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and acrylic acid production from biodiesel 
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Abstract 
Background:  3-Hydroxypropionic acid (3HP) and acrylic acid (AA) are industrially important platform- and secondary 
chemical, respectively. Their production from renewable resources by environment-friendly processes is desirable. In 
the present study, both chemicals were almost quantitatively produced from biodiesel-derived glycerol by an inte-
grated process involving microbial and chemical catalysis.
Results:  Glycerol was initially converted in a fed-batch mode of operation to equimolar quantities of 3HP and 
1,3-propanediol (1,3PDO) under anaerobic conditions using resting cells of Lactobacillus reuteri as a biocatalyst. The 
feeding rate of glycerol was controlled at 62.5 mg/gCDW.h which is half the maximum metabolic �ux of glycerol to 
3HP and 1,3PDO through the L. reuteri propanediol-utilization (pdu) pathway to prevent accumulation of the inhibi-
tory intermediate, 3-hydroxypronionaldehyde (3HPA). Subsequently, the cell-free supernatant containing the mixture 
of 3HP and 1,3PDO was subjected to selective oxidation under aerobic conditions using resting cells of Gluconobacter 
oxydans where 1,3PDO was quantitatively converted to 3HP in a batch system. The optimum conditions for the bio-
conversion were 10 g/L substrate and 5.2 g/L cell dry weight. Higher substrate concentrations led to enzyme inhibi-
tion and incomplete conversion. The resulting solution of 3HP was dehydrated to AA over titanium dioxide (TiO2) at 
230 °C with a yield of >95 %.
Conclusions:  The present study represents the �rst report on an integrated process for production of acrylic acid at 
high purity and -yield from glycerol through 3HP as intermediate without any puri�cation step. The proposed process 
could have potential for industrial production of 3HP and AA after further optimization.
Keywords:  Biocatalysis, Cascade enzymatic reaction, Lactobacillus reuteri, Gluconobacter oxydans, Catalytic 
dehydration, Titanium dioxide, 3-Hydroxypropionic acid, Acrylic acid, 1,3-Propanediol, Biodiesel glycerol
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Background
Signi�cant e�orts are continuously being made around 
the world to move from the current fossil-based econ-
omy to a more sustainable economy based on renewable 
resources. In order to match the e�ciency and �exibil-
ity of the petrochemical industry, the bio-based indus-
try needs to develop a set of versatile building blocks, or 

platforms from which a range of products can be derived 
[1, 2]. Taking this into consideration, the Department of 
Energy, USA has identi�ed 30 platform chemicals com-
posed of 1�6 carbon atoms as potential candidates for 
bio-based production [2]. Polyols and organic acids con-
stitute the majority of these chemicals; examples are glyc-
erol, propionic acid and 3-hydroxypropionic acid (3HP) 
[1, 2].

Acrylic acid (AA) is a bulk chemical with annual pro-
duction capacity of 4.2 million metric tons [3]. �e major 
application of acrylate is its use in water-based acrylic 
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resins in the form of acrylate esters [4], which are used 
in decorative, masonry and industrial coatings and also 
in adhesives, binders for paper, leather and textile, pol-
ishes, carpet backing compounds and tablet coatings [5, 
6]. Glacial AA is also used for the manufacture of super 
absorbent polymers used in disposable diapers [4]. �e 
current industrial production of AA involves gas-phase 
catalytic oxidation of fossil-based propylene via acrolein 
as intermediate [4, 6]. Besides the non-renewable raw 
material, acrolein is highly toxic and explosive. �e pro-
cess is estimated to result in emissions of 3.25� kg CO2 
eq per kg AA, shared equally between the raw materials 
plus the process, and waste treatment [7]. Most of the 
alternative chemical production routes were abandoned 
as they were found to be economically unattractive, use 
non-environmental friendly catalysts or have low acrylate 
yields [6].

Many renewable routes for production of AA using 
bio-based raw materials have been reported such as 
direct fermentation of lactate using Clostridium propi-
onicum [8], catalytic dehydration of lactic acid or 3HP 
obtained by fermentation [9�12], and catalytic conver-
sion of microbially-produced fumaric acid [13]. Although 
lactic acid is less toxic and is produced industrially via 
fermentation at a concentration exceeding 10� %, pro-
duction of acrylate by fermentation of lactate is limited 
by a strong product inhibition [8]. Additionally, catalytic 
dehydration of the secondary hydroxyl group of lactic 
acid has proven to be di�cult, because it is quite resistant 
toward hydrolysis [11, 12]. On the other hand, �-hydroxy 
acid (3HP) was shown to be more easily dehydrated into 
AA than the �-hydroxy acid (lactic acid) [9, 10, 14]. �is 
was the main trigger for several companies and research 
groups to develop novel renewable, economically feasible 
routes for production of 3HP as a potential source for AA 
[14].

