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Simulating cyanobacterial phenotypes 
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Abstract 

Background:  Genome-scale models (GSMs) are widely used to predict cyanobacterial phenotypes in photobiore-
actors (PBRs). However, stoichiometric GSMs mainly focus on fluxome that result in maximal yields. Cyanobacterial 
metabolism is controlled by both intracellular enzymes and photobioreactor conditions. To connect both intracel-
lular and extracellular information and achieve a better understanding of PBRs productivities, this study integrates a 
genome-scale metabolic model of Synechocystis 6803 with growth kinetics, cell movements, and a light distribution 
function. The hybrid platform not only maps flux dynamics in cells of sub-populations but also predicts overall pro-
duction titer and rate in PBRs.

Results:  Analysis of the integrated GSM demonstrates several results. First, cyanobacteria are capable of reaching 
high biomass concentration (>20 g/L in 21 days) in PBRs without light and CO2 mass transfer limitations. Second, 
fluxome in a single cyanobacterium may show stochastic changes due to random cell movements in PBRs. Third, 
insufficient light due to cell self-shading can activate the oxidative pentose phosphate pathway in subpopulation 
cells. Fourth, the model indicates that the removal of glycogen synthesis pathway may not improve cyanobacterial 
bio-production in large-size PBRs, because glycogen can support cell growth in the dark zones. Based on experimen-
tal data, the integrated GSM estimates that Synechocystis 6803 in shake flask conditions has a photosynthesis effi-
ciency of ~2.7 %.

Conclusions:  The multiple-scale integrated GSM, which examines both intracellular and extracellular domains, can 
be used to predict production yield/rate/titer in large-size PBRs. More importantly, genetic engineering strategies 
predicted by a traditional GSM may work well only in optimal growth conditions. In contrast, the integrated GSM may 
reveal mutant physiologies in diverse bioreactor conditions, leading to the design of robust strains with high chances 
of success in industrial settings.
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Background
In photobioreactors (PBRs), light penetration depth at 
high cell density can be as short as a few centimeters 
[1]. Thus, during large-size PBR cultivation, cyanobacte-
ria move continuously between the “light zone” (where 
light is sufficient) and the “dark zone” (where light is 

substantially shaded). As a consequence, cyanobacterial 
metabolism in PBRs is spatially and temporally depend-
ent: cells have autotrophic growth in the light zone, and 
they perform heterotrophic growth in the dark zone by 
consuming energy-storage compounds. Moreover, PBR 
performances are also affected by the efficiency of CO2 
gas–liquid transfer. To enhance mass transfer, people 
often use CO2-enriched air in combination with high 
intensity mixing. Many models have been developed to 
understand how cyanobacterial physiological dynamics 
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are influenced by the light intensity, CO2 supply, tem-
perature, and geometry of PBRs [2–6]. Those kinetic and 
reactor studies are useful in optimizing PBR design and 
operations. However, bioprocess modeling is unable to 
provide an understanding of intracellular enzyme func-
tions and metabolic fluxes in cyanobacteria. To improve 
engineered microalgae strains’ metabolisms in large-size 
PBRs, it is necessary to link process models to metabolic 
models.

On the other hand, metabolic flux analyses (MFA) can 
quantify in vivo enzyme reaction rates, and thus allow us 
to investigate the flux phenotypes resulting from com-
plicated gene-protein-metabolite regulations. 13C-MFA 
measures carbon fluxes through the central metabolism 
via 13C labeling experiments. Alternatively, genome-scale 
flux balance analysis (FBA) can generate a holistic intra-
cellular flux distribution map [7] owing to its extended 
coverage of genomic information [8]. Computational 
platforms, such as COBRA [9] and OptForce [10], can 
predict genetic targets and guide rational designs of 
engineered strains. FBA can also be integrated with con-
straint-based elementary flux mode analysis to identify 
optimal pathways for bio-productions [11]. However, an 
inherent limitation of traditional GSM is that it predicts 
only flux distributions that result in maximal yields in an 
optimal culture condition. They cannot forecast mutant 
strains’ production titers and rates in dynamic and het-
erogeneous bioreactors.

