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Abstract 

Background:  Cultivation of recombinant Pichia pastoris (Komagataella sp.) under hypoxic conditions has a strong 
positive effect on specific productivity when the glycolytic GAP promoter is used for recombinant protein expression, 
mainly due to upregulation of glycolytic conditions. In addition, transcriptomic analyses of hypoxic P. pastoris pointed 
out important regulation of lipid metabolism and unfolded protein response (UPR). Notably, UPR that plays a role in 
the regulation of lipid metabolism, amino acid metabolism and protein secretion, was found to be upregulated under 
hypoxia.

Results:  To improve our understanding of the interplay between lipid metabolism, UPR and protein secretion, the 
lipidome of a P. pastoris strain producing an antibody fragment was studied under hypoxic conditions. Furthermore, 
lipid composition analyses were combined with previously available transcriptomic datasets to further understand 
the impact of hypoxia on lipid metabolism. Chemostat cultures operated under glucose-limiting conditions under 
normoxic and hypoxic conditions were analyzed in terms of intra/extracellular product distribution and lipid composi‑
tion. Integrated analysis of lipidome and transcriptome datasets allowed us to demonstrate an important remodeling 
of the lipid metabolism under limited oxygen availability. Additionally, cells with reduced amounts of ergosterol 
through fluconazole treatment were also included in the study to observe the impact on protein secretion and its 
lipid composition.

Conclusions:  Our results show that cells adjust their membrane composition in response to oxygen limitation 
mainly by changing their sterol and sphingolipid composition. Although fluconazole treatment results a different 
lipidome profile than hypoxia, both conditions result in higher recombinant protein secretion levels.

Keywords:  Lipidomics, Pichia pastoris, Hypoxia, Recombinant protein production, Antibody fragment, Protein 
secretion, Unfolded protein response
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Background
The methylotrophic yeast Pichia pastoris (Komaga-
taella sp.) has become an important cell factory for 
heterologous protein production [1–3]. P. pastoris is a 
eukaryote, and therefore provides the potential for pro-
ducing soluble, correctly folded recombinant proteins 
that have undergone all post-translational modifications 
required for functionality. Furthermore, this yeast can be 

engineered to mimic the human N-glycosylation path-
way and specific types of O-glycosylation, becoming a 
potential alternative for mammalian cell culture for the 
production of recombinant therapeutic glycoproteins for 
human use [4, 5]. Overexpression of heterologous pro-
teins can lead to saturation or overloading of the secre-
tory pathway [6, 7]. The most important bottlenecks in 
terms of recombinant protein production and secretion 
are membrane translocation, signal peptide process-
ing and folding within the endoplasmic reticulum (ER) 
[8]. Strain engineering strategies for protein secretion 
are mainly focused on engineering the protein folding 
and quality control systems in the ER, the intracellular 
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protein trafficking pathway, and minimizing post-secre-
tory degradation [9]. In addition, there is increasing 
evidence that metabolic bottlenecks in the supply chain 
for building blocks and energy play an important role in 
recombinant yeast [10, 11]. In this context, environmen-
tal conditions have a significant impact on the levels of 
recombinant proteins. For instance, lower culture tem-
perature [12, 13], low oxygen availability [14], as well as 
adequate substrate feeding strategies in high cell density 
cultures [15, 16], and type of carbon source(s) [17, 18] 
resulted in positive effects on protein secretion.

Oxygen availability is critical for many biochemical 
reactions in eukaryotic cells, including yeasts. The abil-
ity to adapt to oxygen limitation is essential for cell sur-
vival but also produces important metabolic, functional 
and structural changes in the cell [19]. Cells can adapt 
to growth under oxygen limitation, termed hypoxia or 
microaerobic conditions [20]. When cells are grown 
aerobically, molecular oxygen serves as the final elec-
tron acceptor for respiration, while it is also used for the 
synthesis of metabolites, e.g. sterols or unsaturated fatty 
acids. In the presence of low amounts of oxygen, respi-
ration is drastically reduced, and metabolism is then 
reprogrammed to optimize yeast cells for fermentative 
dissimilation of the carbon source to conserve energy and 
to maintain a closed redox balance [21]. These metabolic 
rearrangements are easily detectable by the excretion of 
metabolites in the culture supernatant such as ethanol 
and arabitol in the case of P. pastoris [22].

The impact of oxygen limitation on recombinant 
protein production in P. pastoris was first studied 
by Baumann and co-workers [14] showing a signifi-
cant increase of the specific production rate of sev-
eral model recombinant proteins. In a subsequent 
study, the impact of oxygen availability on the physi-
ology of recombinant P. pastoris was studied integrat-
ing transcriptomic, proteomic, metabolic flux and 
metabolomics analyses [22–24]. In response to oxygen 
limitation, a wide range of transcriptional modifications 
occurred, resulting in extensive changes of cellular pro-
tein levels and activities, including those related to cell 
respiration, lipid metabolism, cell membrane and cell 
wall structure [23, 25]. Increased transcript levels were 
observed for a number of genes encoding enzymes that 
catalyze oxygen-consuming reactions of the ergosterol 
pathway (ERG1, ERG3, ERG5, ERG11 and ERG25). 
Similarly, expression of sphingolipid synthesis genes 
(SUR2, SCS7, DES1 and SLD1) was also upregulated 
under hypoxic conditions, as all these enzymes need 
molecular oxygen as substrate [23]. Notably, over-
expression of the unfolded protein response (UPR) 
genes such as HAC1, PDI1, ERO1 and HAC1 as also 