3HP is a structural isomer of lactic acid (2-hydroxypro-
pionic acid). Its two functionalities, hydroxyl- and car-
boxyl groups, make it a versatile compound for organic 
synthesis [15�17]. It can also be incorporated as a cross-
linking agent in coatings, lubricants and antistatic agents 
for textiles [18]. Other applications are expected in food 
industry, cosmetics and fertilizers [19].

Industrial production of 3HP has not yet been estab-
lished due to lack of economic feasibility and/or environ-
mental compatibility for most of the suggested chemical 
production routes [15, 18]. Nevertheless, the high expec-
tation for 3HP as a platform chemical gives a projected 
market volume of 3.6 million ton/year [3].

Biologically, 3HP can be obtained in small quantities 
as an end product of glycerol and acrylate metabolism 
by few wild-type microorganisms [18]. Jiang et� al. and 
Henry et�al. have suggested di�erent metabolic pathways 

for the production of 3HP from glucose and glycerol [20, 
21], and many have been practically evaluated [22�26]. 
However, most of these biological production routes 
are limited by low 3HP yield, and the need for nitrogen 
source/cofactors for maintaining the production process 
as well as for product recovery and puri�cation thereafter 
which increase the production cost [22�26].

�e rapid expansion of the biofuels market, especially 
biodiesel and bioethanol, has resulted in accumulation of 
surplus amounts of glycerol as a by-product. In order to 
convert glycerol to 3HP, two di�erent pathways have been 
described; all share the �rst step of selective dehydration 
of glycerol yielding 3-hydroxypropionaldehyde (3HPA) 
in a reaction catalyzed by glycerol/diol dehydratase. �e 
resulting aldehyde is then oxidized forming 3HP through 
aldehyde dehydrogenase, or through the three-step cas-
cade reaction catalyzed by propionaldehyde dehydro-
genase (PduP), phosphotransacylase (PduL), and kinase 
(PduW) [20]. However, for achieving the redox balance 
other products are produced simultaneously such as 
1,3-propanediol (1,3PDO) through 1,3-propanediol oxi-
doreductase (PduQ).

In an earlier study, the biocatalytic dehydration of glyc-
erol and dismutation of the resulting 3HPA was achieved 
yielding equimolar amounts of 1,3PDO and 3HP using 
resting cells of Lactobacillus reuteri, hence resulting in 
50�mol % yield of 3HP from glycerol [27]. L. reuteri is an 
obligate heterofermentative lactic acid bacterium that 
does not utilize glycerol as a carbon source but instead 
as an indirect electron acceptor [28, 29]. �e metabo-
lism of glycerol takes place through propanediol-utili-
zation (Pdu) pathway comprising �ve enzymes, vitamin 
B12-dependent glycerol/diol dehydratase (PduCDE) 
catalyzing the dehydration of glycerol to 3HPA, PduQ 
for reduction of 3HPA to 1,3 PDO, and PduP, PduL and 
PduW catalyzing oxidation of 3HPA to 3HP. 3HPA �ux 
through these pathways is in�uenced by the level of 
NADH inside the microbial cell; higher NADH levels 
resulting in reduction of 3HPA (normal case with grow-
ing cells in which the reduced cofactor is generated as 
a result of sugar metabolism), while accumulation of 
NAD+ favors the oxidative pathway (the case with resting 
cells).

Acetic acid bacteria possess several alcohol dehydro-
genases capable of selective oxidation of alcohols to the 
corresponding aldehydes and ketones. �e resulting 
aldehydes can be further oxidized to the corresponding 
carboxylic acids by the action of aldehyde dehydroge-
nases working in cascade with the alcohol dehydrogenase 
[30]. Acetic acid bacteria are used industrially as cata-
lysts for the oxidation of ethanol to acetic acid, glucose 
to glucuronic acid, glycerol to dihydroxyacetone, and 
many other processes [30�35]. Gluconobacter oxydans 
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was earlier used as a biocatalyst for selective oxidation of 
2-methyl-1,3-propanediol to 2-methyl-3-hydroxypropi-
onic acid [31], a reaction not easily achievable by chemi-
cal catalysis.

�e present study demonstrates the production of AA 
from biodiesel glycerol via integrated three-step process. 
Glycerol was initially converted to 1,3 PDO and 3HP using 
resting cells of L. reuteri under anaerobic conditions. �e 
product mixture was then subjected to selective biological 
oxidation under aerobic conditions using resting cells of 
G. oxydans resulting in 3HP. �e resultant acid was cata-
lytically dehydrated using TiO2 to AA (Fig.�1).