In this study, the major goal is to demonstrate multi-
ple-scale modeling approaches by linking cell metabo-
lisms to PBR environmental fluctuations. Specifically, 
the modeling efforts focus on Synechocystis 6803, a most 
widely used cyanobacterial biorefinery. Appealing traits 
of this species include amenability to genetic modifica-
tions, well-studied genomics, and native genes for bio-
synthesis of alkanes/alkenes and hydrogen [12–14]. To 
predict cyanobacterial growth and metabolic flux phe-
notypes in PBR settings, we integrated a genome-scale 
cyanobacteria model, iJN678 [15], with growth kinetics, 
cell movements based on reported PBR hydrodynamics, 
and a heterogeneous light distribution (Fig. 1). The model 
assumption is that heterogeneous PBR conditions affect 
cyanobacteria, leading to heterogeneous cell metabolisms 
in different sub-populations. Such an approach can pro-
vide biological information ranging from the intracellu-
lar domain to the PBR domain, and fill the gaps between 
systems biology and the PBR process. The multiple-scale 
modeling is useful for estimating mutant strains’ poten-
tials to achieve the production metrics required for 
commercialization.

Results
Simulation of cyanobacterial optimal growth in a 
cylindrical PBR
The integrated GSM was first applied to predict cyano-
bacterial growth in a cylindrical PBR, which was assumed 
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to have a radius of 60  mm and a constant surface light 
intensity of 50  µE/m2/s. Although the maximal photo-
synthetic efficiency in photosynthetic species can reach 
4.6–6  % [16], not all incident radiation in PBRs can be 
efficiently used by cyanobacteria, thereby resulting in 
a lower conversion efficiency [17]. Hence, we chose a 
photosynthesis efficiency of 1.5  %, which was within a 
reasonable range of actual photosynthesis efficiencies 
of microalgae [18]. Based on a previous study, the mass 
transfer rate of CO2 was assumed to be 10  h−1 [19]. 
Under such a condition, cyanobacterial biomass con-
centration could increase from 0.1 to 5  g/L in 3  weeks, 
provided that other mineral nutrients are supplied con-
tinuously (Fig.  2a and Additional file  2: Fig. S1). The 
modelling results also showed continuous decreases in 
the growth rate (Fig.  2b) and intracellular fluxes in the 
central metabolism (Fig.  2c–e), which was caused by a 

continuous decrease in local light intensity over time 
(Fig.  2g). As the ‘dark zone’ expanded, some cyanobac-
teria switched from autotrophic growth to heterotrophic 
growth in the late growth phase, and eventually became 
resting cells (Fig. 2f ). The expanding ‘dark zone’ also led 
to a gradual reduction in glycogen content per gram of 
biomass, which was the same when all the cells were 
located in the light zone (Fig. 2b). This prediction agrees 
with two previous studies [20, 21].

Next, we tested the sensitivity of biomass production 
to the mass transfer rate, PBR surface light intensity, and 
PBR diameter (Fig. 3) . With a light intensity of 100 µE/
m2/s and a moderate mass transfer rate of 15 h−1, small 
PBRs (30  mm radius) could produce 20  g/L of biomass 
in 21  days. Although such productivity has been exper-
imentally observed in small PBRs [22], it can be hardly 
achieved in large-size PBRs. As shown by the model, the 
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Fig. 2  Simulations of dynamics of cyanobacterial performance in a 60 mm-radius cylindrical PBR under 50 µE/m2/s surface light intensity. a 
biomass concentration and dissolved CO2/HCO3

− concentration; b glycogen content in biomass and average specific growth rate; c flux through 
the PEP carboxylase reaction; d flux through the RuBP carboxylase reaction; e fluxes through the TCA cycle (negative flux means the flux direc-
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Abbreviations of metabolites: 3PG 3-phosphoglycerate, AceCoA acetyl-CoA, CIT citrate, MAL malate, OAA oxaloacetate, PEP phosphoenolpyruvate, 
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biomass productivity is highly sensitive to the surface-to-
volume ratios of the PBRs, and increasing the PBR diam-
eter reduces biomass productivity dramatically. Hence, 
to improve biomass production in PBRs, one needs to 
reduce the surface-to-volume ratios, increase the culture 
mixing and air flow rate [23], and maintain a sufficient 
surface light intensity.

Finally, the simulations also demonstrate that, due to 
random cell movements in PBRs, single cell fluxome may 
show stochastic changes (Additional file 2: Fig. S2 b, c). 
Additionally, we tested the sensitivity of biomass growth 
to circulation time. The model indicates that perturb-
ing the circulation speeds of cell subpopulations did not 
affect total biomass production by PBRs, provided that 
the CO2 mass transfer and surface light were constant 
(Additional file 2: Fig. S3).

