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Abstract 

Background:  As microbial cultures are comprised of heterogeneous cells that differ according  to their size and intra-
cellular concentrations of DNA, proteins, and other constituents, the detailed identification and discrimination of the 
growth phases of bacterial populations in batch culture is challenging. Cell analysis is indispensable for quality control 
and cell enrichment.

Methods:  In this paper, we report the results of our investigation on the use of single-cell Raman spectrometry 
(SCRS) for real-time analysis and prediction of cells in different growth phases during batch culture of Lactobacillus (L.) 
casei Zhang. A targeted analysis of defined cell growth phases at the level of the single cell, including lag phase, log 
phase, and stationary phase, was facilitated by SCRS.

Results:   Spectral shifts were identified in different states of cell growth that reflect biochemical changes specific 
to each cell growth phase. Raman peaks associated with DNA and RNA displayed a decrease in intensity over time, 
whereas protein-specific and lipid-specific Raman vibrations increased at different rates. Furthermore, a supervised 
classification model (Random Forest) was used to specify the lag phase, log phase, and stationary phase of cells based 
on SCRS, and a mean sensitivity of 90.7% and mean specificity of 90.8% were achieved. In addition, the correct cell 
type was predicted at an accuracy of approximately 91.2%.

Conclusions:   To conclude, Raman spectroscopy allows label-free, continuous monitoring of cell growth, which may 
facilitate more accurate estimates of the growth states of lactic acid bacterial populations during fermented batch 
culture in industry.
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Background
Cell heterogeneity resulting from environmental pres-
sure implies the co-existence of cells at different physio-
logical states [1, 2]. Being able to characterise and predict 
the physiological state of individual cells in a microbial 
population is of great importance in a biotechnological 

fermentation because (1) the physiological state of the 
individual cell is the only factor that determines the yield 
of any product, provided that the required nutrients are 
present in non-limiting amounts, and (2) the knowledge 
of the physiological state is a prerequisite for tuning fer-
mentation for optimal performance [3].

This knowledge has traditionally been acquired indi-
rectly, by measuring parameters such as pH, cell density, 
sugar utilisation and product formation. However, as 
techniques in molecular biology have improved consider-
ably, the physiological state of cells during the fermenta-
tion process has been addressed in much greater detail, 
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which can provide a more accurate and descriptive repre-
sentation of the population than average values attained 
from traditional techniques [4]. Microscopy and flow 
cytometry have advanced substantially in recent decades, 
and are now essential tools for monitoring the physiolog-
ical heterogeneity of microbial populations at the single-
cell level. However, both methods rely on fluorescence 
monitoring for measuring cellular parameters, such as 
reporter systems where the cellular component of inter-
est is fluorescent (e.g. reporter proteins such as green flu-
orescent protein). In addition, these methods also allow 
the monitoring of other intrinsic cell properties (e.g. cell 
size,) or structural/functional parameters (e.g. membrane 
integrity, and DNA content), by using different staining 
procedures [3]. Various spectroscopic methods have also 
been applied to monitor microbial populations. Regard-
ing single-cell analysis, Raman spectroscopy holds prom-
ise due to its non-destructive nature, and the ability to 
provide information at the molecular level without the 
use of stains or radioactive labels [5].

Raman spectroscopy is an optical, marker-free technol-
ogy that allows continuous analysis of dynamic growth 
events in single cells by investigating the overall molec-
ular constitution of individual cells within their physi-
ological environment. Interestingly, this technology is 
not dependent on defined cellular markers, and it can 
be adapted for heterogeneous cell populations [6]. In 
Raman spectroscopy, rare events of inelastic light scat-
tering occur on molecular bonds due to excitation with 
monochromatic light and generate a “fingerprint” spec-
trum of the investigated specimen [7, 8]. Although the 
effect of Raman scattering is weak, the presence of water 
does not impact Raman spectra, enabling the examina-
tion of native biological samples without the need for 
fixation or embedding procedures and making the tech-
nique superior to infrared spectroscopy. For this reason, 
Raman spectroscopy has been used extensively for a wide 
variety of applications [9], and it appears to be the most 
promising spectroscopic method for real-time analysis 
of complex cell culture systems. Raman spectroscopy has 
been applied successfully to the monitoring of cell bio-
mass [10]. Additionally, Raman spectroscopy can reveal 
specific information down to the molecular level, and it 
offers high potential for the detection and classification 
of cells of different metabolic states [11–13]. However, 
no reported studies have applied Raman spectroscopy for 
real-time monitoring and prediction of metabolic states 
of lactic acid bacteria (LAB) cells.