Results and�discussion
Fed-batch biotransformation of glycerol to 1,3PDO 
and 3HP using resting cells of L. reuteri
Using L. reuteri cells as biocatalyst for transformation 
of glycerol requires induction of expression of the genes 
encoding the enzymes and structural proteins in the 
Pdu pathway, by including small amounts of glycerol or 
1,2-propanediol in the cultivation medium with a sugar 
carbon source [36]. Co-metabolism of glycerol with 
the main carbon source results in higher cell density, as 
regeneration of NAD+ resulting from the conversion of 
3HPA to 1,3PDO diverts the sugar metabolism to acetate 
(via pyruvate and acetyl-phosphate) yielding ATP instead 
of being reduced to ethanol and lactate [37, 38].

Our earlier study on the analysis of glycerol �uxes 
towards 3HPA, 1,3PDO and 3HP revealed that the rate of 
formation of 3HPA is higher than the rate for its further 
conversion to 3HP and 1,3PDO [27]. �e maximum spe-
ci�c production rates of 3HP and 1,3PDO using wild-type 
L. reuteri at pH 5 were 62.4 and 52.7� mg/gCellDryWeight� h, 
respectively [27]. Considering these maxima, the maxi-
mum speci�c glycerol consumption rate yielding only 

1,3PDO and 3HP without accumulation of the intermedi-
ate 3HPA was calculated to be 128.3�mgGly/gCDW�h by sum-
ming up the molar speci�c production rates for 1,3PDO 
and 3HP using the following equation:

Since 12�g dry weight of biocatalyst is used in the pre-
sent study, the speci�c consumption rate was 1.54�gGly/12 
gCDW� h. Using a feeding rate of 0.75 gGly/h (half of the 
maximum rate), conversion of 40�g glycerol and produc-
tion of high amounts of 3HP (19.9�g) and 1,3PDO (17.5�g) 
at a rate of 0.35 and 0.3�g/h, respectively, were achieved. 
�e increase in the reaction volume caused by the feed-
ing solution resulted in �nal concentration of 14 and 
12� g/L for 3HP and 1,3PDO, respectively (Fig.� 2). �e 
molar ratio of 1,3PDO to 3HP was 1� mol/mol ensuring 
the balanced production for maintaining redox equiva-
lence, and their corresponding yields were 0.42� g1,3PDO/
gGly and 0.48�g3HP/gGly. No accumulation of the interme-
diate aldehyde and/or product inhibition was observed 
during the whole biotransformation process.

�e co-production of 1,3PDO and 3HP is mediated by 
a co-factor (NADH-NAD+) recycling between the oxi-
dative and reductive branches of the metabolic pathway 
which is essential for continuity of the biotransforma-
tion reaction. Hence, directing the reaction towards 3HP 
as a single product by knocking out the gene encoding 
1,3-propanediol oxidoreductase seems unfeasible. One 
realistic approach is to oxidize the produced 1,3PDO to 
3HP in a separate step.

Selective oxidation of 1,3PDO to 3HP using resting cells 
of G. oxydans
Bioconversion of 1,3PDO to 3HP by the resting cells of G. 
oxydans was �rst investigated by varying the biocatalyst 

qGly = q3HP + q1,3PDO
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Fig. 1  Schematic representation of the three-step process for conversion of glycerol to AA through 3HP. The proposed three-step process for the 
conversion of glycerol to 3-hydroxypropionic acid and acrylic acid. Step numbers are indicated on the arrows. 1 Reactions catalyzed by L. reuteri, 2 
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concentration (2.6, 3.9, 5.2 and 6.5� mgCDW/mL using 
10� mg/mL substrate) and 1,3PDO concentration (5, 10, 
15, 20, 25 and 30�mg/mL using 5.2�mgCDW/mL biocata-
lyst), the results of which are summarized in Table�1. �e 
reaction was studied under uncontrolled pH in batch 
mode of operation at 28�°C and 800�rpm in 1�mL work-
ing volume containing G. oxydans cells in aqueous sub-
strate solution. Highest conversion of 91�% was achieved 
with 5�mg/mL 1,3PDO in 2�h reaction time. Over 90�% of 
10�mg/mL 1,3PDO was converted in 5�h yielding 3HP as 
the main product with minute amounts of the intermedi-
ate 3HPA (Fig.�3). After 5�h, the conversion was marginal 
and was 96.9�% after 24�h.

Higher substrate concentrations, 15�30� mg/mL 
resulted in 77.96, 66.71, 57.56 and 53.26�% conversion, 
respectively in 24� h. Slight accumulation of the inter-
mediate 3HPA was observed at 25�30�mg/mL 1,3PDO. 
Two main enzymes are functional in this step including 
alcohol dehydrogenase (ADH) and an aldehyde dehy-
drogenase (ALDH) [30�35]. According to Wei et� al. 
(2003) and our modeling/docking studies of 1,2-pro-
panediol and 1,3PDO in the active site (data not shown), 
ethanol dehydrogenase is thought to be the enzyme 
responsible for oxidation of the propanediols to the cor-
responding aldehydes [32]. For the second step of oxi-
dation of the aldehyde to the carboxylic acid, di�erent 
aldehyde dehydrogenases were reported to be responsi-
ble, one is membrane-bound and the others are either 
membrane-bound or cytoplasmic enzyme(s). However, 
further studies are required to identify all the enzymes 
involved [32].