detected in hypoxia. Changes observed on lipid meta-
bolic enzymes affect lipid composition of the mem-
brane such as fluidity [26, 27] and other physiological 
traits [28–30], some of which could ultimately favor 
recombinant protein secretion. Indeed, altered activ-
ity of the lanosterol C-14α demethylase (ERG11), which 
catalyzes a rate-limiting step in ergosterol biosynthesis 
[31], by treating cells with the antifungal agent flucona-
zole results in lower ergosterol levels and increased Fab 
secretion (1.4-fold) compared to untreated cells [32]. 
Such changes in the total sterol content of membranes 
might result in increased membrane fluidity and higher 
levels of protein secretion. Moreover, cultivation in the 
presence of non-ionic surfactants such as Tween 20, 
Tween 80 and Triton X-100 also resulted in increased 
levels of secreted Fab (up to 1.65-fold), probably due 
to a similar effect, i.e. higher membrane fluidity when 
cells were grown in the presence of these surfactants.

Lipid composition of P. pastoris organelles such as the 
plasma membrane [33], peroxisomes [34], mitochondria 
[35], lipid droplets [36], or endoplasmic reticulum [37] 
have already been characterized. The lipid composition 
of this yeast has also been studied with regard to a carbon 
source effect [38]. However, such fundamental studies 
were performed exclusively using wild type strains.

In the present study, we describe the biochemical char-
acterization of P. pastoris lipidome after adaptation to 
hypoxia. This analysis is based on the characterization of 
lipids from a P. pastoris strain producing a recombinant 
antibody fragment (Fab) grown under oxygen-excess 
(normoxic) and reduced oxygen availability (hypoxic) 
conditions in chemostat cultures, where well-controlled 
and reproducible culture conditions are provided. 
Changes in the lipidome were correlated with corre-
sponding transcriptional changes reported for this con-
dition in earlier studies [23], which were further verified 
by quantitative PCR in this study. Moreover, cells treated 
with fluconazole were analyzed to elucidate whether the 
observed increase in Fab secretion was correlated with 
similar changes in lipid composition (beyond reduced 
ergosterol levels) as under hypoxic conditions.

The aim of the work was to expand our knowledge of 
P. pastoris lipid metabolism adaptation to hypoxia and 
the implications for recombinant production by identify-
ing changes in lipid composition that appear to be cor-
related with the improvement of protein secretion in 
hypoxic culture conditions. Moreover, through combined 
measurements of the transcriptome and lipidome it was 
possible to identify the effect of hypoxia on other cellu-
lar processes related to lipid metabolism such as UPR, 
thereby verifying interrelations between the different 
processes and protein secretion.
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Results and discussion
Hypoxia and fluconazole treatment do not exert 
synergistic effects on protein secretion
Previous studies cultivating P. pastoris under hypoxic 
chemostat conditions revealed that stringent hypoxia 
leads to bioreactor wash out [14]. To establish less severe 
working hypoxic conditions, which still result in respiro-
fermentative metabolism but prevent culture instability, 
P. pastoris producing Fab 2F5 was grown in glucose-lim-
ited chemostat cultures using different concentrations of 
oxygen in the inlet gas. The desired working hypoxic con-
dition was defined as the lower air flow that permitted a 
stable cell concentration, i.e. no washout in the bioreactor 
while significant amounts of ethanol and arabitol were 
present in the media, thereby indicating respirofermenta-
tive metabolic condition. Based on this preliminary series 
of chemostat experiments, permissive hypoxic conditions 
were established as defined in “Methods”.

Subsequently, a series of carbon-limited chemostat 
cultivations at a growth rate of 0.1 h−1 were performed. 
Cells were cultured under normal oxygen conditions 
(normoxia) and defined low oxygen conditions (hypoxia). 
To further explore the effect of hypoxia on lipid com-
position and its potential impact on protein secretion, 
the same series of chemostat cultivations were also car-
ried out in the presence of fluconazole in the growth 
medium, which was reported in previous studies to have 
beneficial effects on protein secretion [32]. The appropri-
ate fluconazole concentration was established in relation 
to cell mass allowing for the maximal protein secretion 
without compromising cell growth (see “Methods”). Cul-
tivations were analyzed in terms of biomass and specific 
Fab productivity (Table 1). As expected, ethanol and ara-
bitol were detected in the culture medium of hypoxic 
cultivations, biomass yield was reduced and respiratory 
quotient (RQ) was increased, indicating that cells were 
growing under respirofermentative conditions. Ethanol 
and arabitol specific production rates were lower than in 
previous hypoxic studies [22], pointing out less stringent 
hypoxic stress and providing true steady state conditions 
in the bioreactor (i.e. no wash out).

Specific Fab production rate in hypoxia was 2.9-fold 
higher than in normoxia, while fluconazole treatment 
increased protein secretion by 1.24-fold compared to 
normoxic conditions. These results were coherent with 
previously reported findings [14, 32], which revealed 
increased transcriptional levels from the glycolytic GAP 
promoter used to drive recombinant protein expression 
in P. pastoris, as well as increased protein secretion upon 
fluconazole treatment. Conversely, rather than a syner-
gistic effect, fluconazole treatment of hypoxic cultures 
resulted only in a 1.9-fold increased Fab productivity in 
relation to the reference normoxic condition, probably 

due to the additive effects of hypoxia and fluconazole 
impairing de novo sterol synthesis. Additionally, lower 
biomass yield under hypoxia resulted in a higher flucona-
zole to biomass ratio, i.e. different from the optimum 
established for highest Fab secretion in shake flask exper-
iments. In fact, these conditions led to a pseudo-steady 
state that ended up in the washout of the reactor after 
five residence times.

