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Abstract 

Background:  Whilst undergoing differentiation, Streptomyces produce a large quantity of hydrolytic enzymes and 
secondary metabolites, and it is this very ability that has focussed increasing interest on the use of these bacteria as 
hosts for the production of various heterologous proteins. However, within this genus, the exploration and under-
standing of the metabolic burden associated with such bio-products has only just begun. In this study our overall aim 
was to apply metabolomics approaches as tools to get a glimpse of the metabolic alterations within S. lividans TK24 
when this industrially relevant microbe is producing recombinant murine tumour necrosis factor alpha (mTNFα), in 
comparison to wild type and empty (non-recombinant protein containing) plasmid-carrying strains as controls.

Results:  Whilst growth profiles of all strains demonstrated comparable trends, principal component-discriminant 
function analysis of Fourier transform infrared (FT-IR) spectral data, showed clear separation of wild type from empty 
plasmid and mTNFα-producing strains, throughout the time course of incubation. Analysis of intra- and extra-cellular 
metabolic profiles using gas chromatography–mass spectrometry (GC–MS) displayed similar trends to the FT-IR data. 
Although the strain carrying the empty plasmid demonstrated metabolic changes due to the maintenance of the 
plasmid, the metabolic behaviour of the recombinant mTNFα-producing strain appeared to be the most significantly 
affected. GC–MS results also demonstrated a significant overflow of several organic acids (pyruvate, 2-ketoglutarate 
and propanoate) and sugars (xylitol, mannose and fructose) in the mTNFα-producing strain.

Conclusion:  The results obtained in this study have clearly demonstrated the metabolic impacts of producing 
mTNFα in S. lividans TK24, while displaying profound metabolic effects of harbouring the empty PIJ486 plasmid. In 
addition, the level of mTNFα produced in this study, further highlights the key role of media composition towards the 
efficiency of a bioprocess and metabolic behaviour of the host cells, which directly influences the yield of the recom-
binant product.
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Background
Usually found inhabiting soil and decaying vegetation, 
Streptomyces are very significant and highly important 
bacteria which are probably the most widely known, as 
well as widely studied, genus of the phylum Actinobacteria. 

These Gram-positive spore-producing filamentous bacte-
ria comprise over 500 species [1] and have a complex sec-
ondary metabolism, as a consequence of which they are 
the largest microbial producer of antibiotics [2] providing 
the majority of antibiotics currently in use.
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The complex, and frankly fascinating, metabolism of 
streptomycetes (in addition to a complex morphologi-
cal life-cycle) is due to their unusually large bacterial 
genome [3, 4]. Whilst undergoing differentiation, leading 
to sporulation, a large quantity of hydrolytic enzymes and 
secondary metabolites are known to be secreted [5], and 
it is perhaps this very ability that has focused increasing 
interest on the use of these bacteria as hosts for the pro-
duction of various heterologous proteins. These include 
the production of antifungal compounds and antibacte-
rial agents, in addition to anti-parasitic [6] and anticancer 
drugs [7, 8]. Streptomyces spp. are therefore invaluable 
to human health with the possibility for yet more anti-
biotics still to be discovered with further developments 
in screening of these, and other species of bacteria 
[9], as well as the analyses of cryptic gene clusters [10]. 
Although, the most popular and intensely studied species 
of the genus is S. coelicolor, S. lividans is the organism of 
choice within the genus for heterologous protein produc-
tion purposes. This is mainly due to S.  lividans exhibit-
ing less extracellular proteolytic activity and also a lack 
of the strong restriction system of S. coelicolor [11–13]. 
Some important enzymes, as well as recombinant pro-
teins are produced by Streptomyces, including the murine 
tumour necrosis factor alpha (mTNFα) [12, 14, 15] and 
human glucagon [16]. For an overview of recombinant 
protein production and some recent examples of heter-
ologous (mammalian and microbial) proteins produced 
using S. lividans as the host organism, as well as how sys-
tems biology (including metabolomics) approaches can 
be developed to improve protein production, the reader 
is directed to the following excellent reviews [17, 18].

The bioprocesses associated with the production of 
foreign proteins [19, 20], as well as harbouring recom-
binant plasmids within cells [21], have the potential to 
impose some form of metabolic stress to these micro-
organisms. We consider that metabolomics approaches 
may well provide additional information, and a far bet-
ter understanding of any metabolic burden from within 
a cell resulting from protein production. This has the 
potential to assist directly in the optimisation of the 
overall bioprocessing methodology, which would ideally 
result in the enhancement of bioproduct formation [22]. 
Using an array of analytical platforms, metabolomics 
approaches not only have the ability to quantify metabo-
lites under defined sets of cellular states and at multiple 
time points, but also allows for the dynamics of any form 
of abiotic or biotic perturbation to be accurately assessed 
[23, 24]. Not surprisingly, the field of metabolomics has 
become increasingly popular for several reasons, which 
are detailed in far more depth elsewhere [25–28] but 
include the ability for the precision measurement of mul-
tiple metabolites accurately and directly from complex 

biological systems. In addition, as the metabolome is con-
sidered a downstream process to the genome, transcrip-
tome and proteome it may also provide a clearer image of 
an organism’s phenotype [29], which will be measurably 
affected by any perturbation in these organisms.

Here, we investigate the metabolic effects of recom-
binant mTNFα production on S. lividans grown in a 
defined medium with glucose as the main carbon source 
and aspartate as the nitrogen source. As the future direc-
tion of this study is to employ fluxomics strategies to 
explore the contribution of carbon and nitrogen sources 
towards biomass and recombinant mTNFα produc-
tion in S. lividans, and to examine the contribution of 
aspartate towards mTNFα production further, as sug-
gested by D’Huys and colleagues, a defined medium was 
formulated.