�e e�ects of biocatalyst concentration [mgCDW/mL] 
and substrate concentration [mg/mL] on speci�c ini-
tial reaction rate [mg/gCDW.min] are shown in Fig.� 4. 
Although a higher biocatalyst concentration resulted in 
faster conversion rate, the speci�c initial reaction rate 
was signi�cantly reduced (Fig.�4a). �is could be a result 
of oxygen limitation that might occur at higher biomass 
concentration. On the other hand, the initial volumetric 
reaction rate was increased from 30.4�±�5.3�µg/mL�min 
using 2.6� mgCDW/mL to a maximum of 47.9�±� 0.8� µg/
mL�min using 5.2�mgCDW/mL. Increasing the cell concen-
tration to 6.5� mgCDW/mL did not result in a signi�cant 
increase in volumetric reaction rate. �is explains the use 

Fig. 2  Biotransformation of glycerol to 3HP and 1,3PDO. Fed-batch 
biotransformation of glycerol using resting cells of L. reuteri (12 
gCDW/L). Glycerol (100 g/L) was fed at a rate of 0.75 ggly/h. Symbols: 
concentrations of glycerol (filled diamond), 3HP (filled triangle) and 
1,3PDO (filled square)

Table 1  Biotransformation of�1,3PDO by�G. oxydans at�28�°C and�800�rpm for�3�h

1,3PDO 1,3-propanediol, 3HPA 3-hydroxypropionaldehyde, 3HP 3-hydroxypropionic acid
a  Conversion of 1,3PDO
b  Substrate calculated as the sum of 3HPA and 3HP used in the ALDH reaction (converted to 3HPA equivalent)
c  Conversion of 3HPA to 3HP
d  Overall yield (mol%) of 3HP from 1,3PDO after 24 h
e  calculated after 12 h

Biocatalyst 
(mg/mL)

Alcohol dehydrogenase reaction (ADH) Aldehyde dehydrogenase reaction (ALDH) 3HP Yield d 
mol% (24 h)

1,3PDO 
(mg/mL)

Remaining  
1,3PDO (mg/mL)

Conversiona  
(%)

Substrateb 
(mg/mL)

3HPA (mg/mL) 3HP (mg/mL) Conversionc  
(%)

5.2 5 0.2 95.3 4.6 0.2 5.4 95.0 95.4
5.2 10 1.4 86.1 8.4 0.1 10.1 98.9 96.9
5.2 15 7.7 48.7 7.1 0.1 8.6 99.1 97.1
5.2 20 13.7 31.3 6.1 0.1 7.3 98.6 96.6
5.2 25 18.9 24.5 6.0 1.4 5.5 76.0 98.5
5.2 30 24.8 17.2 5.0 1.6 4.2 68.0 98.3
2.6 10 4.5 54.9 5.4 0.0 6.5 99.7 98.5e

3.9 10 2.4 75.7 7.4 0.1 8.9 99.0 97.8e

6.5 10 2.0 80.2 7.8 0.2 9.3 98.1 95.8e



Page 5 of 11Dishisha et al. Microb Cell Fact  (2015) 14:200 

of 5.2�mgCDW/mL for studying the e�ect of substrate con-
centration on biotransformation kinetics.

As seen in Fig.�4b, the rate of ADH catalyzed reaction 
decreased signi�cantly with increase in substrate con-
centration from 10 to 30� mg/mL, suggesting substrate 
inhibition. Product inhibition could be ignored since the 

intermediate 3HPA was continuously converted to the 
corresponding acid and did not accumulate to an inhibi-
tory level. On the other hand, increasing the substrate 
concentration for the ALDH catalyzed reaction was 
accompanied with increase in the reaction rate within the 
tested range. At initial 1,3PDO concentration of 25 and 
30�mg/mL, accumulation of the intermediate aldehyde to 
1.4 and 1.6�mg/mL, respectively, indicated that the over-
all rate of 1,3PDO oxidation to 3HPA catalyzed by ADH 
is higher than that for further oxidation of 3HPA to 3HP 
by the second enzyme in the cascade, ALDH.

�e highest 3HP concentration obtained was 
18.4� ±� 0.4� mg/mL from 30� mg/mL 1,3PDO within 
24� h. �e �nal pH of the biotransformation reaction 
dropped from 3.5�±�0.07 in case of 5�mg/mL 1,3PDO to 
2.98�±�0.01 with 30�mg/mL of 1,3PDO (Fig.�5). �is sharp 
drop in the pH of the reaction might explain the marginal 
biotransformation of 1,3PDO observed after 5� h of the 
reaction since the optimal pH range for the alcohol and 
aldehyde dehydrogenases is between pH 5 and 7 [31�33].