Simulation of cyanobacterial oxidative pentose phosphate 
pathway in a cylindrical PBR
In cyanobacteria, the oxidative pentose phosphate (OPP) 
pathway and the Calvin cycle operates in opposite direc-
tions: The former generates CO2 and NADPH, while the 
latter consumes CO2 and NADPH. Figure 2d shows that 
the Calvin cycle had a strong flux in the early growth 
phase, while the OPP pathway remained silent under 
light-sufficient conditions (Fig.  4a). In the late growth 
stage, active fluxes through the OPP pathway appeared 
(Fig. 4a) due to the self-shading effect. The activity of the 
OPP pathway increased concurrently with the glycogen 

consumption rate in darkness (Fig.  4a and Additional 
file  2: Fig. S4). Thus, an active OPP flux in photoauto-
trophic cultures is the metabolic response to light defi-
ciency in PBRs. Recent 13C-flux measurements also 
showed positive OPP fluxes in Synechocystis 6803 PBR 
cultures [24, 25]. To further confirm our model predic-
tions, we examined the labelling patterns of histidine by 
growing Synechocystis 6803 with NaH13CO3 and [1-13C] 
glucose. When glucose was metabolized via the OPP 
pathway, non-labeled ribose-5-phosphate was generated 
from [1-13C] glucose [26], which is a precursor to histi-
dine. Therefore, an active OPP pathway was expected to 
reduce the 13C-enrichment of proteinogenic histidine. 
Figure  3b shows that the 12C-concentration of histidine 
was high under low light conditions, supporting the 
model prediction that light deficiency leads to an active 
OPP pathway for C6 sugar utilizations.

Investigation of cyanobacterial photosynthesis efficiency 
in shake flasks
Next, we used the integrated GSM to determine the pho-
tosynthesis efficiency of Synechocystis 6803 by minimiz-
ing the sum of squared errors between experimental and 
simulated averaged specific grow rates. We simplified the 
geometry of the shake flasks into a two-dimensional rec-
tangle (Additional file 2: Fig. S5), and made the local light 
intensity dependent on the vertical distance from a cell 
to the light source. The CO2 mass transfer rates in shake 
flasks were calculated based on Eq. (9). As a consequence, 
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Fig. 3  Test of biomass growth performance sensitivity to the mass transfer rate (KLa in h−1), surface light intensity (I0 in µE/m2/s), and the bioreactor 
geometry (R in mm). Each three-dimensional figure shows biomass growth as a function of time and surface light intensity



Page 5 of 11He et al. Microb Cell Fact  (2015) 14:206 

a photosynthesis efficiency of 2.7  % (Additional file  2: 
Fig. S6) resulted from the best fit of specific growth rates 
under shake flask cultures (Diamond and circle markers 
in Fig.  5). Furthermore, this photosynthesis efficiency 
was used to simulate the growth of Synechococcus elon-
gatus UTEX 2973 (a fast-growing cyanobacterium spe-
cies) in a column PBR (with 3 % CO2 and under 500 µE/
m2/s light intensity) [27]. The model predicted slightly 
lower specific growth rate than the experimental value 
(Square marker in Additional file 2: Fig. S5). This differ-
ence is possibly due to an increased photosynthesis activ-
ity under high CO2 concentrations [28].

Model‑based investigation of lactate production 
by engineered cyanobacteria in PBRs
We further applied the integrated GSM to predict the 
growth and volumetric d-lactate productivity of engi-
neered cyanobacterial strains, in which a mutated glyc-
erol dehydrogenase was overexpressed for producing 
optically pure d-lactate [29]. The MOMA algorithm was 
applied to simulate the metabolism in engineered strains 
(See Methods). Growth-associated lactate production 
was assumed (i.e., lactate production was proportional 
to biomass synthesis). First, we tested the relationship 
between lactate efflux (vlac) and specific growth rate (µ) 
using only the FBA model. Figure 6a shows vlac and µ as 
functions of the ratio vlac/µ, which denotes the amount 
of lactate produced per gram of biomass (or mmol 
lactate/g biomass). Within a wide vlac/µ range, from 0.01 
to 100 mmol lactate/g biomass, µ decreased with increas-
ing vlac/µ, but vlac showed a parabolic tendency, peaking 
at 0.3  mmol/g/h (Fig.  6a). Next, we used the integrated 