High Fab secretion yield is observed in all tested culture 
conditions
The amount of Fab present in the extracellular fraction 
(i.e. secreted Fab), soluble cytosolic fraction and insolu-
ble membrane fraction were quantified for all culture 
conditions. Thus, intracellular and extracellular dis-
tribution of the Fab within the cells were determined 
(Table 2). Under all conditions tested, the relative secre-
tion levels of Fab were above 85%, that is increased secre-
tion levels observed in hypoxia were not accompanied 
by higher intracellular Fab levels. Notably, the insoluble 
fraction, i.e. the membrane fractions of the cell including 
ER, plasma membrane contained almost no recombinant 
protein, indicating no intracellular protein accumulation 
in the ER due to misfolding/aggregation events or reten-
tion in the periplasmic space. Nevertheless, we cannot 
exclude the possibility that misfolded/aggregated Fab was 
efficiently removed by the ERAD pathway as reported 
previously [39].

Although secretion of heterologous proteins is liable to 
several bottlenecks that limit yield [6], these results sug-
gest that despite an increase in Fab synthesis under the 
selected hypoxic conditions, this was not enough to result 
in a stronger secretion limitation. This may indicate that 
membrane alterations due to hypoxic culture conditions 
favored protein secretion, avoiding intracellular accumu-
lation even when Fab production was increased.

Integrated transcriptomic‑lipidomic analysis of the 
hypoxia effect
Lipid composition of cell homogenates was determined 
for cells growing under normoxic and hypoxic condi-
tions. Previously published transcriptomic datasets for 
hypoxic conditions (Fig. 1) [23] were used together with 
the lipid profile alterations resulting from this culture 
condition.

Changes in fatty acid unsaturation were correlated 
with transcriptional changes of OLE1 encoding fatty acid 
desaturase
Relative amounts of fatty acids in cells were analyzed for 
different growth conditions. Under hypoxia, a change 
in the degree of unsaturation was given by a signifi-
cant increment of oleic acid (C18:1n-9, x:yn-z denotes 
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a fatty acid with x carbons and y double bonds in posi-
tion z counting from the methyl end) and a decrease of 
α-linolenic acid (C18:3n-3) species present in the cells 
(Fig. 2). Previous transcriptional analysis of the reference 
strain cultivated under hypoxic conditions indicated an 
upregulation of the O2-dependent Δ9-fatty acid desatu-
rase OLE1 (Fig.  1); this has been further confirmed by 
ddPCR for the Fab2F5-producing strain, showing a 1.4-
fold increase under hypoxia. Ole1p is involved in the bio-
synthesis of unsaturated fatty acids. In Saccharomyces 
cerevisiae, OLE1 gene is highly regulated in response to 
various environmental signals such as low temperature 
and hypoxic conditions through the sensor Mga2p [40, 
41], and to unsaturated fatty acid concentration through 
Spt23p. However, lack of SPT23 in P. pastoris may indi-
cate that this microorganism possesses an alternative 
gene for unsaturated fatty acid sensing, or it only regu-
lates fatty acid unsaturation through MGA2. Hence, 
reduced oxygen availability could explain the increase in 
the relative amounts of monounsaturated fatty acid, while 
the more energy and oxygen demanding generation of di- 
and tri-unsaturated fatty acids would be reduced [42]. 
The presence of oleic acid, a monounsaturated fatty acid, 
as the major fatty acid component, but not saturated fatty 
acids, may suggest that oleic acid plays a central role in 
maintaining membrane fluidity and, modulating protein 
secretion under hypoxia.

Changes in the phospholipid pattern correlate with the 
presence/absence of intracellular levels of free inositol 
and UPR upregulation under hypoxia
The most significant changes in phospholipid patterns 
observed as a result of hypoxic conditions were the signif-
icant increment of phosphatidylserine (PS), while phos-
phatidylinositol (PI) levels dropped in cells grown under 
this cultivation condition (Fig. 3). PI and PS are synthe-
sized by Pis1p and Cho1p, respectively, which compete 
for CDP-DG, making this metabolic branch an important 
point of regulation [43]. However, no significant changes 

at the transcriptomic level were observed for these two 
genes under hypoxia (Fig. 1). PS and PI are key determi-
nants of membrane surface charge. Both types of phos-
pholipids are anionic (charge -1), but they differ in their 
shape. PS is cylindrical shaped and preferentially forms 
flat bilayer structures, while PI has an inverted conical 
shape and forms structures with positive curvatures [44]. 
Uneven distribution of PS and PI causes variation of the 
electrostatic properties of the membrane creating as an 
example a highly charged cytosolic leaflet on the plasma 
membrane [45]. Membrane deforming domains are cru-
cial for protein membrane interactions. Moreover, some 
domains and proteins prefer PI rather than PS as inter-
action partners, making PI a major player on controlling 
a variety of cellular functions [46]. Thus, changes of the 
relative amounts of PI observed in cells growing under 
hypoxia can result in alterations of membrane interac-
tions and affect some cellular functions.