Biotransformation of 1,3PDO performed under con-
trolled aeration and pH in a bioreactor using 3.25 gCDW/L 
cells resulted in enhanced 1,3PDO oxidation and 3HP 
production rates (Fig.� 6a). Consumption of the entire 
1,3PDO (10� mg/mL) was achieved in 4.75� h at a volu-
metric rate exceeding 2.1� g/L� h with formation of 3HP 
at a rate of 2.4� g/L� h and a molar yield of ~1� mol3HP/
mol1,3PDO. �e speci�c consumption and production 
rates during the initial 3.25� h were 14.4 and 13.8� mg/
gCDW.min, respectively.

Once the reaction kinetics for 1,3PDO was determined, 
the conversion of 1,3PDO present in a mixture with 3HP 
produced from biodiesel-derived glycerol by L. reuteri 
was investigated. No inhibitory e�ect of 3HP at an initial 
concentration of 11.8� g/L was observed on the reaction 
kinetics. �e biotransformation of 1,3PDO in the mixture 

Fig. 3  Biotransformation of 1,3PDO to 3HP. Time course for biotrans-
formation of 1,3PDO (10 mg/mL) using resting cells of G. oxydans 
(5.2 mgCDW/mL). The �gure shows the % peak area of 1,3PDO (filled 
square), 3HPA (filled diamond) and 3HP (filled diamond). Biotransfor-
mation (1 mL working volume) was done in 5 mL vial placed in a 
thermomixer at 28 °C and 800 rpm

Fig. 4  E�ect of biocatalyst and 1,3PDO concentrations on speci�c 
initial oxidation rate by G. oxydnas. a E�ect of biocatalyst concentra-
tion (mg/mL) on speci�c initial 1,3PDO (10 mg/mL) conversion rate 
(µg/mgCDW.min) using resting cells of G. oxydans. b Speci�c initial 
reaction rates of ADH (filled diamond) and ALDH (filled square) calcu-
lated from the data collected after 3 h during biotransformation of 
1,3PDO using resting cells of G. oxydans. Asterisk indicates a signi�cant 
di�erence between the marked data points. The data for the �rst 
substrate concentration (5 mg/ml) was ignored from Fig. 3b since the 
reaction was marginal after 2 h

Fig. 5  E�ect of initial 1,3PDO concentration on �nal pH and 3HP 
concentration. E�ect of initial 1,3PDO concentration (g/L) on 3HP 
concentration (g/L) (filled diamond) as well as �nal pH of the reaction 
(filled square) after 24 h. Biocatalyst concentration was 5.2 mgCDW/mL, 
reaction volume 1 mL in 5 mL vials, temperature was maintained at 
28 °C and mixing at 800 rpm
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showed a similar pro�le to that of pure 1,3PDO. Quanti-
tative conversion of 1,3PDO to 3HP was achieved yield-
ing a �nal concentration of 23.6� g/L 3HP (Fig.� 6b). �e 
yield of 3HP with respect to the glycerol used reached 
approximately 1� mol/mol which is the highest reported 
so far (Additional �le�1: Table�S1), and the product had 
high purity exceeding 95�% as determined by HPLC. �is 
solution was �ltered and utilized as substrate for AA 
production.

Catalytic dehydration of 3HP to AA
Dehydration for the introduction of double bond is one 
of the less investigated reactions through enzymatic 
catalysis. �is could be a result of the high toxicity of 
these products such as acrolein, AA and methacrylic 
acid to the producing microorganisms [8]. On the other 
hand, chemical catalysis provides several green routes 
for production of these chemicals catalyzed by inor-
ganic catalysts. Among the di�erent processes for pro-
duction of acrylic acid, the catalytic dehydration of 
3HP over TiO2 gave the highest yield (Additional �le� 1: 
Table�S2). Titanium dioxide (TiO2) is considered to be a 
green catalyst and is widely used in paints, cosmetics and 

food as whitening agent. We have reported earlier the 
catalytic dehydration of 3-hydroxy-2-methylpropionic 
acid over TiO2 at 210� °C to methacrylic acid with high 
purity exceeding 90� % and a yield over 85� % [31]. �e 
same approach was for catalytic dehydration of 3HP to 
AA. �e e�ect of the substrate �ow rate on the dehydra-
tion step was tested in a continuous mode of operation. 
Table� 2 summarizes the percentage of conversion and 
product yield in each case. Over 99.9�% 3HP conversion 
and 99.0�±�5.1�% product formation was achieved using 
the substrate �ow rate of 1.5�mL/h at 230�°C (Fig.�7).

