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Abstract 

Background:  Glutamate is of great importance in food and pharmaceutical industries. There is still lack of effective 
statistical approaches for fault diagnosis in the fermentation process of glutamate. To date, the statistical approach 
based on generalized additive model (GAM) and bootstrap has not been used for fault diagnosis in fermentation 
processes, much less the fermentation process of glutamate with small samples sets.

Results:  A combined approach of GAM and bootstrap was developed for the online fault diagnosis in the fermenta-
tion process of glutamate with small sample sets. GAM was first used to model the relationship between glutamate 
production and different fermentation parameters using online data from four normal fermentation experiments of 
glutamate. The fitted GAM with fermentation time, dissolved oxygen, oxygen uptake rate and carbon dioxide evolu-
tion rate captured 99.6 % variance of glutamate production during fermentation process. Bootstrap was then used 
to quantify the uncertainty of the estimated production of glutamate from the fitted GAM using 95 % confidence 
interval. The proposed approach was then used for the online fault diagnosis in the abnormal fermentation processes 
of glutamate, and a fault was defined as the estimated production of glutamate fell outside the 95 % confidence 
interval. The online fault diagnosis based on the proposed approach identified not only the start of the fault in the 
fermentation process, but also the end of the fault when the fermentation conditions were back to normal. The pro-
posed approach only used a small sample sets from normal fermentations excitements to establish the approach, and 
then only required online recorded data on fermentation parameters for fault diagnosis in the fermentation process of 
glutamate.

Conclusions:  The proposed approach based on GAM and bootstrap provides a new and effective way for the fault 
diagnosis in the fermentation process of glutamate with small sample sets.
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Background
Batch fermentation has been widely used in food, chemi-
cal and pharmaceutical industries to produce products 
of high value and low yield [1–4]. Online fault diagno-
sis of fermentation processes is of critical importance to 

ensure safe operation and stable yield of the final product. 
Even small faults on process parameters can decrease the 
quality and yield of final products. Early diagnosis of the 
behavior of abnormal process allows timely and corrective 
actions to be taken that not only can reduce the number 
of rejected batches, but also prevent the adverse effects 
on product quality and yield, and accidents [5, 6]. Fault 
diagnosis approaches in batch fermentation are needed 
to ensure the process and associated parameters within 
acceptable operation conditions [1, 7–9]. The dynamic 
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behavior, strong nonlinearity, batch variations and multi-
plicity of operation phases make the fault diagnosis of the 
batch fermentation process very challenging [5, 10–13].

Multivariate statistical approaches such as multi-way 
principal component analysis (MPCA) and multi-way 
partial least-squares (MPLS) have been developed for 
fault diagnosis in batch fermentation processes [14–16]. 
But, the MPCA and MPLS methods have deficiency 
in solving problems with non-linear features [14–17]. 
These methods are based on the assumptions that the 
entire process data come from a single operation phase 
and the batch wise unfolded data follow a multivariate 
Gaussian distribution. Other statistical methods such 
as Kernel function based nonlinear PCA (KPCA), artifi-
cial neural networks (ANN) and support vector machine 
(SVM) have also been developed for fault diagnosis in 
fermentation processes [17–19]. These methods have 
the advantage to deal with fault problems in fermenta-
tion processes with nonlinear characteristics [20–22]. 
However, these methods are slow in fault detection in 
response to fault appearance and have random criteria 
for fault determination, which prevent their applications 
in fault diagnosis in fermentation processes [17]. In addi-
tion, these methods need substantial data to construct 
the model with a good performance for the fault diagno-
sis in fermentation process [23, 24], which are not suit-
able for small sample batch processes that cannot provide 
substantial training data. It is essential to further develop 
new and effective approaches for fault diagnosis in batch 
fermentation process.

Generalized additive model (GAM) is a statistical 
model for blending properties of generalized linear mod-
els with additive models [25–28]. GAM is a flexible and 
effective method for investigating non-linear relation-
ships between the response and the set of explanatory 
variables with less restrictions in assumptions about 
the data distribution [29]. The model assumes that the 
dependent variables are dependent on the univari-
ate smooth terms of independent variables rather than 
independent variables themselves [29]. GAM has been 
applied to investigate trends in water quality [30, 31], 
organic carbon content in soil [32] and factors affecting 
microcystin cellular quotas in the lake [29].