GSM to simulate the cyanobacterial growth and D-lac-
tate production in PBRs at different vlac/µ ratios (Fig. 6b, 
c). As a result, increasing the vlac/µ ratio led to lower bio-
mass production, which, however, did not necessarily 
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improve the overall d-lactate production. For example, 
when vlac/µ was increased from 1 to 10 mmol/g, lactate 
production in PBRs remained the same, but biomass 
production was significantly diminished. Enhancing the 
lactate pathway (i.e., increase vlac/µ ratio) can improve 
lactate production, but excessive overexpression of this 
pathway may sacrifice biomass growth and impair overall 
lactate productivity. To resolve this problem, it is desir-
able to induce the lactate synthesis pathway at late bio-
mass growth phase.

Deleting carbon storage in cyanobacteria is one strat-
egy to redirect carbon flux to product synthesis [30]. 
However, the integrated GSM shows that such a strategy 
may not offer significant improvements in final lactate 
productivity in PBRs (Fig.  6a, d, e). This finding is con-
sistent with two recent reports: (1) Glycogen knockout 
did not enhance lactate productivity under nutrient-suf-
ficient growth conditions [30]. (2) Removal of glycogen 

in an isobutanol-producing cyanobacterium yielded no 
benefit in production titer and rate [31]. Possibly, glyco-
gen serves as the carbon and energy reservoir to store the 
energy and carbon excess flow in the light zone, and this 
carbon and energy reservoir can maintain redox homeo-
stasis under stressed growth conditions or in darkness 
[32]. Therefore, deleting glycogen or other carbon storage 
may impair cyanobacterial survival as well as its resist-
ance to environmental stresses and contaminations.

Discussion
In this study, a genome-scale FBA model was integrated 
with information on kinetics, light distribution, and cell 
movement. Using the integrated GSM, one can simul-
taneously learn both intracellular information (e.g., flux 
distributions as functions of time) and extracellular infor-
mation (e.g., growth curve and nutrient changes in the 
medium) simultaneously.
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In the extracellular domain, the integrated GSM can 
describe changes in nutrient concentrations, biomass 
accumulation, and local light intensities. As demonstrated 
by Fig. 3, cyanobacteria are intrinsically capable of reach-
ing high biomass concentration in PBRs, however, their 
performance is usually limited by low light availability and 
low mass transfer rate. To reduce cell self-shading, high 
surface-to-volume ratio PBRs equipped with thin panel 
or hollow fibers have been employed [23]. To improve the 
mass transfer rate, enhancing aeration rates has proved 
efficient [19]. Better mixing conditions not only lead 
to better gas transfer rates, but also help maintain more 
homogeneous conditions for both cells and nutrients.

In the intracellular domain, we observed continu-
ously changing fluxes in the cyanobacterial metabolic 
network, which were mostly affected by reduced energy 
and carbon inputs. One interesting finding is the OPP 
pathway activation as cell cultures get denser. It is a tra-
ditional point of view that the Calvin cycle and the OPP 
pathway are separate systems because the two pathways 
are reciprocally regulated [33]. In this study, the inte-
grated GSM describes that these two pathways could be 
employed by two different subpopulations in PBRs at 
the same time. This simulation explains that a measure-
able flux through the OPP pathway could be observed in 
both wild type and engineered cyanobacterial strains via 
13C-based flux analysis [24, 25]. In addition, the elemen-
tary modes analysis shows that the Calvin cycle and the 
OPP pathway may function in complementary ways in 
photoautotrophs, since an active OPP pathway ensures 
a maintainable flux to triose phosphate synthesis from 
carbohydrate degradation in low light or darkness [33]. 
Furthermore, we noticed that an active OPP pathway 
was always present in the d-lactate producing strain, 
and it became stronger with increased d-lactate produc-
tion (Additional file  2: Fig. S7). This indicates that the 
enhanced OPP activity benefits bio-production by pro-
viding more reducing power. In summary, the plasticity 
of the OPP pathway endows cells with high vitality and 
energy flexibility [34, 35].