In this study, we used the industrial probiotic L. casei 
Zhang as a research object to develop a classification 
model from the Raman spectra of three different growth 
phase cells using the Random Forest (RF) method. When 
trained with 214 spectra originating from three different 

growth phases, the method showed high mean sensitiv-
ity (90.7%) and mean specificity (90.8%) for distinguish-
ing cells of different growth phases of L. casei Zhang. 
Furthermore, more than 91.2% of cells were assigned to 
the correct cell type, which demonstrates the potential 
of single-cell Raman spectroscopy (SCRS) for deter-
mining the metabolic state of L. casei Zhang during 
fermentation.

Methods
Growth and culturing of Lactobacillus casei Zhang cells
All chemicals used in this study were obtained from 
Sigma-Aldrich UK (Dorset, UK). The strain L. casei 
Zhang was isolated from traditional home-made koumiss 
in Inner Mongolia, China [14]. Cell culturing of L. casei 
Zhang (LABCC 20048) cells was started on an MRS agar 
plate from − 80 °C stock approximately 48 h prior to the 
experiment. A single L. casei Zhang colony was then 
inoculated from the plate into 5  mL of MRS broth in a 
glass tube and incubated at 37  °C in a constant-temper-
ature incubator until the OD600 of the cells reached ~ 0.3 
(UV/Vis spectrophotometer; GeneQuant 1300). Then, it 
was re-incubated in another 5 mL of MRS broth in a glass 
tube and incubated at 37  °C in a constant-temperature 
incubator. The L. casei Zhang growth curve was recorded 
by sampling the bacterial culture at 0–30-h time steps. 
The growth curve was constructed from each absorbance 
measurement at 600-nm wavelength and viable bacteria 
counting at 2-h intervals.

Single‑cell Raman spectrometry
Cell aliquots were collected just after re-inoculation 
and from each triplicate group at nine subsequent time 
points: 0, 2, 4, 8, 10, 14, 18, 24, and 30  h. All cell sam-
ples were washed three times with deionised water to 
remove the culture medium. Cell density was adjusted 
accordingly to ensure sufficient dispersion of individual 
cells on the slide. After washing and resuspending, a 1.5-
μL cell suspension was transferred onto a calcium fluo-
ride (CaF2) slide and air-dried prior to Raman analysis. 
Raman spectra were obtained using a modified confocal 
Raman-fluorescent microscope based on the LabRam HR 
(Horiba Ltd., UK) system, as described in [15]. A 100× 
magnification dry objective (NA =  0.90, Olympus, UK) 
was used for sample observation and Raman signal acqui-
sition. A 532-nm Nd:YAG laser (Ventus, Laser Quantum 
Ltd., UK) was used as the light source for Raman meas-
urement, and the power on the sample was 3–5 mW. The 
acquisition time for each spectrum was 10 s. Each sample 
from one time point had three biological replicates. Ten 
cells were measured by SCRS for each biological replicate 
of the cell culture. The scattered photons were collected 
by a Newton EMCCD detector (DU970N-BV, Andor, 
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UK). A 600-groove mm−1 diffraction grating was used for 
most of the measurements (unless otherwise stated).