Conclusions
�e present study provides a proof of concept for a novel 
green route for production of AA from biodiesel-derived 
glycerol via an integrated three-step process. �e conver-
sion of the substrate to the �nal product was mediated by 
seven enzymes in two whole cell biocatalysts and an inor-
ganic catalyst. All the reactions were performed in aque-
ous medium, which resulted in high yields and purity of 
the �nal products without the need for further puri�ca-
tion (Fig.�8). All the catalytic steps were performed at pH 
(5.5) in order to lower the base consumption and facili-
tate subsequent gas-phase dehydration step to AA [9].

Fig. 6  Biotransformation of 1,3PDO to 3HP. Batch biotransformation 
of 1,3PDO (filled square) to 3HP (filled triangle) via 3HPA (filled diamond) 
as intermediate using resting cells of G. oxydans (3.25 gCDW/L). a 
Model solution containing 10 g/L 1,3PDO and b 1,3PDO (10 g/L) in 
mixture with 3HP (11.8 g/L) obtained from glycerol biotransformation 
using resting cells of L. reuteri. The biotransformation was done in 3 
L bioreactor with 1 L working volume. Temperature was controlled 
at 28 °C, stirrer speed at 800 rpm, air�ow at 1 v/v/m, and pH at 5.5 
through addition of 5 N NH4OH during the whole biotransformation 
process

Table 2  E�ect of� �ow rate on� dehydration of� 3HP to� AA 
using TiO2 at�230�°C

Run Flow rate (mL/h) Conversion (%) Acrylic acid 
(mol %)

1 6 66.8 ± 2.3 25.4 ± 1.7
2 1.5 >99 99.0 ± 5.1

Fig. 7  Catalytic dehydration of 3HP to AA. Continuous catalytic 
dehydration of 8 g/L 3HP (filled traingle) to AA (filled diamond) using 
a chromatographic column (300 × 7.8 mm) packed with 12 g TiO2 
and placed in an oven at 230 °C. The 3HP solution was obtained as 
a product from glycerol via two-step biotransformation. Pre-heated 
3HP solution (pH 5.7) was fed at a rate of 1.5 mL/h using a quantita-
tive pump. The eluate containing AA was condensed in a cold water 
bath and collected in fractions
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According to a recent simulation study for AA pro-
duction from glucose via 3HP using recombinant E. 
coli, the main concerns were the estimated high cost for 
downstream processing and the cost of nitrogen source 
required for microbial growth and maintaining the pro-
duction [39]. For making the system reported in the pre-
sent study economical and attractive for industrial scale 
production of 3HP and AA requires further investiga-
tions with respect to designing less expensive cultivation 
media for growing the microorganisms, and the biocon-
version to handle higher substrate loads to obtain more 
concentrated product stream. �is may also involve the 
use of engineered cells with overexpressed enzymes for 
improving the activity and productivity and lowering the 
product inhibition.

Methods
Materials
Glycerin tech (98� %), a co-product of biodiesel produc-
tion process and 3-hydroxypropionic acid standard (30�% 
w/v) were provided by Perstorp AB, Sweden. Lactobacilli 
MRS broth (composition per liter: 10� g protease pep-
tone, 10� g beef extract, 5� g yeast extract, 20� g dextrose, 
1� g Tween 80, 2� g ammonium citrate, 5� g sodium ace-
tate, 0.1� g magnesium sulfate, 0.05� g manganese sulfate 
and 2�g dipotassium phosphate) and Bacto yeast extract 
were products of Difco (BD laboratories, Detroit, Michi-
gan, USA). 1,3-Propanediol, 28�% ammonium hydroxide, 
acrylic acid, TiO2 and glycerol (99�%) were obtained from 
Sigma�Aldrich (St. Louis, MO, USA) and glucose mono-
hydrate from Prolabo (VWR International, Fontenay-
sous-Bois, France), while 1,2-propanediol and phosphate 
salts were from Merck (NJ, USA).

Microorganisms and culture conditions
Two microorganisms were used in this study, L. reuteri 
DSM 20016 and G. oxydans DSM 50049.

For preparation of L. reuteri pre-culture, MRS medium 
containing 1.5�g/L 1,2-propanediol was used. Stock cul-
ture of the microorganism in 20�% v/v glycerol (0.2�mL) 
was added to 20� mL of the culture medium in 30� mL 
serum bottles and incubated at 37�°C for 8�h. �e result-
ing culture was used to inoculate another 20�mL medium 
(1�% v/v) and incubated under similar conditions for 8�h 
and then used as inoculum for biomass production step.

G. oxydans inoculum preparation and biomass pro-
duction was done as described elsewhere [31], by 

transferring 1� mL stock culture in 20� % v/v glycerol to 
an agar slant, and after incubation at 28�°C for 2�days the 
culture on the agar surface was transferred to a 1�L baf-
�ed E-�ask containing 100� mL culture medium (10� g/L 
yeast extract, 10� g/L glycerol and 5� g/L KH2PO4). �e 
culture was placed in an incubator shaker (New Brun-
swick, Innova 4430, Edison, USA) at 200�rpm and 30�°C 
for 4�days and then used for biomass production step.