Bootstrap or bootstrap re-sampling was introduced as 
a computer-based method to calculate confidence inter-
vals for parameters in circumstances where standard 
methods cannot be applied [33, 34]. It can draw a large 
number of re-sampled data from original data and it 
depends on fewer assumptions than classical statistical 
methods. Bootstrap can increase the robustness of fitted 
model in which a group of re-sampled data can be sto-
chastically re-arranged to improve generalization capa-
bility of the fitted model [35–38]. Bootstrap methods are 

also an alternative for cross-validation in regression pro-
cedures when the number of observations is quite small 
and a validation set cannot be constructed from the orig-
inal dataset [34, 39]. Bootstrap is very useful in solving 
problems that are too complicated for traditional statisti-
cal analysis [34]. Bootstrap has been used in signal-pro-
cessing applications such as computer-aided diagnosis in 
breast ultrasound [34] and signal detection [37], spectral 
interval selection [39], and testing fundamental hypoth-
eses in ecology [40].

Glutamate is widely used in food and pharmaceutical 
industries, with the production exceeds 2.2 million tons 
per year [41, 42]. However, there is still lack of effective 
statistical approaches for fault diagnosis in batch fer-
mentation process of glutamate. A hybrid support vec-
tor machine and fuzzy reasoning based fault diagnosis 
system has been developed for glutamate fermentation, 
but this can only cluster the faults into three catego-
ries (shortage, medium and excess) based on initial bio-
tin content variation [17]. To date, the approach based 
on GAM and bootstrap has not been used for the fault 
diagnosis in fermentation processes, much less the fer-
mentation process of glutamate with small samples. In 
previous work, we successfully applied the GAM method 
to optimize the fermentation process of glutamate with 
improved production of glutamate [43]. In this study, a 
combined approach of GAM and bootstrap was devel-
oped for the online fault diagnosis in the fermentation 
process of glutamate with small sample sets. GAM was 
first used to model the relationship between glutamate 
production and different fermentation parameters using 
data from normal fermentation experiments of gluta-
mate. The fitted GAM with fermentation time (T), dis-
solved oxygen (DO), oxygen uptake rate (OUR) and 
carbon dioxide evolution rate (CER) captured 99.6  % 
variance of glutamate production during fermentation 
process. Bootstrap re-sampling was then used to quantify 
the uncertainty of the estimated production of glutamate 
from the fitted GAM using 95 % confidence interval. The 
proposed approach based on GAM and bootstrap was 
used for the online fault diagnosis in the abnormal fer-
mentation processes of glutamate, and a fault was defined 
as the estimated production of glutamate fell outside the 
95 % confidence interval.

Results and discussion
Model construction
The offline data on glutamate production and the online 
data on different fermentation parameters for model con-
struction and validation were collected from five nor-
mal fermentation experiments of glutamate (Fig.  1). In 
the normal fermentation experiments, the production 
of glutamate increased in a non-linear way during the 
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fermentation process with the final production of glu-
tamate between ~75 and ~85 g/L (Fig. 1a). The levels of 
CER increased from ~50 to ~170 mol/m3 h−1 during the 

early period from 4 to 7 h, and then dropped to ~40 mol/
m3  h−1 (Fig.  1b). The levels of DO of the five normal 
experiments were between ~10 and ~55 % (Fig. 1c). The 

Fig. 1  Data from five normal fermentation experiments of glutamate. a the offline data on glutamate production that were measured every 2 h 
during the fermentation process; the online data on (b) carbon dioxide evolution rate (CER), c dissolved oxygen (DO), d oxygen uptake rate (OUR), e 
pH, f stirring speed (SS) and g temperature (Temp) that were recorded every 6 min during the fermentation process
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changing trend of OUR during the formation period 
was similar to that of CER (Fig.  1d), which confirmed 
the previous observation that there was a strong link 
between OUR and CER during the fermentation process 
of glutamate [24]. The pH of the five normal experiments 
was  ~7.1 (Fig.  1e), the stirring speed was between 400 
and 900 rpm (Fig. 1f ), and the temperature was between 
31.8 and 32.4 °C (Fig. 1g) during the fermentation period.