Data pre‑processing of Raman spectra
Pre-processing of raw Raman spectra, performed with 
LabSpec 5 software (HORIBA Scientific, Orsay, France) 
included background subtraction, baseline correction 
by a second-degree polynomial algorithm, get zero and 
area normalisation. For each sample, the background 
spectrum provided for subtraction was generated as the 
average of five spectra acquired from the slide around the 
cell. The biochemical fingerprint region (600–1800 cm−1) 
was extracted for the subsequent multivariate analysis to 
extract the useful information contained in Raman bands 
from useless noise [16], and a spectral resolution result of 
~ 2 cm−1 from 592 data points was used for analysis.

Chemometrics analyses
Principle component analysis
The normalised fingerprint regions of SCRS were first 
subjected to principal component analysis (PCA) for dis-
crimination in Matlab R2010a [17]. For further statisti-
cal analysis, the dimension of the dataset was reduced by 
PCA, and only the first 30 scores were retained. Based on 
the cosine-distance matrix, analysis of similarities (ANO-
SIM) was used to evaluate the similarity of SCRS between 
within-group and between-group data at each time point 
(999 permutations; R version 3.0.3), with the results (R 
value) reflecting the degree of cellular response [18]. This 
provides a method to statistically test whether there is 
a significant difference between two or more groups of 
sampling units. ANOSIM analysis returns two important 
factors, the R value (ranging from − 1 to + 1), which is 
based on the ranks of dissimilarity between within-group 
and between-group data, with a greater value indicat-
ing greater dissimilarity, and the p value, which indicates 
whether the level of significance of any difference.

Random forest analysis
The Random Forest model was used to construct a clas-
sification model to analyse SCRS under different growth 
phases via default parameters (R package “randomForest”, 
ntree = 5000, using default mtry of sqrt(p), where p is the 
number of Raman bands) [18]. The model was evaluated 
internally with a tenfold cross validation [19]. For Random 
Forest discriminating cells among the lag phase, log phase, 
and stationary phase, about 20 of 30 cells from each trip-
licate of the three phases were selected randomly and 
combined for construction of a training dataset (n ≈ 70), 
and the rest of the cells were used to form a test dataset 
(n ≈ 30). The misclassification rates of both the training 
and test datasets were calculated to determine an optimal 

number of principal components (PCs). The test dataset 
was rotated into a new dataset of PCs by the loadings of 
the PCA of the training dataset, as described previously 
for converting two datasets in the same spectral space.

Results and discussion
Single‑cell Raman spectroscopy for discrimination 
of different growth phases of L. casei Zhang
Figure 1A shows a normal L. casei Zhang growth curve 
displaying lag, log, and stationary growth phases. Cell 
samples for Raman analysis were obtained at different 
growth phases, as indicated by the growth curve (por-
tions a, b, and c). Raman spectra of L. casei Zhang cells 
acquired during the (a) lag phase, (b) log phase, and (c) 
stationary phase are shown in Fig. 1B. Each spectrum is 
an average of 102 bacterial cells. The three Raman spec-
tra, representing different metabolic states, display signif-
icant changes in Raman peak intensities and peak ratios.

Bacterial cells in the different metabolic states could 
be more clearly identified and visualised by performing 
PCA on the Raman spectra. The scatter plot of the first 
(PC1), second (PC2), and third (PC3) principal compo-
nents (Fig. 2) shows three groups of cells that are clearly 
separated by their metabolic state. These three groups 
can be identified based on their time range on the growth 
curve (Fig.  1A): 1–4  h, corresponding to the lag phase 
(dark-blue dots); 8–14 h, corresponding to growth at the 
log phase (light-blue dots); and 18–30 h, corresponding 
to the stationary phase (yellow dots). Separation of the 
groups is better between the log phase (8–14 h) and the 
stationary phase (18–30 h) (Fig. 2). Bacterial cells at the 
log phase overlap slightly with bacterial cells at the sta-
tionary phase. The poor group separation for the latter 
stages of cell growth between the log and the stationary 
phases indicates that there is an increasingly heteroge-
neous population of cells at different growth stages, with 
some cells still actively undergoing metabolic changes, 
and others at rest [12].