Biomass production step
�e production of L. reuteri and G. oxydans cells was 
done in a 3-L bioreactor (Applikon, Microbial Biobun-
dle, �e Netherlands). Monitoring and control of all the 
parameters was done through ez-control unit. Tempera-
ture was maintained via a heating blanket and a cooling 
�nger, and pH was controlled using 5�N NH4OH.

For L. reuteri, 20�mL (1�% v/v) of the fresh pre-culture 
was aseptically added to 2 L fermentation medium con-
taining 55�g/L MRS broth, 5�g/L 1,2-propanediol and glu-
cose concentration was adjusted to 40�g/L. Stirrer speed 
was maintained at 200�rpm, temperature at 37�°C and pH 
at 5.5. Anaerobic conditions were maintained by con-
tinuous bubbling of nitrogen gas. Fermentation was con-
tinued for 10�h after which the broth was collected and 
centrifuged at 15,000×g for 10�min.

Production of G. oxydans cells was done as described 
elsewhere [31]. Seventy-�ve milliliters of the pre-culture 
was added to 1.5� L fermentation medium. �e opera-
tional conditions used were temperature of 30�°C, pH 5.5, 
stirrer speed 500�rpm and air�ow at 1 v/v/m during the 
entire cultivation. After cultivation for 2�days, cells were 
harvested as described earlier for L. reuteri.

Fed-batch biotransformation of glycerol to 1,3PDO 
and 3HP using resting cells of L. reuteri
Biotransformation of glycerol was done in 3-L bioreactor 
(Applikon, �e Netherlands) with 1�L initial working vol-
ume. �e process was started by resuspending the har-
vested L. reuteri cells from the biomass production step 
in 1 L solution containing 2� g/L glycerol to a �nal den-
sity of 12 gCDW/L. After 3�h of batch biotransformation, 
glycerol (100�g/L) feed was started at a rate of 7.5�mL/h 
(0.75 gGly/h) and was continued for 55� h. Samples were 
collected and analyzed for the concentrations of residual 
substrate and metabolites. �e biotransformation condi-
tions were the same (pH 5.5, 37� °C) as described in the 
L. reuteri biomass production step. �e resulting solution 

(See �gure on previous page) 
Fig. 8  Chromatographic pro�les for 1,3PDO, 3HP and AA production via the combined three-step process. a 3HP and 1,3PDO produced from glyc-
erol using resting cells of L. reuteri DSM 20016. b 3HP produced from bioconversion of 1,3PDO in mixture with 3HP using resting cells of G. oxydans. 
c AA produced by catalytic dehydration of the resulting 3HP using TiO2 (3HP and AA peaks were con�rmed using UV detection at 215 nm)
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containing equimolar concentrations of 1,3PDO and 3HP 
was collected, �ltered through 0.2�µm �lter and used as 
the substrate for resting cells of G. oxydans. �e biotrans-
formation kinetics were determined using the following 
equations:

• �  

• �  

• �  

• �  

• �  

where P and S are the concentrations of the products 
and substrate (g/L), respectively, V is the reaction vol-
ume, x is the amount of the biocatalyst (gCDW), and ∆t is 
the time elapsed between the initial and �nal conditions 
(h).

Batch biotransformation of 1,3PDO to 3HP using resting 
cells of G. oxydans
G. oxydans cells were obtained by centrifugation of the 
culture broth at 15,000×g for 2� min in Eppendorf tube. 
Oxidation of 1,3PDO (5�30� mg/mL) was studied using 
2.6�6.5�mg (dry weight) resting G. oxydans cells per mL 
(1�mL reaction volume in 5�mL glass vials). �e vials were 
placed in a thermomixer (Heidolph, Germany) at 28� °C 
and stirring at 800� rpm for maintaining aerobic condi-
tions. Samples of 50�µL were collected and analyzed for 
concentrations of residual substrate and products.

Oxidative biotransformation of 1,3PDO to 3HP was 
also investigated using resting cells of G. oxydans with 
controlled pH and aeration. �e biotransformation was 
done in a 3-L Applikon bioreactor with 1�L working vol-
ume under batch mode of operation. �e experiment was 
started by resuspending 3.25 gCDW of G. oxydans cells in 
1 L solution containing 10.0�g/L 1,3PDO, and was main-
tained at 28�°C, pH 5.5 by addition of 5�N NH4OH, stirrer 
speed of 800�rpm and air �ow at 1 L/min. �e experiment 
was continued until 1,3PDO was entirely consumed.