The training data from four randomly selected experi-
ments were used to construct GAM and GLM. The fit-
ted GAM showed a GCV score of 4 and an adjusted R2 
of 0.996 while the fitted GLM showed a GCV score of 44 
and an adjusted R2 of 0.940 (Table 1). This indicates that 
GAM was better than GLM in modeling the relationship 
between glutamate production and different fermenta-
tion parameters. The fitted GAM was defined as:

And, the fitted model defined by Eq.  (1) can capture 
99.6  % variance of glutamate production. The perfor-
mance of the fitted model was not significantly (P > 0.05) 
enhanced by including the remaining three fermenta-
tion parameters stirring speed, pH and temperature. This 

(1)
Glutamate = 47.35+ s(T , 7.96)+ s(DO, 2.34)

+ s(OUR, 3.00)+ s(CER, 3.71)

suggests that the production of glutamate was mainly 
attributed to the smooth functions of the four fermen-
tation parameters T, DO, OUR and CER when GAM 
approach was used to model the relationship. And thus, 
the fitted GAM with the four significant factors T, DO, 
OUR and CER was used to estimate the production of 
glutamate for online fault diagnosis.

Following diagnosis was conducted to check the validity 
of the fitted GAM defined by Eq.  (1). The sampled data 
and residuals generated by the fitted GAM were close to 
normal distribution (Fig. 2a, b), suggesting the model fol-
lowed the assumption required by Eq.  (2). The residuals 
appeared as random scatters around zero without particu-
lar trend and pattern (Fig. 2c). This indicates there were 
no system errors due to the fitted GAM and the capability 
of the model to describe the effect of different parameters 
on the production of glutamate. There were no obvious 
influential outliers between estimated and measured val-
ues of glutamate production (Fig.  2d). The performance 
of the fitted GAM was also confirmed by the testing data. 
The measured values and estimated values on glutamate 
production from the fitted GAM using testing data was 
significantly correlated (P < 0.01), with a correlation coef-
ficient of 0.996 and a root mean square error of 4.16 g/L.

Bootstrap re‑sample and confidence interval for glutamate 
production
The fitted GAM was used to estimate glutamate produc-
tion during fermentation process using online recorded 
data of the four fermentation parameters (T, CER, DO 
and OUR) from five normal fermentation experiments. 
The uncertainty of the estimated glutamate production 
was then quantified using 95 % confidence interval, which 
were estimated from 1000 GAMs built by bootstrap re-
sampling with replacement from the training data on glu-
tamate production and fermentation parameters (Fig. 3). 
It was evident that the estimated glutamate production 
from the fitted GAM using online recorded data of fer-
mentation parameters from the five normal fermentation 
experiments all fell within the 95  % confidence interval 
for glutamate production; in addition, the means for 
glutamate production during fermentation process that 
were estimated from 1000 GAMs built by bootstrap re-
sampling with replacement from the training data on 
glutamate production and fermentation parameters were 
within the estimated glutamate production from the five 
normal fermentation experiments. Therefore, online 
fault diagnosis in the fermentation process of glutamate 
was established by defining a fault when the estimated 
glutamate production from the fitted GAM fell outside 
the 95 % confidence interval using online recorded data 
of the four fermentation parameters (T, CER, DO and 
OUR) during the fermentation process.

Table 1  The generalized linear model and  generalized 
additive model constructed by training data

Data in parentheses represent standard errors of the parametric functions

T fermentation time, DO dissolved oxygen, OUR oxygen uptake rate, CER carbon 
dioxide evolution rate, SS stirring speed, Temp temperature, GCV generalized 
cross-validation

* P < 0.05

** P < 0.01

*** P < 0.001

Generalized linear model Generalized additive model

Estimates for parametric functions

 Intercept 1466* (573) 47.35*** (0.22)

 T 2.64*** (0.19) –

 DO 0.02 (0.08) –

 OUR −0.01 (0.07) –

 CER −0.06* (0.09) –

 SS 0.01 (0.02)

 pH −3.01 (23.69) –

 Temp −45.16* (17.70)

Degrees of freedom for smooth terms

 s(T) – 7.96***

 s(DO) – 2.34**

 s(OUR) – 3.00**

 s(CER) – 3.71***

 Adjusted 
R2

0.940 0.996

 GCV score 44 4
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Fault diagnosis during fermentation process
Based on the 95 % confidence interval for glutamate pro-
duction, when there is abnormal during fermentation 
process, the estimated production of glutamate from the 
fitted GAM using online recorded data of the fermen-
tation parameters will fall outside the 95  % confidence 
interval, and an alarm to check the abnormal parameters 
can be issued immediately to avoid the decrease in the 
quality and production of glutamate due to fault accu-
mulation. To demonstrate this, the fault diagnosis was 
conducted on two abnormal fermentation experiments of 
glutamate.