The loading values of PC1, PC2, and PC3 are plotted in 
Fig. 3 (parts a, b, and c, respectively). These indicate the 
Raman peaks that have the highest absolute variance over 
time and that contribute most to the separation observed 
in the PCA plot. PC1, PC2, and PC3 account for more 
than 70% of the variance in the data. The peaks of 783, 
1003, and 1100  cm−1 were identified for PC1, those of 
813, 1437, and 1484  cm−1 were identified for PC2, and 
those of 786 and 1482 cm−1 were identified for PC3. Fig-
ure  4 displays the most significant changes in spectral 
peaks during the bacterial growth. It also suggests that 
these peaks can be used as simple parameters to classify 
the metabolic state of an unknown L. casei Zhang bacte-
rial cell following Raman analysis.
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Correlation of Raman spectroscopic changes to metabolic 
states of L. casei Zhang
Our SCRS study is a comprehensive analysis that pro-
vides more detailed spectral and temporal information 
for all Raman spectral components, including DNA/
RNA-related, protein-related, and lipid-related peaks 
that change during cell growth. This detailed analysis is 
important for defining a benchmark for the variability in 

Raman spectra due to cell growth that can be used for 
identifying and predicting the growth phase of a single 
bacterial cell, as discussed in the next section.

An analysis of the time-dependent changes in the indi-
vidual Raman peaks is shown by the peak intensity time 
traces in Fig.  5. Three groups of Raman peaks can be 
identified based on similarities in their time-trace pro-
files. Moreover, the peaks also group according to the 

Fig. 1  A A typical L. casei Zhang growth curve. B Mean Raman spectra of cells at three growth phases a–c. Raman spectra of L. casei Zhang cells 
taken at different growth phases on the growth curve. Cell samples for Raman analysis were obtained at the lag, log, and stationary growth phases, 
as indicated by the growth curve (portions a, b, and c, respectively). The three Raman spectra, representing different metabolic states, display signifi-
cant changes in the Raman peak intensities and peak ratios
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type of biomolecule to which they are assigned, as shown 
in Table  1 [20]. The Raman frequencies in group A are 
specific to nucleic acid, those in group B are associated 
with protein, and those in group C are associated with 
lipid. In general, most of the nucleic acid peaks exhibit 
a continuous decrease in intensity, whereas the protein 
and lipid peaks increase in intensity. However, several 
peaks exhibit a different trend. The 668- and 1575-cm−1 
peaks in the nucleic acid group (labelled a and b) increase 
in intensity for the first 10 h but then decrease, and sev-
eral protein peaks in the protein group show a minimal 
increase. The most significant changes in peak inten-
sity can be observed for the 783 and 813-cm−1 Raman 
frequencies related to DNA/RNA. The peak intensities 
decrease by a factor of 2 during the transition from the 
log phase to the beginning of the stationary phase (points 
b to c in Fig. 1A), which can be associated with cell divi-
sion [18]. Bacterial cells double the amount of DNA just 
before binary fission occurs, but have only one DNA 
complement during the stationary phase. The decrease 
in DNA/RNA-specific peak intensities and the increase 
in protein-specific and lipid-specific peak intensities over 
time indicate an increase in protein synthesis and lipid 
synthesis as a response to environmental stress induced 
by the depletion of nutrients. This is a known stress 
response for bacteria. The Raman spectra do not change 
significantly during the late stationary phase, as shown 
in Fig.  5 by the constant peak intensities after approxi-
mately 24  h. During the late stationary phase, no DNA 
or protein and lipid synthesis occurs because bacterial 
cell metabolism becomes inactive [12]. It is important to 
emphasise that even though no changes in the OD and 
viable count (VC) can be observed in the growth curve 
(Fig. 1A) after approximately 12 h, Raman spectroscopy 
is sensitive enough to detect changes in the bacterial cells 

up to 24 h. This is perhaps not surprising considering that 
traditional measurements (OD and VC) are only sensi-
tive to the concentration of cells in the solution of the 
fermentation broth and not to physiological changes of 
cells themselves, whereas Raman spectroscopy can pro-
vide specific markers of DNA, RNA, protein, and lipid, 
whose ratios in a bacterial cell can be highly dependent 
on the cell’s metabolic state. These results highlight the 
importance of single-cell analysis over bulk-cell analysis 
for detecting and evaluating cell growth.