Inositol is a precursor of PI [47], and also a potent reg-
ulator of phospholipid metabolism in yeast. Inositol used 
in PI synthesis is either synthesized de novo through 
INO1, or obtained from the growth medium via the 
ITR1- and ITR2-encoded inositol transporters [43]. Our 
transcriptional dataset indicated that ITR1 transcript 
levels were highly downregulated under hypoxic condi-
tions, while ITR2 and INO1 were upregulated (Fig.  1). 
When the intracellular amount of inositol decreases, the 
level of OPI1, a negative regulator of a large number of 
phospholipid biosynthetic genes, is also reduced, favor-
ing transcription of a large variety of genes containing 
the “inositol-sensitive upstream activating sequence” 
(UASINO) [48]. Furthermore, phosphatidic acid, a pre-
cursor of most phospholipids, is also an important 
regulator of the OPI1 level within the cell [47]. In S. cer-
evisiae, Opi1p represses UASINO genes through direct 
interaction with the heterodimer Ino2p-Ino4p [49], 
while regulation of this biosynthetic pathway in P. pasto-
ris is still unclear due to the lack of INO2. Our transcrip-
tomic data indicate a downregulation of the OPI1 levels. 

Table 2  Distribution of the produced Fab 2F5

Values represent the mean ± SD

D dilution rate, qFab specific product formation rate

* p < 0.05 for the t tests compared to the normoxia culture
†   p < 0.05 for the t tests compared to fluconazole culture

Culture  
conditions

D (h−1) qFab  
(mgFab g−1

DCW
 h−1)

Fab expression (mgFab g−1
DCW

) %

Extracellular 
fraction

Cytosolic  
fraction

Membrane 
fraction

Total Secretion

Normoxia 0.094 ± 0.005 0.017 ± 0.008 0.254 ± 0.017 0.023 ± 0.001 0.005 ± 0.000 0.282 ± 0.017 90.1 ± 4.7

Hypoxia 0.092 ± 0.005 0.049 ± 0.012* 0.534 ± 0.007* 0.033 ± 0.002* 0.005 ± 0.001 0.572 ± 0.007 93.4 ± 1.6

Fluconazole 0.094 ± 0.006 0.021 ± 0.004 0.223 ± 0.004* 0.024 ± 0.002 0.007 ± 0.001* 0.254 ± 0.004 87.8 ± 2.1

Fluconazole + hypoxia 0.100 ± 0.006 0.033 ± 0.014 0.333 ± 0.015*† 0.039 ± 0.002*† 0.012 ± 0.001*† 0.384 ± 0.015 86.8 ± 5.3
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However, only the UASINO gene INO1 was upregulated 
under hypoxia, while no significant changes in other 
genes containing the UASINO element were observed. 
Furthermore, relative amounts of PS and PE increased 
under hypoxia (Fig.  3). The observed changes in the 
phospholipid pattern may be related to the decreased 
amount of inositol availability in cells growing under 
hypoxic conditions. It is known that cells growing in the 

absence of inositol contain a low PI content that may 
result in UPR pathway activation [50]. Moreover, the 
transcriptional factor Hac1p, mediates the activation of 
the UPR, negatively regulates the activity of Opi1p and, 
in turn, it also plays a role in the regulation of phospho-
lipid biosynthesis [51]. Under hypoxic conditions, HAC1 
was upregulated, thus favoring UPR [23]. Moreover, UPR 
upregulation by hypoxia has been further confirmed in 
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Fig. 2  Cellular fatty acid composition. Fatty acid composition (% of total) of P. pastoris cells producing the Fab 2F5 and growing under normoxic or 
hypoxic conditions in the presence or absence of fluconazole. Data represent mean values ± SD from triplicates. *p < 0.05 for the t tests

Fig. 3  Cellular phospholipid composition. Phospholipid composition (% of total phospholipids) of the cells growing under normoxic or hypoxic 
conditions, in the presence or absence of fluconazole. PC phosphatidylcholine, PA phosphatidic acid, PI phosphatidylinositol, PS phosphatidylser‑
ine, Lyso-PL lysophospholipids, PE phosphatidylethanolamine, CL cardiolipin, DMPE dimethyl phosphatidylethanolamine. Data represent mean 
values ± SD from duplicates. *p < 0.05 for the t tests comparing phospholipid detected values
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this study by measuring transcriptional levels of HAC1, 
ERO1 and PDI1 genes by ddPCR, which were increased 
3-, 2.5- and 2-fold, respectively, under hypoxia. High lev-
els of Hac1p may result in the upregulation of INO1 [51]. 
Subsequently, the UPR pathway could be part of a gener-
alized stress response occurring when cells are deficient 
in inositol [52].

Accumulation of misfolded proteins in the ER activates 
the UPR [1, 53–55]. Such response is mediated by Ire1p. 
In addition, Ire1p can also sense lipid stress through an 
alternative activation process [56]. In particular, Ire1p 
senses changes in the biophysical properties of mem-
branes by sensing the ratio of unsaturated to saturated 
acyl chains through their transmembrane domains [57] 
and it also responds to low inositol levels activating UPR 
[51]. Furthermore, Ire1p is required for the expression of 
INO1 in the absence of exogenous inositol [58]. As our 
data suggest that hypoxic conditions alter lipid composi-
tion of the cells, mainly through the oxygen-dependent 
reactions (fatty acid desaturation, ergosterol and sphin-
golipid biosynthesis) and drop of inositol levels, these 
changes may be sensed by Ire1p, thereby activating the 
UPR, affecting lipid metabolism, membrane biogenesis 
and protein secretion.