The fault diagnosis was firstly conducted on the abnor-
mal fermentation experiments of glutamate with the fault 
source from stirring speed (Fig. 4). It was shown that the 
estimated glutamate production from the fitted GAM 
using the online recorded data of T, CER, DO and OUR 
from this experiment fell outside of the 95 % confidence 
interval during the fermentation period from 12.3 to 
18.5 h (Fig. 4a). Through the investigation on the online 

recorded data of different fermentation parameters, it 
was found that CER and OUR both fell below the level 
20 mol/m3 h−1 during the same period (Fig. 4b, d), and 
the level of DO was nearly close to zero (Fig. 4c). There 
was a sudden drop of stirring speed to below 300  rpm 
during this period (Fig.  4f ), and the abnormal stirring 
speed resulted in the very low levels of CER, DO and 
OUR during the same period, which could induce severe 
oxygen depletion to Corynebacterium Glutamicum. The 
actual fault in this experiment confirmed that the stirring 
speed of the fermenter started abnormal at about 12.3 h, 
and the fault was removed at about 18.5 h. After 18.5 h, 
the levels of stirring speed, CER, DO and OUR were 
back to normal and the estimated glutamate production 
returned back to the 95 % confidence interval (Fig. 4a).

The fault diagnosis was also conducted on another 
abnormal fermentation experiment of glutamate with 
the fault source from the human operation mistake that 
NaOH solution was used instead of ammonia water to 
maintain the pH level during fermentation (Fig.  5). It 

Fig. 2  Diagnosis of the fitted generalized additive model. a normal Q–Q plot; b histogram of residuals; c residuals versus estimated values; d meas-
ured versus estimated values on glutamate production
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was shown that the estimated glutamate production by 
the fitted GAM using the online data of T, CER, DO and 
OUR from this experiment fell outside the 95  % con-
fidence interval for glutamate production during the 
period from 13 to 20 h (Fig. 5a). By checking the online 
recoded data on different fermentation parameters, it 
was found that there was a drop of CER and OUR during 
the period from 13 to 19 h, and a drop of stirring speed 
from 13 to 18  h while the other fermentation param-
eters were maintained at normal conditions (Fig. 5b–g). 
However, the stirring speed was within the normal range 
of 400–900 rpm during the period from 13 to 20 h; this 
indicated that the changes of stirring speed in this experi-
ment was not attributed to the abnormal of OUR and 
CER. As the stirring speed, DO and temperature were all 
normal in this experiment, pH was the parameter need to 
be further checked so as to find the possible fault source 
because the level of pH could be still maintained at a 
normal range under certain abnormal conditions. After 
checking, an operation mistake was found that NaOH 
solution was used instead of ammonia water to maintain 
the pH level during fermentation. Such fault was very dif-
ficult to be identified by human eyes as the level of pH 
was still maintained at a normal range when ammonia 
water was replaced by NaOH solution during the opera-
tion. But, NaOH solution was harmful to the growth of 
C. Glutamicum and it cannot serve as nitrogen source 
required by glutamate synthesis during the fermentation 
process as provided by the added ammonia water [24].

Although the fault source from the operation mistake, 
which NaOH solution was used instead of ammonia 
water, was not easy to be identified in this experiment by 
artificial check of different fermentation parameters, the 
abnormal condition was still detected by the proposed 
approach with the estimated glutamate production fell 
outside its 95 % confidence interval. The start time of the 
fault was identified at 13 h when the estimated glutamate 
production fell outside the 95 % confidence interval, and 
the end time of fault was identified at 20 h as after this 
the estimated glutamate production returned back to 
the 95 % confidence interval (Fig. 5a). After the fault was 
removed at 20  h, the final production of glutamate was 
56.1 g/L at the end of this experiment. These results sug-
gest that if the fault source can be identified and removed 
timely during the fermentation process, the final pro-
duction of glutamate may be still maintained at a satis-
fied level, although it was lower than the final production 
from normal experiments.