Classification of single‑cell Raman spectra to predefined 
different growth phases of Lactobacillus casei Zhang cells
The aim at this stage in the process is to develop an auto-
mated algorithm that recognises and identifies cell types 
from different growth phases by RF. The major interest 
is the separation of log phase cells and stationary phase 
cells from all cells during LAB fermentation. Because 
probiotic and starter strains are generally harvested in 
the log or stationary growth phase for high cell densities 
in industrial production [21], a promising way to extract 
the miniscule intergroup differences is by interpreting 
the whole spectrum in a multivariate way as the spectral 
fingerprint. In-depth and exhaustive knowledge of each 
of the signals in the Raman signatures is not manda-
tory in these pattern-matching approaches; nonetheless, 
the whole information is considered in the data evalua-
tion. However, an important premise for doing so is suf-
ficient reproducibility of the spectra within the different 
growth phase cells, although the spectra from different 
time points are from different growth phases. After pre-
processing, the treated spectra have to be analysed for 
inherent variations due to the fact that single cells are 
measured [18]; a significant distinction was detected at 
each of the growth states (p = 0.001 for each; ANOSIM) 

Fig. 2  Principal component analysis (PCA) of Raman spectra for normal L. casei Zhang. PCA scatterplot using the PC1, PC2, and PC3 values. Raman 
spectra acquired at lag phase (1–4 h), log phase (8–14 h), and stationary phase (18–30 h) are represented by different symbols
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(Table  2A). Moreover, the distances between different 
growth states (as measured by the R value; ANOSIM) 
were 0.83 (lag, log), 0.71 (lag, stationary), and 0.89 (lag, 
stationary) (Table  2A), suggesting high dissimilarity of 
SCRS among the different growth phases. In addition, to 
compare the types of cells from different growth, a nor-
malised double standard deviation was calculated for 
each type of cell [16]. The double standard deviation for 
each cell type is shown as a grey corona to the mean spec-
tra displayed in Fig. 6. The mean of the standard devia-
tion per channel is normalised to the standard deviation 
of the channel means, resulting in a standard deviation 

of the means (SDM) [16]. Thus, the standard deviation 
per channel is placed into a relation of a mean spectrum 
statistical property. The SDM values for each species are 
given in a rightmost column of Table 2A, where low SDM 
numbers represent low channel-wise variability and thus 
high reproducibility and reliability of the dataset. High 
numbers in the range of almost 1 would indicate high 
volatilities per channel and would cast doubt on the reli-
ability of the data [18, 22]. All of the calculated SDMs 
are significantly lower than 1 and within a tight inter-
val between 0.12 and 0.20. The lag phase cell spectrum 
(SDM 0.12) is the lowest, whereas log phase cells have the 
highest SDM (0.20), showing that the observed Raman 
information does not depend largely on a different batch. 
Consequently, the mean Raman data can be used to cre-
ate a classification system.

The ability to predict exactly the type of cells at differ-
ent metabolic stages during LAB fermentation would be 
an additional advantage of the vibrational spectroscopic 
technique. It is evident from Fig. 4 that the spectra of the 
different cell types cannot be distinguished by eye and 
that multivariate statistical methods are required for clas-
sification. Analogous to a previous report on dried cells 
[18], RF was used to develop a classification model. Dur-
ing the training processing, separating planes existed 
between the different classes. The model was validated 
internally by tenfold cross-validation. This means that 
the whole dataset of 214 spectra was split into 10 sub-
sets; a classification model was trained with nine subsets, 
and the tenth subset to predict the accuracies was calcu-
lated. The resulting confusion table is shown in Table 2A. 
In total, 194 of 214 spectra were correctly classified, 
resulting in an accuracy of 90.7%. The best results were 
achieved for lag phase, for which 67 out of 71 single-
cell spectra were classified correctly. This yields a mean 
sensitivity of 90.7% and a mean specificity of 90.8%. The 
specificities for the whole dataset range as 97.1% in the 
case of lag phase, 85.3% in the case of log phase, and 90% 
for stationary phase. Most of the misclassified log-phase 
spectra were classified as stationary phase (7 out of 73), 
and all misclassified stationary-phase spectra were clas-
sified as log phase (7 out of 70). This may be explained 
by an increasingly heterogeneous population of cells 
at log phase and stationary phase [12]. Fewer incorrect 
assignments occurred between lag phase and log phase 
(4 out of 71 lag phase spectra were falsely classified as log 
phase).