The traditional FBA model usually describes the opti-
mal growth condition, and thus it may not be suitable for 
suboptimal and heterogeneous cultivation conditions. 
Our model, on the other hand, is integrated with growth 
kinetics and a heterogeneous light distribution in PBRs. 
Hence, the model can not only predict the production 
yield, titer and rate, but also offer insights into how cells 
adjust their internal metabolisms to survive under dif-
ferent growth conditions and genetic manipulations. 
Moreover, the integrated GSM may give more accurate 
predictions of mutant physiology than GSM alone in 
bioreactor conditions. For example, the integrated GSM 
correctly indicates that glycogen knockout may not be 

an effective strategy to improve PBR lactate production. 
Lastly, the integrated GSM can reveal real-time varia-
tions/dynamics in metabolisms of different subpopula-
tion cells, and thus improve understandings of cellular 
responses to large-size PBRs.

Nevertheless, our model still has limitations. For exam-
ple, previous studies have shown that glycogen synthesis 
could be connected with unknown regulations affecting 
cyanobacterial viability under stress conditions [32, 36]. 
However, the integrated GSM may not give the same 
prediction without further constraints from knowledge 
of genetic regulations. Additionally, it has been demon-
strated that cyanobacteria have circadian behaviors (i.e., 
their metabolism exhibits day and night rhythms) [37], 
while our model does not include this property. Finally, 
some inhibition factors may also influence cyanobacterial 
growth (e.g., effects of crowding), which are not included 
in the model. In the future, this model platform should 
be further improved via additional multi-scale modeling 
approaches.

Conclusion
This study demonstrates a genome-scale FBA model inte-
grated with kinetics, cell movements, and a light distribu-
tion function. With constraints obtained from bioprocess 
variables, the integrated GSM can not only simulate the 
dynamic metabolisms in sub-population cells but also 
predict PBR overall productivity under light and CO2 
conditions. The integration of GSMs with PBR modeling 
can facilitate the development of new cyanobacterial 
strains for industrial settings.

Methods
Cell cultivation
Synechocystis PCC 6803 was cultivated in a modified 
BG-11 medium [26] at 30 °C and 180 rpm. We first tested 
the cyanobacterial growth in different culture volumes. 
In brief, 50, 100, and 150  mL of cell suspensions were 
cultivated in 250 mL shake flasks under continuous illu-
mination of ~50 µE/m2/s. We also tested the cyanobacte-
rial growth under different light conditions. Specifically, 
15  mL of cultures were grown in 150  mL shake flasks 
under different light intensities (from ~15 to ~35  µE/
m2/s). OD730 was used to measure biomass density, and 
the relationship between the biomass concentration and 
OD730 was 0.45 × OD730 = Biomass (g/L) [26]. We made 
duplicate cultures of each condition (n = 2).

13C‑Labelling experiment
13C-labeling experiments were performed to determine 
histidine labeling as evidence of OPP pathway activity 
under different light conditions. We grew photomixo-
trophic cultures in BG-11 medium supplied with 2.5 g/L 
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[1-13C] glucose and 4  g/L NaH13CO3 (tracers were pur-
chased from Sigma-Aldrich, Saint Louis, USA). The 
TBDMS (N-tert-butyldimethylsilyl-N-methyltrifluoro-
acetamide) method [26] was used to analyze the labeling 
patterns of proteinogenic histidine. In brief, cells were har-
vested by centrifugation, and cell pellets were hydrolyzed 
in 6 mol/L HCl solution at 100 °C for 24 h. The amino acid 
solution was air-dried and then derivatized by TBDMS 
(Sigma-Aldrich, USA) at 70  °C for 1  h. A gas chromato-
graph (GC) (Hewlett-Packard model 7890A; Agilent Tech-
nologies, CA) equipped with a DB5-MS column (J&W 
Scientific, Folsom, CA) and a mass spectrometer (model 
5975C; Agilent Technologies, CA) were used for analyz-
ing amino acid labeling profiles. The GC–MS fragment 
[M-57]+ contains the complete amino acid backbone, and 
MS data M + 0, M + 1, and M + 2 represent isotopomers 
with zero, one, and two 13C atoms, respectively.