In a similar manner, the conversion of 1,3PDO present 
in a mixture with 3HP produced from glycerol was per-
formed. �e G. oxydans cell pellet from the biomass pro-
duction step was resuspended in the solution containing 
10.0�g/L 1,3PDO and 11.8�g/L 3HP (equimolar) to a �nal 

Production rate
(

g/h
)

= [
(

Pfinal ·Vfinal

)

−(Pinitial ·Vinitial)]/∆t

Consumption rate
(

g/h
)

= [(Sfinal ·Vfinal)− ((Sfeed ·Vfeed)+ (Sinitial ·Vinitial))]/∆t

Specific production rate, qP
(

mg/gCDW ·h
)

= production rate
(

g/h
)

× 1000/x

Specific production rate, qP
(

mg/gCDW ·h
)

= production rate
(

g/h
)

× 1000/x

Specific consumption rate, qS
(

mg/gCDW · h
)

= consumption rate
(

g/h
)

× 1000/x

density of 3.25� gCDW/L and biotransformation started 
under the same conditions as above.

Samples were collected and analyzed for the concen-
trations of 1,3PDO, 3HP and 3HPA. �e initial reaction 
rates for the oxidation of 1,3PDO and 3HPA by ADH and 
ALDH were calculated for the initial 3�h of the reaction. 
For ADH, the reaction rate was calculated as the con-
sumption rate of 1,3PDO, while for ALDH, the reaction 
rate was calculated as the production rate of 3HP. Since 
3HPA is not available commercially, for plotting the rela-
tion between the substrate concentration (3HPA) and 
the initial reaction rate, the substrate concentration was 
calculated as the number of moles of 1,3PDO consumed 
after 3� h of biotransformation. Since 1,3PDO oxida-
tion is a quantitative process ([3HPA]initial�=� consumed 
[1,3PDO]�=�accumulated 3HPA�+�3HP). �e same strat-
egy was used earlier for measuring the kinetics of the 
same enzymes [31].

�e biotransformation kinetics were determined using 
the following equations:

––

–  –

–  –

––

where X is the cell density (gCDW/L).

Catalytic dehydration of 3HP to AA
�e 3HP solution obtained as a product from glycerol via 
two-step biotransformation was sterilized by �ltration. 
A stainless steel tube (300�×� 7.8� mm) was packed with 
12� g TiO2 and placed in an oven. Pre-heated 3HP solu-
tion (8.00� mg/mL, pH 5.7) was fed into the pre-heated 
reaction tube using a quantitative pump (JASCO, Tokyo, 
Japan) at di�erent �ow rates for providing di�erent resi-
dence times. �e reaction temperature was 230� °C. �e 
eluate containing AA was condensed in a cold water 
bath, collected in fractions and analyzed.

Analyses and structural elucidation
Cell growth
Cell growth was followed by measuring optical density at 
620�nm (OD620) using Ultrospec 1000 spectrophotometer 
(Pharmacia Biotech, Uppsala, Sweden) and then corre-
lated with cell dry weight (CDW). �e following equation 

Volumetric production rate, Qp

(

g/L·h
)

= [Pfinal−Pinitial]/∆t

Volumetric consumption rate, Qs

(

g/L·h
)

= [Sfinal−Sinitial]/∆t

Specific production rate, qp
(

mg/gCDW ·h
)

= Qp × 1000/X

Specific consumption rate, qs
(

mg/gCDW ·h
)

= Qs × 1000/X
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describes the relation between the cell dry weight and 
optical density:

Measurement of substrates and products
Glycerol, 3HP, 1,3PDO and AA concentrations were 
determined by HPLC (JASCO, Tokyo, Japan) equipped 
with RI detector (ERC, Kawaguchi, Japan) and JASCO 
intelligent autosampler. Separation of the compounds was 
done using Aminex HPX-87H chromatographic column 
connected to a guard column (Biorad, Richmond, CA, 
USA). �e column temperature was kept at 65� °C using 
chromatographic oven (Shimadzu, Tokyo, Japan). Sam-
ples were diluted with Millipore quality water and mixed 
with 10�% v/v sulfuric acid (20�µL/mL sample) and then 
�ltered. Forty microliter sample was injected in 0.5� mM 
sulfuric acid mobile phase �owing at a rate of 0.4�mL/min.

For the determination of 3HPA concentration, the 
modi�ed colorimetric method of Circle et� al. 1945 [40] 
as described by Ulmer and Zeng (2007) [41] with acrolein 
as standard was used. Brie�y, 200�µL of properly diluted 
sample was mixed with 150�µL of 10�mM DL-tryptophan 
solution in 50�mM HCl and 600�µL of concentrated HCl 
(fuming 37� %). �e reaction mixture was incubated for 
20� min at 37� °C. �e produced purple color was then 
measured using spectrophotometer at 560�nm.

Statistical analysis
�e presented data are the average of two independent 
replicates� ±� standard deviation. Signi�cant di�erences 
among treatment means were tested using the Student�s t 
test, with a level of signi�cance of 0.05.
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