In the abnormal experiment with the fault source from 
stirring speed, the offline measured glutamate produc-
tion showed that the fault started at 14 h, which was about 
1.7 h later than the fault time shown by the proposed fault 
diagnosis approach (Fig. 4a). In the abnormal experiment 

with the fault source from the operation mistake that 
NaOH solution was used instead of ammonia water, the 
offline measured glutamate production showed that the 
fault started at 14  h, which was 1  h later than the fault 
time shown by the proposed approach (Fig. 5a). Further, 
unlike the proposed fault diagnosis approach, the fault 
diagnosis based on the offline measured glutamate pro-
duction cannot diagnose the end of the fault when the 
fault source of fermentation conditions was rectified to 
normal. And thus, it is noteworthy that the online fault 
diagnosis based on the proposed approach was very sim-
ple and effective, compared with the fault diagnosis using 
offline measured glutamate production. The online fault 
diagnosis based on the combined approach of GAM and 
bootstrap identified not only the start of the fault in the 
fermentation process, but also the end of the fault when 
the fermentation contentions were rectified to normal. In 
addition, this approach only used the online recorded data 
on fermentation parameters for fault diagnosis during the 
fermentation process, without the requirement to meas-
ure the glutamate production by taking samples.

Our approach only included the significant factors 
that data can also be recorded online as the parameters 
in the fitted model for the online fault diagnosis, rather 
than a model including all factors that increase the com-
plexity of the model for online fault diagnosis. But, the 
faults caused by the factors that were not parameters in 
the fitted model can be detected timely and effectively. 

Fig. 3  The 95 % confidence interval for glutamate production during 
fermentation process. The 95 % confidence interval (shaded in green) 
and mean values (red curve) for glutamate production were estimated 
from 1000 generalized additive models (GAMs) built by bootstrap 
re-sampling with replacement from the training data on glutamate 
production and fermentation parameters. Black curves represent the 
estimated glutamate production for the five normal fermentation 
processes from the fitted GAM built by the training data using the 
online recorded data on fermentation parameters
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Fig. 4  Fault diagnosis in the abnormal fermentation process of glutamate with fault source from stirring speed. a the 95 % confidence interval 
(shaded in green) and mean values (red curve) for glutamate production. The black curve represents the estimated production of glutamate from 
the fitted GAM using the online recorded data on fermentation parameters from this abnormal experiment. The black dots represent the offline 
measured production of glutamate from this abnormal experiment. b–g online recorded data on the fermentation parameter (b) carbon dioxide 
evolution rate (CER), c dissolved oxygen (DO), d oxygen uptake rate (OUR), e pH, f stirring speed (SS) and g temperature (Temp) from this abnormal 
experiment
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Fig. 5  Fault diagnosis in the abnormal fermentation of glutamate with fault source from the human operation mistake. The mistake was due to 
NaOH solution was used instead of ammonia water to maintain the pH level during the operation. a the 95 % confidence interval (shaded in green) 
and mean values (red curve) for glutamate production. The black curve represents the estimated production of glutamate from the fitted GAM using 
the online recorded data on fermentation parameters from this abnormal experiment. The black dots represent the offline measured production of 
glutamate from this abnormal experiment. b–g online recorded data on the fermentation parameter (b) carbon dioxide evolution rate (CER), c dis-
solved oxygen (DO), d oxygen uptake rate (OUR), e pH, f stirring speed (SS) and g temperature (Temp) from this abnormal experiment
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For example, for the first abnormal fermentation with 
fault source from stirring speed, the fault was detected 
effectively by the estimated glutamate production that 
fell outside its 95  % confidence interval. In the sec-
ond abnormal fermentation with the fault source from 
the human operation mistake, the factor pH was also 
not one of the parameters in the fitted GAM, but the 
fault was also detected timely and effectively by the fit-
ted model. In addition, when NaOH solution was used 
instead of ammonia water, the level of pH was still main-
tained at a normal range during the operation mistake, 
but NaOH solution cannot serve as nitrogen source 
required by glutamate synthesis during the fermentation 
process as provided by the added ammonia water, and in 
this situation, the fault due to the lack of nitrogen source 
caused by the operation mistake was also revealed by the 
fitted model. These further indicate the effectiveness of 
the proposed approach for the online fault diagnosis in 
the fermentation process of glutamate.