Flux balance analysis model
The FBA model was modified from the cyanobacte-
rial model iJN878 [15], which has 843 reactions, includ-
ing photosynthesis and the central carbon metabolism. 
A complete list of reactions is provided in Additional 
file  1. The iJN878 model contains a recently discovered 
γ-aminobutyrate shunt [38] which converts 2-oxoglutar-
ate to succinate in Synechocystis 6803. In our model, two 
new reactions were added, namely ‘glycogen storage → 
glycogen [c]’ and ‘d-lactate [c] → d-lactate [external]’, 
which were respectively used to simulate glycogen stor-
age/consumption and d-lactate production by an engi-
neered cyanobacterial strain [29]. The mathematical 
description of our FBA model is as follows:

where µ represents the specific growth rate, S is the stoi-
chiometric matrix, v represents a vector of flux distribu-
tion, and lb and ub represent vectors of the lower and 
upper boundaries, respectively. Further, f1 is a function of 
the mass transfer coefficient KLa, dissolved CO2 concen-
tration [CO2], and half-saturation constant for dissolved 
CO2, Km; f2 is a function of the cell’s local position l, bio-
mass concentration X, and photon influx on the PBR sur-
face vphoton,0. The linear optimization problem was solved 
by the MATLAB® (2012b) built-in function ‘linprog’ using 
the ‘simplex’ algorithm. To estimate the flux distribution 
in engineered cyanobacterial strains, we used the MOMA 
(minimization of metabolic adjustment) algorithm [39], 
which was solved by the MATLAB built-in function 
‘quadprog’ using the ‘interior-point-convex’ algorithm:

(1)











maximize µ
subject to S · v = 0

lb ≤ v ≤ ub
vCO2 ≤ f1(KLa, [CO2],Km)

vphoton ≤ f2
�

l,X , vphoton,0
�











,

where H is a unit matrix, and fopt is the optimal flux dis-
tribution of wild-type cyanobacteria. The remaining 
notations have the same meanings as above.

Moreover, we considered three growth states for 
cyanobacteria in the FBA model: (1) the ‘light condition’: 
an autotrophic sub-population in the light zone, (2) the 
‘dark condition’: a heterotrophic sub-population in the 
dark zone, where the photon influx is below 0.4  mmol/
g/h (under which the cyanobacterial growth rate is lower 
than the heterotrophic growth rate in darkness) and gly-
cogen is consumed at a rate of 0.01  mmol/g/h [40] to 
maintain minimal growth, and (3) the ‘resting condition’: 
a glycogen-depleted sub-population with no active fluxes 
in the dark zone. To improve the calculation efficiency, 
we built a database containing all the flux distributions in 
response to different photon influxes (Additional file 1). 
By having such a database, we could directly use pre-cal-
culated fluxome from the database according to culture 
conditions in PBRs. Thereby, we did not need to redo flux 
calculations at each time interval during new simulations.

Simulation of cyanobacterial growth via integrating FBA, 
kinetics, and cell movements
Figure 1 shows our modeling algorithm. To simulate bio-
mass growth as a function of time, we divided the entire 
time period into finite intervals of 0.002  h (Additional 
file 2: Fig. S1 shows that further decreasing the interval 
period did not change the simulation results). In each 
time interval, a simplified sinusoid equation [41] was 
used to estimate the cell location in a well-mixed PBR:

where l is the shortest distance between the PBR surface 
and the cell local position, in mm; r is the radius or thick-
ness of the PBR, in mm; fr represents the cyanobacteria 
circulation frequency, in h; and t is time, in h. Because 
cell circulation frequencies in PBRs vary from cell to cell, 
stochastic effects are induced on a single cell’s metabo-
lism. In fact, the random movements of cells in PBRs 
have been measured and simulated, and, in the present 
study, are described by a probability distribution function 
[42]. In our model platform, we distinguished cell popu-
lations with different circulation times (Additional file 2: 
Fig. S2-3). Thus, the whole culture was considered to be 
comprised of twelve sub-populations instead of a pleth-
ora of cyanobacterial cells. Based on cell locations and 

(2)











minimize 1
2v

THv − f Toptv

subject to S · v = 0
lb ≤ v ≤ ub
vCO2 ≤ f1(KLa, [CO2],Km)

vphoton ≤ f2(l,X , I0)











,

(3)l =
r

2
−

r

2
cos(

2π

fr
t),
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the biomass concentrations, we calculated the local light 
intensity [43]:

where vphoton and vphoton,0 represent the local and surface 
photon influxes, respectively, in mmol/g/h; and X is bio-
mass concentration, in g/L.