Ergosterol content is reduced due to hypoxic conditions
Ergosterol is a component required to maintain mem-
brane integrity and it is essential for cell viability [59]. 
Under hypoxic conditions, genes of the ergosterol path-
way were highly upregulated (Fig.  1), correlated with 
a tendency for reduced ergosterol content (Table  3). 
Coherently, transcriptional analysis by ddPCR of ERG11 
and ERG25 genes for the Fab2H5-producing strain show 
about 2.6- and 2.1-fold increase under hypoxia, respec-
tively. However, no regulation at the transcriptomic level 
was observed for the transcription factor Upc2p, respon-
sible for the transcriptional activation of genes involved 
in the sterol biosynthetic pathway [60]. Sharma [27] sug-
gested an adaptive response to altered sterol structures 

through changes in the lipid composition and fluidity 
that could occur upon sterol deprivation. For instance, 
yeast cells adjust their sphingolipid content in response 
to changes in ergosterol content, which in turn may result 
into changes of the entire lipid composition [26, 61] lead-
ing to a beneficial effect on protein secretion, as it will be 
further discussed below.

Non‑polar lipids accumulate under hypoxic conditions due 
to inositol depletion
The regulatory interplay and metabolic interrelation 
between storage lipids, i.e. triacylglycerols (TG), and 
membrane lipids, i.e. phospholipids, have been recog-
nized as an important determinant of cellular growth and 
proliferation in S. cerevisiae [62, 63]. Hypoxic conditions 
resulted in significantly high levels of TG (Table  4). TG 
synthesis from phosphatidic acid by the action of Pah1p, 
upregulated in hypoxia, may be trigged by low levels 
of inositol in S. cerevisiae [64]. Moreover, it has been 
reported that changes in glucose metabolism caused 
by the shift from respiratory to respirofermentative 
metabolism can also affect non-polar lipid homeostasis 
in this yeast by changing activity of TG lipases [65]. The 
enzymes Nte1p and Lro1p, which turned out to be upreg-
ulated in hypoxia, catalyze reactions that either directly 
or indirectly promote synthesis of TG and contribute to 
the adjustment of the composition of membrane phos-
pholipids [65].

Sphingolipids with long fatty acyl moieties increase 
upon hypoxia
Limited availability of oxygen also caused significant 
changes on the sphingolipid content of P. pastoris. 
Sphingolipids, apart from their function defining mem-
brane structure, associate with ergosterol to form micro-
domains (“lipid-rafts”), and also play a role as second 
messengers [66]. The sphingolipid pathway was highly 
upregulated under hypoxic conditions, as many of the 
reactions require oxygen (Fig. 1). This was further verified 

Table 3  Cellular sterol composition

Sterol composition of cells growing under normoxic or hypoxic conditions, in the presence or absence of fluconazole

n.d. not detectable. Values represent the mean ± SD of triplicates

* p < 0.05 for the t tests compared to the normoxia culture
†   p < 0.05 for the t tests compared to fluconazole culture

Culture conditions µg sterol/mg total protein

Squalene Lanosterol Ergostadienol 4-Methyl zymosterol Zymosterol Fecosterol Episterol Ergosterol

Normoxia n.d. n.d. n.d. 0.89 ± 0.36 0.75 ± 0.44 n.d. 0.17 ± 0.05 8.84 ± 1.98

Hypoxia n.d. 0.14 ± 0.00 n.d. 0.80 ± 0.18 0.52 ± 0.23 n.d. 0.38 ± 0.19 6.21 ± 1.20

Fluconazole n.d. 1.39 ± 0.51* 0.21 ± 0.06 n.d. 0.10 ± 0.05 0.78 ± 0.39 0.18 ± 0.05 6.43 ± 1.24

Fluconazole + hypoxia 0.18 ± 0.07 5.06 ± 0.57*† 0.77 ± 0.35 n.d. 0.58 ± 0.41 0.90 ± 0.25 0.94 ± 0.47*† 7.71 ± 1.54
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by ddPCR transcriptional analysis of the SUR2 gene, 
which appeared to be fourfold upregulated in Fab2F5-
producing cells growing in hypoxia. The relative amount 
of some sphingolipid species was altered under hypoxic 
conditions (Fig.  4). Specifically, amounts of ceramides 
with di- and tri-unsaturated long chain base moieties (i.e. 
18:2;2, x:y;z denotes a sphingobase or a fatty acid with 
x carbons and y double bonds and z hydroxyl groups) 
decreased, which is consistent with the previously men-
tioned observation that fewer polyunsaturated fatty acids 
were present under hypoxia. An increase of ceramides 

carrying methylated moieties was also observed. Notably, 
the level of ceramide 18:0;3/26:0;1 doubled even though 
the elongation complex responsible for the synthesis of 
very long chain fatty acids (FEN1, SUR4, TSC13) [67], 
was not upregulated under hypoxia. Hypoxia had also 
an effect on inositol containing sphingolipids, reducing 
relative amounts of C42 (i.e. containing C24 fatty acids) 
species and favoring the content of C44 species (i.e. con-
taining C26 fatty acids). These results may suggest that 
increasing sphingolipid species with longer fatty acid 
chains present in membranes under hypoxic conditions 
could be the way cells adapt to ergosterol and inositol 
depletion under the culture conditions. It is known that 
lipid rafts serve as sorting platforms for proteins destined 
to the cell surface and are involved in cell trafficking [26, 
68]. Thus, changes in the sphingolipid and ergosterol 
content forming these lipid rafts could alter membrane 
properties, and eventually determine the beneficial effect 
on Fab secretion.

