genes plus the 
previously characterized DGAT genes (TcGPAT3, TcG-
PAT4, TcLPAT3-2, TcLPAT4, TcDGAT1 and TcDGAT2) 
increased fatty acid, neutral lipid and CBL production 
significantly, suggesting that cocoa GPATs and LPATs 
functioned in yeast and contributed to a CBL production 
increase in this heterologous host.
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113-11C-derived strains (a) and Y29-derived strains (b) harbor-
ing cocoa genes. Shown is the peak area of the respective TAG in 
comparison to the summed peak areas of all TAGs. The error bars 
represent the standard deviation of two biological replicates. Asterisks 
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(a) or Y29-TcD1 (b); *p < 0.05; **p < 0.01. The p values are calculated 
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The esterification of acyl-CoAs to the glycerol back-
bone during TAG biosynthesis is catalyzed by GPAT, 
LPAT and DGAT [13]. Our results showed that SE and 
TAG production of strain Y29 decreased drastically, 
demonstrating that deletion of yeast TAG biosynthe-
sis genes altered total neutral lipid production [11, 15]. 
Compared with Y29-derived strains harboring either an 
empty plasmid or only one of the cocoa DGAT genes 
(Y29-TcD1 and Y29-TcD2), expression of cocoa gene 
combinations (Y29-331 and Y29-441) restored part of 
yeast neutral lipid production and CBL production, sug-
gesting cocoa GPAT and LPAT contributed to the yeast 
CBL production increase. Furthermore, both GPAT 
genes of S. cerevisiae were replaced by LsGPAT of L. star-
keyi, showing that the GPAT genes of S. cerevisiae can be 
replaced by homologues from the same clade (Clade 4 in 
Fig. 3a). However, replacement of both yeast GPAT genes 
with one cocoa GPAT gene (at least under the conditions 

used in this study) failed, suggesting that overexpression 
of one cocoa GPAT gene cannot complement the loss of 
both GPAT genes in S. cerevisiae. Moreover, neutral lipid 
production of strain Y29 harboring one cocoa GPAT 
gene, one cocoa LPAT gene and one cocoa DGAT gene 
was much lower than the wild-type yeast strains, further 
demonstrating cocoa TAG biosynthetic gene expression 
cannot compensate the gene loss in S. cerevisiae. The low 
identities between cocoa GPAT genes and yeast GPAT 
genes might be the reason why cocoa GPAT genes cannot 
replace yeast GPAT genes (Fig.  3a). As the model plant 
Arabidopsis thaliana contains several genes encoding 
enzymes with GPAT activities, the situation for the cocoa 
tree might be similar, pointing to that several genes/
enzymes may function simultaneously in vivo [34].

YJ0 and SYJ0 are supposed to have the same genotype, 
but when we cultivated these two strains in the same 
conditions (but not in the same experiment), the fatty 
acid production of YJ0 and SYJ0 was different. This might 
be due to the fact that YJ0 and SYJ0 were constructed at 
different time points and/or that they were in a different 
growth state when sampled. Overexpression of cocoa 
TAG biosynthetic genes increased the CBL content from 
2.87% in the wild-type yeast strain SYJ0 to 6.9% in SYJ-
441. In addition, overexpression of cocoa TAG biosyn-
thetic genes in Y29 increased the CBL content, and the 
highest CBL content of Y29-441 was 6.0%. With regard 
to the less than 5.4% CBL content in the yeast strain 
YJ-221 harboring specifically selected cocoa TAG biosyn-
thetic genes [9], this demonstrates that combination of 
phylogenetic analyses and experimental verification can 
lead to identification of effective enzymes (TcGPAT4 and 
TcLPAT4) for CBL production. The relative CBL content 
in SYJ-441 is still low (only 6.9%) and the relative CBL 
content in YJW09 harboring LsGPAT is even lower than 
in the wild-type S. cerevisiae strain, hinting that other 
metabolic engineering strategies should be attempted to 
increase yeast CBL production, including an improve-
ment of specific fatty acid supply and the identification 
of other functional TAG biosynthetic genes from plants 
[35–38]. Considering that the C16:1 proportion in the 
yeast TAGs is more than 40% and that the C16:1 content 
in CB is very low [1], some strategies should be further 
implemented to alter the total fatty acid profiles of the 
yeast, such as screening for heterologous desaturases 
which can decrease C16:1 production and increase C18:1 
production. Besides, the C16:1 content in the TAGs of 
some of the Y29-derived strains harboring cocoa gene 
combinations was lower than in the control strain of Y29-
TcD1 (Fig.  8b), which is another indication that these 
cocoa genes are potential CB biosynthetic genes. As sev-
eral GPAT, LPAT or DGAT genes might be responsible 
for CB production in vivo simultaneously, overexpression 
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of different cocoa TAG biosynthetic genes in one yeast 
strain would be a potential strategy to increase CBL pro-
duction further. In the future, also overexpression of the 
identified genes in oleaginous yeasts represents a possi-
bility to obtain a high-level of CBL production [27].

Conclusions
Ten different cocoa TAG biosynthetic genes were 
cloned from cDNA of T. cacao and characterized in 
yeast. Expression of some cocoa genes in a wild-type S. 
cerevisiae strain increased CBL production more than 
eightfold (the relative CBL content is 6.9%) over the 
wild-type strain, and expression in yeast mutant strain 
with a reduced TAG pathway could increase CBL pro-
duction 134-fold (the relative CBL content is 6.0%) over 
the control strain Y29-TcD1. Besides, our results dem-
onstrate that several cocoa GPAT, LPAT and DGAT 
genes might function simultaneously in T. cacao for CB 
production.
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sequence of the targeted gene; Down means downstream sequence 
of the targeted gene; Gene fragment means part of the targeted gene. 
Figure S2. The cocoa fruit samples in nearly ripe (May 26, 2015) (A) and 
unripe (October 12, 2015) (B) state at Gothenburg Botanical Garden. Fig-
ure S3. Total fatty acid production (A) and relative TAG content (B) in four 
different S. cerevisiae strains. (A) Others represents the summed content 
of C12:0, C14:0, C14:1, C20:0, C20:1, C22:0, C24:0 and C26:0 fatty acids. The 
error bars represent the standard deviation of biological replicates. (B) All 
TAGs identified in the four yeast strains are shown. The error bars represent 
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of the respective TAG in comparison to the summed peak areas of all TAGs. 
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significant differences (p-values are based on paired t-tests corrected for 
multiple comparisons) in comparison to control SYJ0. * indicates p < 0.05; 
** indicates p < 0.01. (B) Relative TAG content (except potential CBL) of 
Y29-derived strains harboring 3 cocoa genes or 1 cocoa gene. Asterisks 
(*) indicate significant differences (p-values are based on paired t-tests 
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