An independent group SCRS for use as a test group 
was obtained from different growth phases to confirm 
the predictive capacity of the classification model. The 
previously built RF model was used to predict this inde-
pendent test dataset to check for overfitting. Table  2B 
summarises the results: 92.1% of spectra were assigned 

Fig. 3  Different groupings of Raman spectra taken at different time 
points during normal cell growth. The loading values of PC1, PC2, 
and PC3 are plotted (parts A, B, and C, respectively). The peaks at 783, 
1003, and 1100 cm−1 were identified for PC1, those at 813, 1437, and 
1484 cm−1 were identified for PC2, and those at 786 and 1482 cm−1 
were identified for PC3
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correctly (83 of 91 spectra); the accuracy ranged between 
86.1% for log phase and 96.2% for stationary phase. These 
results suggest that the built RF model can be used to 
identify independent test data.

The use of an RF model showed that cell growth phase 
can be assessed with high accuracy, sensitivity, and speci-
ficity based on the Raman spectra of individual cells. This 
model served as a powerful database for the recognition 
and discrimination of the Raman spectra. A similar algo-
rithm showed best results for classifying Raman spectra 
of different stress responses of Escherichia coli cells [18]. 
When employing such a model in the future, the steps 
entailing measurement of OD and VC could be omitted, 
and analysis of newly acquired data could be executed 
based on the previously established multivariate model. 
Then, Raman spectroscopy could facilitate non-invasive 
continuous monitoring of cell growth and metabolism 
in single cells, which is of particular interest in the field 
of LAB fermentation, such as for accurately determin-
ing the harvest time and activity of inoculum. However, 
to transform Raman spectroscopy into an online high-
throughput assay, spectra acquisition times must be 
reduced. Shorter spectra acquisition times should not 
impact the specificity of multivariate classifications and 
could therefore be employed once classification models 

are established [23]. Automated cell culture monitoring 
systems could benefit from the implementation of Raman 
spectroscopy as a method for real-time monitoring of 
bacterial metabolism and growth states. Raman spec-
troscopy may offer the unique possibility of monitoring 
the early log, late log, and early stationary phases of cell 
growth without any marker in their native, unprocessed 
state [12]. Moreover, in future studies, to understand the 
metabolic pathway and activity during fermentation of 
LAB, we can consider combining SCRS and single-cell 
stable isotope (13C, 15N, and 2H) probing (SIP) to trace 
carbon, nitrogen, and hydrogen-related pathways or gen-
eral metabolic activity. To date, DNA, RNA, and protein 
or lipid SIP have been developed for different metabolic 
pathways of different bacteria [15, 24–27].

Conclusions
In this work, we demonstrated the use of SCRS for dis-
criminating and predicting growth phases of individual 
bacterial cells of L. casei Zhang. The decrease in nucleic 
acid levels and the synthesis of lipids and proteins in 
three growth phases (lag, log, and stationary) could be 
tracked through time. To the best of our knowledge, this 
is the first reported method for predicting the growth 
phase of LAB cells at the level of individual live cells. 