Fluconazole treatment reduces the ergosterol content 
but results in a lipid profile different from the hypoxic 
condition
Fluconazole is an azole antifungal agent that blocks the 
ergosterol biosynthesis pathway by inhibiting the Erg11p 

Table 4  Neutral lipid composition

Values represent the mean ± SD of triplicates

TG triacylglycerol, SE sterol esters

* p < 0.05 for the t tests compared to the normoxia culture
†   p < 0.05 for the t-tests compared to fluconazole culture

Culture conditions µg lipid/mg total protein

TG SE

Normoxia 92.9 ± 26.0 6.89 ± 1.40

Hypoxia 156.4 ± 32.6 9.38 ± 0.50*

Fluconazole 149.7 ± 28.6 4.57 ± 2.32

Fluconazole + hypoxia 479.9 ± 54.7*† 6.37 ± 2.49

Fig. 4  Sphingolipid composition. Sphingolipid analysis of cells growing under normoxic or hypoxic conditions in the presence or absence of 
fluconazole. Sphingolipid molecular species of ceramides (Cer), hexosylceramides (HexCer), inositolphosphorylceramides (IPC), mannosyl-inosi‑
tolphosphorylceramides (MIPC) and mannosyl-diinositolphosphorylceramides (M(IP)2C) are shown. Species are expressed as long-chain-base/fatty 
acyl. LCB and fatty acyls are expressed as number of carbons: number of C–C double bonds; number of hydroxyl groups. *p < 0.05 for the t tests
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activity resulting in ergosterol depletion [69]. Flucona-
zole treatment was used to reduce the ergosterol level, 
aiming to mimic the effect caused by hypoxia as previ-
ously reported [32]. Fluconazole treated cells contained 
low relative amounts of monounsaturated fatty acids 
from hypoxic cells (Fig.  2). They also exhibited a sig-
nificant increase in the relative amounts of PC and PS 
(Fig. 3). The reduction of the ergosterol content was simi-
lar to cells cultured under hypoxia (Table 3), and resulted 
in the accumulation of ergosterol precursors such as 
lanosterol. Accumulation of lanosterol and other sterol 
precursors in cells treated with fluconazole has been 
previously reported for other yeasts [70, 71]. The sphin-
golipid content of fluconazole treated cells was character-
ized by reduced amounts of ceramides species containing 
dihydrosphingosine and a significant increase of relative 
levels of ceramides species comprised of phytosphingo-
sine and C24-C26 fatty acyls (Fig. 4). Additionally, the TG 
content (Table 4) increased in fluconazole treated cells to 
similar levels as in hypoxic conditions.

Although both fluconazole treatment and hypoxic cul-
tivation conditions resulted in a marked reduction of 
ergosterol, lipidome analyses revealed that cells grown 
under these two conditions displayed significant differ-
ences in the profiles of sphingolipids, phospholipids and 
fatty acids. Interestingly, changes in the lipid composition 
due to fluconazole treatment increased the specific Fab 
secretion rate by 1.24-fold, whereas hypoxia lead to a 2.9-
fold increase. This observation may be explained by the 
fact that both fluconazole treatment and hypoxic adapta-
tion although resulting in low ergosterol content seem to 
provoke pleiotropic and distinct effects (Fig. 5) in the rest 
of the lipid metabolic network. Moreover, our analyses 
showed that there was no synergistic effect of fluconazole 
and hypoxic conditions boosting Fab secretion.

Conclusions
In the current study, the lipidomic profile of a strain 
of P. pastoris producing a recombinant protein under 
normoxic and reduced oxygen availability (hypoxia) 
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conditions has been studied. Our results demonstrated 
regulation of lipid metabolism at the global scale 
during physiological adaptation to limited oxygen 
availability, yielding new insight on membrane lipid 
remodeling under hypoxia and its correlation with 
improved protein secretion. Based on the results, we 
postulate that the observed reduction of ergosterol and 
inositol levels (PI) in cells grown under hypoxia led to 
lipid stress sensed by UPR. The cellular response on 
the lipid content included increased storage associated 
TG species, changes in the PS level and in sphingolipid 
species.

The results presented here reveal a positive correla-
tion between reduced ergosterol levels and recombi-
nant protein secretion in cells growing under hypoxia 
and treated with fluconazole. Moreover, our results 
indicate further changes in the cellular lipid content as 
a result from the different culture conditions, such as 
reduction of the ergosterol content accompanied by an 
increment of TG, reduction of PI levels and changes on 
sphingolipid content, all of them being positively corre-
lated with increased protein secretion. In this context, 
recent studies in our laboratory show that disruption 
of specific genes (e.g. SUR2) encoding for sphingolipids 
species result in significantly increased recombinant pro-
tein secretion levels [72], thereby confirming the inter-
play between membrane lipid metabolism and protein 
secretion.

In addition, activation of UPR under hypoxic conditions 
reflects an important interplay between lipid metabo-
lism and protein secretion processes. Importantly, UPR 
induction by hypoxia—previously observed in both a 
reference and a Fab3H6-producing strain [23]—does not 
seem to be strain-specific, as it has also been observed in 
this study with the Fab2F5-producing strain. Importantly, 
Gasser and co-workers [73] observed that Fab2F5 over-
expression led to the induction of UPR marker genes, 
although not to the same magnitude as overexpression 
of the UPR transcription factor Hac1p from S. cerevisiae. 
Also, they were able to improve Fab2F5 production by 
HAC1 overexpression (1.3-fold) and PDI overexpression 
(1.9-fold) [74], already pointing at some degree of limita-
tion in secretion taking place in this strain. Therefore, our 
results indicate that hypoxia was able to increase further 
transcriptional levels of UPR marker genes. Future stud-
ies should allow us to challenge the system for hypoxic 
growth under even stronger secretory-limiting condi-
tions (e.g. with strains containing different dosages of 
Fab2F5 expressing cassettes), providing a model to gain 
new insights on the mechanism underlying the hypoxic 
effect on protein secretion.