The CO2 uptake flux was described by a Michaelis–
Menten equation:

where vCO2,max is the maximum uptake rate of dissolved 
CO2/HCO3

−, Km is the half-saturation constant, and 
[CO2] represents dissolved CO2 concentration. This study 
assumed that pH was constant at 8.0, and that the dissolved 
CO2 and cell culture were homogeneous in PBRs. Because 
we assumed that cell metabolism was pseudo-steady in each 
interval [44], the FBA model could use linear optimization 
to profile the intracellular fluxes constrained by light and 
carbon input fluxes (Eqs. 4 and 5). The FBA model then pre-
dicted the growth rates, glycogen synthesis rates, and CO2 
uptake rates of cell populations with different circulation 
times in PBRs. Those values were averaged based on the 
probability distribution function (Additional file 2: Fig. S2a):

where Pi is the fraction of ith cell population (Additional 
file 2: Fig. S2a), µapp is the apparent specific growth rate 

(4)
vphoton

vphoton,0
=

(

1

(0.0216 · l + 1)1.54(0.130 · X · +1)1.18

)

,

(5)vCO2 = vCO2 ,max
[CO2]

Km + [CO2]
,

(6)

µapp =

n
∑

i=1

Piµi

vCO2,app =

n
∑

i=1

PivCO2,i

vglycogen,app =

n
∑

i=1

Pivglycogen,i,

in PBRs, vCO2,app is the apparent CO2 uptake rate, and 
vglycogen,app is the overall glycogen production rate.

For the kinetic model, we used ordinary differential 
equations (ODEs) to describe changes in biomass pro-
duction, glycogen accumulation, dissolved CO2/HCO3

− 
concentrations, and so forth.

The ODEs were resolved in their numerical discrete 
form (Euler-like integration scheme):

where i and i + 1 represent the current and next intervals, 
respectively; Δt is the time interval (0.002 h); Kd is the death 
rate, in h−1; β is the glycogen composition in the biomass, 
in mmol/g; [glycogen] is the overall glycogen concentration 
in the PBR, in mmol/L; KLa is the mass transfer rate of CO2, 
in h−1; [CO2] represents the dissolved CO2 and HCO3

− 
concentrations, in mmol/L; [CO2]* is the combined con-
centrations of dissolved CO2 and HCO3

− in equilibrium 
with atmospheric CO2 (0.039 %, v/v), in mmol/L; and µapp, 
vglycogen,app, and vCO2,app are fluxes determined previously. 
The updated values of the biomass concentration, dissolved 
CO2 concentration, etc., were then used to constrain the 
FBA model in the next interval. The kinetic parameters are 
given in Table 1. For shake flask conditions, KLa was deter-
mined by the following equation: [45] 

(7)

dX

dt
= µapp · X − Kd · X

d[glycogen]

dt
= vglycogen,app · X − β · Kd · X

d[CO2]

dt
= KLa · ([CO2]

∗
− [CO2])+ vCO2,app · X ,

(8)

Xi+1 = Xi + µapp · Xi ·�t − Kd · Xi ·�t

[glycogen]i+1 = [glycogen]i + vglycogen,app · Xi·

�t − β · Kd · Xi ·�t

[CO2,i+1] = [CO2,i] + KLa · ([CO2]
∗
− [CO2,i])·

�t + vCO2,app · Xi ·�t,

Table 1  List of parameters used to simulate the growth and metabolic fluxes of cyanobacteria growing in a cylindrical 
PBR

a  The value is used in Figs. 2, 3 and 5; ba photosynthesis efficiency of 1.5 % is assumed in Figs. 2, 3 and 5; and ccalculation is based on experimental conditions 
(Additional file 2)

Parameters Significance Value (range) Unit References/notes

KLa Mass transfer rate of CO2 10a (3–15) h−1 [19]

Kd Death rate 0.0079 h−1 [46]

Radius Radius of PBR 60 mm Similar to the reactor used in Reference [42]

I0 Surface light intensity 50 mmol/g/h Equivalent to ~50 µE/m2/sb

Km Half-saturation constant of CO2 uptake rate 8 µmol/L [47]

pH Medium pH 8.0 unitless BG-11 medium

[X]0 Initial biomass concentration 0.1 g/L Equivalent to an OD730 of ~0.2

[CO2]0 Initial concentration of dissolved CO2 and HCO3
−  

(in equilibrium with air)
0.53 mmol/L Estimatedc
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where N is the rotation speed, in rpm; V is the shake flask 
volume, in mL; and L is the culture volume, in mL. MAT-
LAB code of the integrated GSM is provided in Addi-
tional file 3 and 4.
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