Fig. 4  The most significant changes in spectral peaks during three growth phases of the bacterial. The primary Raman peaks that contribute to the 
data separation in the PCA plots from Fig. 3 are labelled
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Fig. 5  Time traces of relative Raman peak intensities during normal cell growth. Individual traces are labeled a throught. Peak traces were grouped 
based on similar profiles. Grouping of the Raman frequencies also coincided with the molecular species assigned to each of the peaks. The Raman 
frequencies in group A are specific to nucleic acids, those in group B are associated with protein, and those in group C are associated with lipids. 
a 668 cm−1; b 1575 cm−1; c 1100 cm−1; d 1484/1482 cm−1; e 783/786 cm−1; f 813 cm−1; g 934 cm−1; h 852 cm−1; i 963 cm−1; j 1032 cm−1; k 
1550 cm−1; l 1003 cm−1; m 1437 cm−1; n 1443 cm−1

Table 1  Raman frequencies and their peak assignments grouped by their time-dependent trace profiles in Fig. 4

Raman spectroscopy can provide specific markers of DNA, RNA, protein, and lipid, whose ratios in a bacterial cell can be highly dependent on the cell’s metabolic state

Curve Raman bands (cm−1) Biological assignment/interpretation

a 668 G ring breathing

b 1575 Guanine, adenine (ring stretching)

c 1100 Polyhydroxybutyrate

d 1484/1482 Amide II

e 783/786 Phosphodiester; cytosine

f 813 Nucleic acids (C–O–P–O–C in RNA backbone)

g 934 Proline, hydroxyproline, v(C–C) skeletal of collagen backbone

h 852 Tyr

i 963 CH2 rock, C–Cɑ

j 1032 Phe

k 1550 Tryptophan

l 1003 Phe

m 1437 CH2 and CH3 deformation vibrations (lipid)

n 1443 CH2 bending mode of proteins and lipids
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Furthermore, we are able to monitor real-time changes 
of nucleic acid-related, protein-related, and lipid-related 
compounds at the single-cell level.

SCRS enables spectral analysis of individual live bacte-
rial cells under near physiological conditions (MRS cul-
ture media) to develop a fundamental understanding of 
cell heterogeneities and their effects on microbial popu-
lation dynamics. Additionally, SCRS is sensitive enough 
to detect changes in bacterial cells during the stationary 
phase. We have made relevant the use and potentialities 
of this approach for studying LAB and probiotics at both 
the industrial and the research level. Considering the 

great importance of the probiotics market, the systematic 
industrial implementation of these techniques should 
be explored much more than has occurred to present. 
In regard to future research, it is our opinion that using 
SCRS techniques to investigate LAB and probiotics rep-
resents a relatively novel approach that is far from being 
fully explored and for which much remains to be done.
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Table 2  (A) Random Forest results for  the classification model, (B) Identification of  an independent test dataset 
from unknown samples

The standard deviation of the means (SDM) of SCRS per sample was calculated (range from 0.12 to 0.20). Low SDM numbers represent high reproducibility and high 
reliability of the dataset. An analysis of similarity (ANOSIM) was performed to compare distances of between-group cells and within-group cells at different growth 
states. ** Represents p < 0.01. Lag, lag phase, log, log phase, stationary, stationary phase

Identified as True

Lag Log Stationary Specificity (%) SDM ANOSIM

(A)

 Lag 67 4 0 97.1 0.12 0.83 (lag, log)**

 Log 2 64 7 85.3 0.20 0.71 (log, stationary)**

 Stationary 0 7 63 90 0.15 0.89 (lag, stationary)**

 Sensitivity (%) 94.4 87.7 90 90.7

Group No. of correctly assigned cells No. of total cells Accuracy (%) Total accuracy (%)

(B)

 Lag 25 26 96.2

 Log 31 36 86.1 91.2

 Stationary 27 29 93.1

Fig. 6  Mean Raman spectra and double standard deviation depicted 
as grey corona of all growth phases. A normalised double standard 
deviation was calculated for each type of cell. The mean of the stand-
ard deviation per channel was normalised to the standard deviation 
of the channel means, resulting in a standard deviation of the means 
(SDM), as showed in Table 2A
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