Methods
Strain
A P. pastoris X-33 strain expressing the light and heavy 
chain of the human Fab 2F5 antibody fragment was used 
in this study. The antibody fragment was expressed under 
the constitutive GAP promoter and with the S. cerevi-
siae α-mating factor signal sequence for secretion. The 
construction of the P. pastoris X-33/pGAPZαA-Fab2F5 
strain has been previously described [74], and shown 
to contain multiple copies of the expression cassette (B. 
Gasser, BOKU, personal communication).

Chemostat cultivation
Chemostat cultivations were performed in a 2-L Bio-
stat B bench-top bioreactor (Braun Biotech, Melsungen, 
Germany) at a working volume of 1 L. Cells were grown 
under glucose-limited conditions at a constant dilu-
tion rate (D) of 0.1 ±  0.01 h−1 using a peristaltic pump 
(Ismatec, IDEX Health & Science, Germany) to control 
the feeding. Cultivations were performed using the batch 
and chemostat medium compositions detailed elsewhere 
[75], with minor differences detailed below. 50 g glucose, 
1  mL biotin (0.2  g L−1), 1.6  mL PTM1 trace salts stock 
solution [75], and 0.2  mL of antifoam Glanapon 2000 
(Bussetti & Co GmbH, Vienna, Austria) were added per 
liter of chemostat medium. Culture conditions were 
monitored and controlled at pH 5.0 by addition of 15% 
(v/v) ammonium hydroxide, temperature of 25 °C, vessel 
pressure of 1.2 bars, a total gas flow of 1 vvm and pO2 
above 20% saturation during the batch phase by control-
ling the stirring rate up to 900 rpm, while it was kept con-
stant at 700  rpm during the continuous phase. Samples 
were taken for each physiological steady state condition 
after five residence times (specifically, at the end of the 
sixth residence time). Online concentrations of the O2 
and CO2 in the exhaust gas of the bioreactor cultivations 
were determined after being cooled in a condenser (4 °C), 
dried with two silica gel columns and subsequently ana-
lyzed using specific O2 and CO2 sensors (BCP-CO2 and 
BCP-O2. BlueSens, Germany).

Hypoxic conditions
Cells were grown in chemostat cultures as described in 
“High Fab secretion yield is observed in all tested culture 
conditions”, using different concentrations of oxygen in 
the inlet gas, ranging from 8.03 to 4.02%. The oxygen sup-
ply was adjusted by partially replacing airflow with a flow 
of N2. Biomass, glucose, ethanol and arabitol concentra-
tions were measured in the steady state for each oxygen 
condition. The desired working hypoxic condition was 
defined as the lower airflow that permitted a stable cell 
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concentration (i.e. no washout in the bioreactor) while 
significant amounts of ethanol and arabitol were present 
in the media, thereby indicating respirofermentative met-
abolic condition. Based on this preliminary series of che-
mostats, a mixture of 0.25 L min−1 air and 0.75 L min−1 
of N2 in the inlet gas were selected, corresponding to a 
qp of ethanol and arabitol of 0.434 mmolEtOH g−1

DCW  h−1 
and 0.048  mmolArab  g−1

DCW  h−1, respectively. Once hav-
ing established the hypoxic condition, chemostat culti-
vations were performed in both normoxic and hypoxic 
conditions.

Fluconazole treatment
The optimal amount of fluconazole in relation to cell 
mass allowing for the maximal protein secretion was 
established. Cells were cultured in shake flasks for 24  h 
in the presence of different concentrations of fluconazole. 
The amount of Fab secreted was related to the ratio of 
fluconazole per final biomass. A value of 80 µg flucona-
zole per gDCW turned out to be the optimal adjustment, 
leading to a 1.5-fold increase in yield of secreted Fab. The 
volume of fluconazole necessary for chemostat cultures 
was calculated by scaling up the obtained optimal ratio of 
fluconazole per biomass. Hence, an initial pulse of 320 µL 
of a fluconazole stock solution (5  mg  mL−1) was added 
to the bioreactor at the end of the batch phase to achieve 
the working fluconazole concentration of 80 μg g g−1

DCW . 
Fluconazole levels were maintained along the chemo-
stat cultivation by adding 2 mg of fluconazole per liter of 
feeding medium.

Analytical methods
Biomass concentration of the cultivations was deter-
mined as dry cell weight (DCW) using a method 
described [76]. Determinations were performed in trip-
licate and the relative standard deviations (RSD) were 
under 4%. Glucose, glycerol, ethanol, arabitol and organic 
acids (i.e. citric acid and acetic acid) concentrations were 
determined by HPLC as described [76]. Determinations 
were performed in triplicate and the RSD was calculated 
to be below 1%. Fab 2F5 concentration was measured by 
ELISA as described previously [32]. Determinations were 
performed in triplicate, and RSD was about 4%.