Conclusions
This study applied the GAM and bootstrap statistical 
methods for the first time to the online fault diagno-
sis in the fermentation process of glutamate with small 
samples. The fitted GAM using offline measured data on 
glutamate production and online recorded data on differ-
ent fermentation parameters captured 99.6 % variance of 
glutamate production during fermentation process. The 
uncertainty of the estimated production of glutamate 
from the fitted GAM was quantified by bootstrap using 
95 % confidence interval. The 95 % confidence interval for 
glutamate production were estimated from 1000 GAMs 
built by bootstrap re-sampling with replacement from the 
training data on glutamate production and fermentation 
parameters. The online fault diagnosis based on the pro-
posed approach identified not only the start of the fault 
in the abnormal fermentation processes, but also the end 
of the fault when the fermentation conditions were back 
to normal. The proposed approach only need a small 
sample sets from normal fermentations experiments to 
establish the approach, and then use online recorded data 
on fermentation parameters for fault diagnosis in the 
fermentation process of glutamate, which was both time 
and cost-saving. Taking together, the proposed approach 
based on GAM and bootstrap provides a new and effec-
tive way for the online fault diagnosis in the fermentation 
process of glutamate with small sample sets.

Methods
Microorganism
The strain C. glutamicum S9114 used in this study was 
provided by the Key Laboratory of Industrial Biotechnol-
ogy, Ministry of Education, Jiangnan University, China. 

Seed culture was grown in sterilized liquid medium con-
sisting of the following components (in g/L): K2HPO4 1.5, 
glucose 25, MnSO4 0.005, FeSO4 0.005, MgSO4 0.6, corn 
slurry 25 and urea 2.5, with an initial pH of 7.0–7.2 on an 
Eberbach rotary shaker at 200 rpm and 32 °C for 8–10 h.

Fermentation and data collection
The seed culture for glutamate production was then 
transferred into a 5 L fermenter (BIOTECH-5BG, Baox-
ing Co., China) with 3.4 L sterilized liquid medium con-
sisting of the following components (in g/L): glucose 140, 
K2HPO4 1.0, FeSO4 0.002, MgSO4 0.6, MnSO4 0.002, 
thiamine 5.0 ×  10−5, corn slurry 15 and urea 3.0, with 
an initial pH of 7.0–7.2 and at 32 °C. The pH was main-
tained at ~7.1 during the fermentation process by auto-
matically addition of 25  % (w/w) ammonia water to the 
liquid medium. The added ammonia water also provided 
the nitrogen source required by glutamate synthesis dur-
ing the fermentation process [24]. DO concentrations 
were controlled at different levels based on experimental 
requirements by automatically or manually controlled 
agitation speed. The CO2 and O2 concentrations in the 
inlet and exhaust gas under the partially pressure condi-
tion were measured online by a gas analyzer (LKM2000A, 
Lokas Co. Ltd., Korea). Glucose was added to the fer-
menter according to the requirement of substrate to 
ensure its concentration above a suitable level (15  g/L) 
during the fermentation process. The data on glutamate 
production were measured every 2 h and the data on dif-
ferent fermentation parameters (CER, DO, OUR, pH, SS 
and Temp) were online recorded every 6 min during the 
fermentation process. Data from five normal fermenta-
tion experiments were collected.

Generalized additive model
Generalized additive model (GAM) is the generalization 
of linear models that estimate the relationship between 
response variable and smooth functions of explanatory 
variables in an additive form [27, 28, 44]. As an application 
of GAM, considering the continuous response variable Y  
as the production of glutamate and explanatory variables 
X1, . . . ,Xp as fermentation parameters (e.g., T, CER, DO, 
OUR, pH, SS, Temp), Y  is formulated as a sum of unspeci-
fied individual smooth functions of different fermentation 
parameters by an additive model:

where ε is assumed to be normally distributed random 
errors with constant variance and a mean value of zero, and 
s(Xi,mi) (i = 1, . . . , p) are smooth functions with efficient 
degree of freedom (mi ≥ 1) to be estimated from data. 
Generalized linear model (GLM) is a special case of GAM 
when mi  =  1 [28]. GAM provides a useful extension of 

(2)Y = c + s(X1,m1)+ s(X2,m2)+ · · · + s(Xp,mp)+ ε
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GLM where the smooth function s(Xi,mi) gives the ability 
to examine the relationship between affected factor Xi and 
the predicant Y, despite it is linearly or non-linear related.

