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COMMENTARY

Methanol regulated yeast promoters: 
production vehicles and toolbox for synthetic 
biology
Brigitte Gasser1,2, Matthias G. Steiger1,2 and Diethard Mattanovich1,2*

Abstract 

Promoters are indispensable elements of a standardized parts collection for synthetic biology. Regulated promoters of 
a wide variety of well-defined induction ratios and expression strengths are highly interesting for many applications. 
Exemplarily, we discuss the application of published genome scale transcriptomics data for the primary selection of 
methanol inducible promoters of the yeast Pichia pastoris (Komagataella sp.). Such a promoter collection can serve as 
an excellent toolbox for cell and metabolic engineering, and for gene expression to produce heterologous proteins.
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Background
A major task of synthetic biology is the provision of 
standardized elements for rapid assembly of predict-
able recombinant gene expression cassettes [1, 2]. These 
elements include vectors, selection markers, and most 
importantly collections of regulatory elements like pro-
moters, transcription terminators, secretory leaders and 
other signal sequences. Ideally, collections of these parts 
are cataloged in standardized, easy to assemble formats 
like BioBrick [3]. Promoters are indispensable parts for 
synthetic biology approaches [4] and are needed for dif-
ferent expression strength in order to balance the expres-
sion levels in a synthetic pathway [5]. There are a plethora 
of studies which characterize, e.g. constitutive promoters 
of different strength for Escherichia coli [6], Aspergillus 
niger [7] or Pichia pastoris [8]. Depending on the applica-
tion it might be necessary to tightly control the promoter 
activity. Especially regulated promoters are often strictly 
host specific, so that they need to be identified, charac-
terized and standardized for the host species of interest, 
as shown e.g. for E. coli [9].

Methanol regulated promoters
Methylotrophic yeasts such as P. pastoris (syn. Komaga-
taella sp.) have gained great interest as production hosts 
for recombinant proteins [10] and more recently also as 
platform for metabolite production [2]. Both applica-
tions require promoter collections of different strength 
for metabolic and cell engineering to enable and enhance 
productivity. Promoter libraries were developed based 
on mutating transcription factor binding sites [11], or 
by random mutagenesis [8]. Strong constitutive and 
regulated promoters were identified by transcriptomics 
studies [12, 13]. Delic et  al. [14] described a collection 
of native regulated promoters of different strength with 
the main aim of providing repressible promoters for gene 
knockdown studies. Synthetic core promoters represent a 
source for transcriptional initiators at different strength, 
however with the loss of regulatory features [1, 15].

A specific feature of methylotrophic yeasts is the car-
bon source dependent regulation of the genes involved 
in methanol metabolism. Recently we have redefined 
the methanol assimilation pathway of P. pastoris [16], 
a finding that was initially based on the identification 
of all genes that are upregulated on methanol as a sub-
strate. These include hitherto unknown genes, controlled 
by promoters of a wide range of expression strength on 
methanol (Table  1). Beside different expression levels 
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Table 1  Methanol regulated genes of P. pastoris as a source of regulated promoters

a  Relative gene expression levels were derived from signal intensities on DNA microarrays at methanol induction [16, 17] and ordered from highest to lowest
b  ORF names derived from published P. pastoris genome sequences [19, 20]
c  The gene correlation was calculated using transcriptomic datasets comprising 29 different conditions. The log2 fold change data was used to look for co-regulations 
in this data set. The data was processed via the DeGNServer to calculate Spearman´s rank correlation using a CLR-based Network and an association cut-off value of 
3.8 [21]. Co-regulation was analyzed with three genes involved in methanol utilization: AOX1 (A), DAS1 (D), FBA1-2 (F). Up at glucose limit means that expression is 
deregulated in glucose limited culture conditions without methanol (data from [12])
d  Induction on methanol was classified based on the transcriptional regulation patterns obtained by [16, 17] by comparing expression levels of cells grown on 
methanol to cells grown on glucose or glycerol

Ranked expression  
level (methanol)a

Short name ORF nameb Co-regulation: 1 = with A/D/F;  
2 = with A; 3 = with D/F;  
4 = up at glucose limitc