Cell disruption and protein extraction
Cells from the cultures were harvested by centrifugation 
(4500g, 4  °C, 3 min), washed twice in cold PBS (pH 7.0) 
and disrupted as reported [76]. Briefly, cells were resus-
pended in ice-cold breaking buffer (PBS, 1  mM phe-
nylmethylsulfonyl fluoride (PMSF)), and mechanically 
disintegrated (two cycles, 2 kbar, 4 °C) using a Constant 
Systems One-Shot cell disrupter (Daventry, Northants, 
UK). Cell numbers were determined by means of flow 

cytometry. After disruption the cell lysate was clarified by 
centrifugation (15,000g, 4 °C for 30 min). The supernatant 
was collected as soluble cytosolic fraction. The remaining 
pellet was resuspended with solubilization buffer (10% 
(w/v) glycerol, 20  mM HEPES pH 7.0, 100  mM NaCl, 
1 mM PMSF [77], 1% (w/v) CHAPS), incubated overnight 
gently mixing at 4 °C to extract the insoluble protein, and 
centrifuged (2300g, 4  °C, 5  min). The supernatant was 
collected as the insoluble membrane fraction.

Lipid analysis
Cell homogenates were obtained and lipids were 
extracted according to Folch et  al. [78]. The obtained 
amounts for all lipids were related to 1 mg total cell pro-
tein. Fatty acid, sterol, non-polar lipid and phospholipid 
composition of cell homogenates were determined as 
previously described [33]. Phospholipid determinations 
were performed in duplicate while the rest of lipid spe-
cies were determined in triplicate.

Analysis of sphingolipid molecular species was per-
formed by liquid chromatography-mass spectrometry. 
For lipid extraction, 100  mg frozen aliquots of cell wet 
pellets were processed as previously described in [33]. 
Ultra-Performance Liquid Chromatography® (UPLC®; 
Waters Corp., Milford, MA, USA) molecular species 
separation and chip-based nanoelectrospray ioniza-
tion (TriVersa Nanomate®; Advion, Ithaca, NY, USA) 
were performed as previously described in [79]. Fun-
gal sphingolipid molecular species were detected with 
a 4000 QTRAP® tandem mass spectrometer (AB Sciex, 
Framingham, MA, USA) by monitoring the transitions 
applied in [33]. RSD of the method was never higher than 
20%.

Transcriptional analysis by droplet digital PCR (ddPCR)
The transcriptional levels of the selected set of marker 
genes for UPR (HAC1, ERO1 and PDI1), ergosterol syn-
thesis (ERG11 and ERG25), fatty acid metabolism (OLE1 
and FFA1) and sphingolipid synthesis (SUR2) was deter-
mined by ddPCR quantification of mRNA levels from 
total RNA extracts. To normalize data, the house-keep-
ing gene β-actin (ACT1) was selected. For cDNA ampli-
fication, a set of primers for the target genes plus ACT1 
were designed (Additional file 1: Table S1).

For each culture condition (normoxic and hypoxic), 
5-mL samples were mixed with 2.25  mL of chilled 5% 
(v/v) phenol solution in absolute ethanol and centrifuged 
at 16,000g for 5  min and 4  °C. Resulting pellets were 
stored at −80  °C. RNA extraction was performed with 
the RNeasy MiniKit (Qiagen)-iScriptTM. The cDNA 
Synthesis kit (Bio-Rad) was used for reverse transcrip-
tion of RNA. Both procedures were carried out following 
the manufacturer’s protocol. RNA quality was assessed 
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by measuring the 260/280 nm ratio with Nanodrop 1000 
(Thermo Fisher Scientific).

The reaction mix used for ddPCR contained: 11.25 μL 
of QX200TM ddPCR TM EvaGreen Supermix, 200  nM 
of forward primer, 100 nM of reverse primer, 2.25 ng of 
cDNA and Dnase/Rnase-free water up to 22.5  μL as a 
total reaction volume. Droplet formation was carried 
out using the Droplet Generator QX200TM and further 
transferred into a 96-well plate. Reactions were incubated 
at 95  °C for 10  min, followed by denaturation step at 
95 °C for 30 s and an annealing/extension step at 57.4 °C 
for 1 min for a total of 40 cycles. Droplets were detected 
using the QX100 Droplet Digital PCR System and the 
software QuantaSoft v. 1.5.38 (Bio-Rad). Positive droplets 
were normalized for each sample using actin as house-
keeping gene.

Normalized mRNA levels of the marker genes were 
calculated for each sample in duplicate by calculating the 
ratio between positive droplets of the marker gene and 
ACT1 reactions. Reagents for ddPCR were purchased to 
Bio-Rad (Hercules, CA, US), whereas primers were syn-
thesized by Biomers (Ulm, Germany).

Droplet digital PCR results are summarized in the 
Additional file 1: Table S2.

Statistical analysis
Experimental data obtained from chemostat experiments 
was verified using standard data consistency and recon-
ciliation procedures [80, 81], under the constraint that 
the elemental conservation relations are satisfied. For all 
chemostat cultivations performed, the statistical consist-
ency test was passed at a confidence level of 95%, and 
consequently there was no indication of gross measure-
ment errors. Principal component analysis (PCA) was 
performed as described elsewhere [24]. Data are shown 
as mean ±  standard deviation (SD). The statistical sig-
nificance was estimated by Student’s t test (two-tailored, 
unpaired) with Microsoft’s Excel Analysis ToolPak. A sta-
tistically significant difference was considered when the p 
value was lower than 0.05.
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