To establish the model for the relationship between 
glutamate production and different fermentation param-
eters, data collected from normal fermentation experi-
ments were used for constructing GLM and GAM as 
defined by Eq. (2). The offline data on glutamate produc-
tion measured every 2 h and the online data on fermen-
tation parameters (CER, DO, OUR, pH, SS and Temp) 
recorded every 6  min from five normal fermentation 
experiments were pooled together and then randomly 
separated into two groups referred to as the training data 
and testing data. The training data from four experiments 
were used to construct GLM and GAM, and the testing 
data from the remaining experiment were used to validate 
the fitted model. The best model is the one with highest 
value of adjusted R2, lowest generalized cross-validation 
(GCV) score and least significant components that can 
explain the effect of different fermentation parameters on 
glutamate production [28]. The performance of the fitted 
GAM was also measured based on the correlation coef-
ficient and root mean square error between the estimated 
and measured production of glutamate from the testing 
data. The fitted GAM was used to estimate glutamate 
production during fermentation process using online 
recorded data of fermentation parameters T, CER, DO 
and OUR from five normal fermentation experiments.

Bootstrap re‑sample and confidence interval for glutamate 
production
To quantify the uncertainty of online estimated pro-
duction of glutamate from the fitted GAM, a bootstrap 
method was then used to estimate the 95  % confidence 
interval for glutamate production. In general, a fitted 
GAM based on smoothing splines to the N groups sam-
pling data {(Xi(t),Y (t)) : i = 1, . . . , p, t=1, . . . ,N } is

To quantify the uncertainty of glutamate production, 
a cumulative distribution function G for the confidence  
interval of the prediction error Y (N + h)− Ŷ (N + h)  
(h = 1, . . . ,H), with Ŷ (N + h) = c +

∑
P

k=1

s(Xk(N + h),mk) using Eq.  (3), was established. A 
100(1− α)% confidence interval for Ŷ (N + h) based on 
Xi(N + h) was given as follow:

A bootstrap re-sampling approach [45, 46] was 
applied to estimate the confidence interval for Ŷ (N + h) 

(3)
Ŷ (t) = c + s(X1(t),m1)+ s(X2(t),m2)

+ · · · + s(Xp(t),mp)+ ε

(4)

[Ŷ (N + h)+ G−1(α/2), Ŷ (N + h)+ G−1(1− α/2)]

(glutamate production). The fitted GAM based on the 
training data was then used to calculate Ŷ (t) and the resid-
uals e(t) = Y (t)− Ŷ (t). The error distribution F was esti-
mated by the empirical distribution of residuals that were 
denoted Fn, and was then used to construct bootstrapped 
samples by the form:{(X(t),Y ∗(t)), t = 1, 2, . . . ,N } , 
{(X(N + h),Y ∗(N + h)), t = 1, 2, . . . ,H} with 
Ŷ ∗(t) = Ŷ (t)+ ε∗t  and Y ∗(N + h) = Ŷ (N + h)+ ε∗N+h , 
where ε∗t  and ε∗N+h were independently sampled from 
Fn ; that was, they were randomly sampled with replace-
ment from the set of residuals {e1, . . . , eN }. The aster-
isk superscript denoted a value constructed for a 
particular bootstrap sample. Each bootstrapped sam-
ple was used to reconstruct GAM and get the esti-
mated values Ŷ ∗(N + h), and the estimated errors 
e
′∗
N+h = Y ∗(N + h)− Ŷ ∗(N + h). The empirical distri-

bution of e′∗N+h, which was denoted G̃, was the estimated 
distribution of the bootstrap prediction errors, which 
can be used as the estimated distribution function G in 
Eq.  (4). Therefore, 100(1− α)% a confidence interval for 
can be Ŷ (N + h) estimated as:

Fault diagnosis
After obtaining the 95 % confidence interval for estimated 
glutamate production during the fermentation process, 
the proposed approach based on GAM and bootstrap 
was used for online fault diagnosis with a fault defined 
as an estimated production of glutamate fell outside the 
95  % confidence interval. The fault diagnosis was con-
ducted on two abnormal fermentation experiments of 
glutamate. The first experiment was with the fault source 
from abnormal stirring speed, and the other experiment 
was with the fault source from the human operation mis-
take that NaOH solution was used instead of ammonia 
water to maintain the pH level during the fermentation of 
glutamate.
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