Methanol  
inductiond

1 DAS1 PP7435_Chr3-0352 1;4 Strong

2 AOX2 PP7435_Chr4-0863 2;4 Strong

3 AOX1 PP7435_Chr4-0130 1;4 Strong

4 DAS2 PP7435_Chr3-0350 3;4 Strong

5 FDH1 PP7435_Chr3-0238 1;4 Strong

6 PMP20 PP7435_Chr1-1351 Strong

7 THI11 PP7435_Chr4-0952 Weak

8 FLD PP7435_Chr3-0140 3 Intermediate

9 FBA1-2 PP7435_Chr1-0639 1 Strong

10 SHB17 PP7435_Chr2-0185 3 Intermediate

11 FGH1 PP7435_Chr3-0312 1 Intermediate

12 DAK2 PP7435_Chr3-0343 3 Intermediate

13 CTA1 PP7435_Chr2-0137 3 Weak

14 PMP47 PP7435_Chr3-1139 1 Strong

15 MPP1 PP7435_Chr3-0349 3 Weak

16 FBP1 PP7435_Chr3-0309 3 Weak

17 PIM1-2 PP7435_Chr1-0484 2 Weak

18 PAS_chr1-1_0037 PP7435_Chr1-0336 1 Strong

19 PAS_chr3_1071 PP7435_Chr3-0094 1 Strong

20 PEX11 PP7435_Chr2-0790 3;4 Intermediate

21 PEX13 PP7435_Chr2-0217 1 Weak

22 PAS_chr1-1_0343 PAS_Chr1-1_0343 4 Intermediate

23 PEX12 PP7435_Chr4-0200 1 Weak

24 INP1 PP7435_Chr4-0597 3 Weak

25 PEX6 PP7435_Chr1-0900 1 Weak

26 PEX17 PP7435_Chr4-0347 1 Weak

27 ATG37 PP7435_Chr4-0369 1 Weak

28 TAL1-2 PP7435_Chr2-0358 1 Intermediate

29 PEX5 PP7435_Chr2-0195 3 Intermediate

30 PEX2 PP7435_Chr3-1201 3 Weak

31 PAS_chr3_1020 PP7435_Chr3-0149 3 Strong

32 PEX1 PP7435_Chr3-0122 1 Weak

33 PEX26 PP7435_Chr4-0482 1 Weak

34 PEX10 PP7435_Chr1-1379 3 Weak

35 PEX14 PP7435_Chr4-0157 3 Weak

36 PAS_chr3_0408 PP7435_Chr3-0805 Intermediate

37 ARO7 PP7435_Chr4-0965 3 Weak

38 PEX8 PP7435_Chr1-1134 1 Weak

39 PAS_chr1-4_0459 PP7435_Chr1-1255 1 Intermediate

40 FAD1 PP7435_Chr1-0246 Intermediate

41 YLR177 W PP7435_Chr1-0659 3 Intermediate

42 PEX11C PP7435_Chr1-1331 3 Weak

43 ACS2 PP7435_Chr3-0810 Weak

44 PAS_chr3_0439 PAS_chr3_0439 2 Intermediate

45 RKI1-2 PP7435_Chr4-0797 3 Intermediate
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upon induction by methanol, these promoters feature a 
wide variety of induction degrees, defined as the ratio of 
expression levels in the induced state (presence of meth-
anol) vs. the non-induced state (cells grown on glucose 
or glycerol). Some of these promoters are even deregu-
lated on substrate limit without addition of methanol, 
illustrating a variety of regulation patterns which can 
be summarized by correlating the genes according to 
the similarity of their regulatory behavior in a plethora 
of different growth conditions, such as different carbon 
sources [17] or different growth rates, featuring different 
degrees of substrate limitation [18]. Thus they are allow-
ing controllable expression of genes depending on the 
needs or growth conditions of the host cells.

Conclusions
Genome scale transcriptomic studies are a valuable 
source of information on native promoters and have 
been successfully used to identify promoters of different 
strength and desired regulatory behavior. Well defined 
promoters are core elements of synthetic biology part 
collections. The collection of P. pastoris promoters pre-
sented here, and others analyzed in the cited references 
can serve as a basis for setting up a P. pastoris promoter 
collection. Promoters with different regulatory strength 
are crucial elements of toolboxes for cell and metabolic 
engineering. In addition, they can be directly employed 
for gene expression to produce heterologous proteins or 
metabolites in yeasts.
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