Fourier transform infrared (FT-IR) spectroscopy was 
employed as a metabolic fingerprinting tool to examine 
the overall phenotypic changes in the biochemical com-
position of the cells, while gas chromatography–mass 
spectrometry (GC–MS) was used to identify the signifi-
cant metabolites in the medium (metabolic footprint-
ing) as well those recovered from cell extracts (metabolic 
profiling).

FT-IR spectroscopy is a rapid, highly reproducible, 
non-destructive, high-throughput screening tool well 
established in metabolomics [30, 31] and microbiol-
ogy [32–34], as well as many other areas [35]. GC–MS 
is considered as one of the gold standard approaches 
for metabolic profiling and chemical characterization 
of metabolites [36–38]. Our overall aim being to use 
metabolomics approaches as tools to elucidate the com-
plex metabolic processes and mechanisms further within 
recombinant protein producing strain of S. lividans, 
which may then in turn aid the further development, 
optimisation and enhancement of recombinant protein 
production in these highly important and industrially/
clinically relevant species of bacteria.

Results and discussion
Although a lot is known about the life cycle [39], protein 
secretion pathways [40, 41] and metabolism [42] of strep-
tomycetes, there is very little known about the impact of 
heterologous protein production on bacterial metabolism 
and its subsequent effects on the performance and physi-
ology of the organism itself. Recently, several studies 
have attempted to study this metabolic impact through 
applying different approaches including: amino acid pro-
filing [43], metabolic flux analysis [44] and metabolic 
profiling approaches [45]. The current study is aimed at 
investigating the impact of heterologous mTNFα pro-
duction on the metabolite pools and growth behaviour 
of S. lividans TK24 grown in a defined minimal medium 
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using GC–MS as metabolic profiling and footprinting 
approaches, whilst employing FT-IR as a rapid metabolic 
fingerprinting strategy.

Growth profile and mTNFα production
The growth behaviour of all three S. lividans strains in 
NMMP was monitored by measuring the dry cell weight 
(DCW) of each strain at different time points during 
the incubation period. Figure  1 displays similar growth 
behaviour for all three strains under the examined condi-
tions. The mTNFα secreted or excreted into the medium 
was monitored by enzyme-linked immunosorbent assay 
(ELISA) and displayed an increasing trend with time, 
reaching the maximum concentration of 18.1  mg/L 
after 96  h of incubation. Although the concentration 
of mTNFα in the medium generally increased with the 
increasing level of biomass (Fig.  1), its production rate 
during the first 24  h of growth was significantly lower 
than the subsequent time points. In addition, after 72 h 
when cells reached the stationary phase, even though the 
biomass remained at a constant level, mTNFα concentra-
tion continued to increase.

D’Huys and colleagues [43] also reported a slower 
mTNFα production during initial growth followed by an 
increased production rate that continued through the sta-
tionary phase, which is in agreement with our findings. 
These authors also suggested that although the supple-
mented aspartate and glutamate in their study supported 
biomass production, it did not seem to contribute signifi-
cantly towards protein (mTNFα) synthesis. Our DCW and 
mTNFα measurements are in agreement with the above 
findings. In this study aspartate has been used as the sole 

nitrogen source and the mTNFα levels detected (18.1 mg/L) 
were significantly lower than those reported by D’Huys and 
colleagues (~150  mg/L). The maximum biomass yield we 
obtained using aspartate as the nitrogen source was 8 g/L 
(Fig. 1) compared to ~5 g/L when D’Huys and co-workers 
[43] used ammonium sulfate as the nitrogen source. These 
findings lend support to the claim that aspartate is used as 
nitrogen and carbon sources supporting biomass produc-
tion, however it does not contribute significantly towards 
mTNFα production, hence all three strains in this study 
displayed comparable growth behaviour.

FT‑IR fingerprint analysis
FT-IR spectroscopy was employed as a metabolic finger-
printing approach to examine the overall changes in the 
biochemical composition of the three S. lividans strains 
during growth. Samples taken after 24 h of incubation were 
excluded from the FT-IR analysis due to insufficient bio-
mass yield. FT-IR spectral data collected from the follow-
ing three time points (48, 72 and 96 h) were pre-processed 
as described in the “Methods” section and subsequently 
analysed by PC-DFA. The resultant ordination scores plot 
(Fig.  2) displayed a gradual separation between the three 
strains, due to phenotypic changes, with increasing incu-
bation time. Figure  2 displays the separation of the wild 
type (W) from the empty plasmid-carrying (E) and mTNF-
producing (T) strains according to discriminant function 1 
(DF1), whilst DF2 separated the samples based on the incu-
bation time (growth phase).

Fig. 1  Growth profiles (DCW) of different S. lividans TK24 strains 
grown on minimal medium, wild (W, red line), empty plasmid contain-
ing (E, green line) and protein producing (T, blue line) strains. mTNFα 
level produced by the protein producing strain was quantified by 
ELISA (orange dashed line). DCW measurements are presented as 
means of eight biological replicates for each strain. Errors bars indicate 
standard deviations. The ELISA results are presented as means of 
three biological replicates

Fig. 2  PC-DFA results of FT-IR spectra collected from different S. 
lividans TK24 strains at various time points during growth on minimal 
medium. Eight biological replicates and three technical replicates 
were used to generate the model which accounted for 99.8 % of the 
variance (20 PCs). Different colours represent different strains [wild (W, 
red), empty plasmid containing (E, green) and protein producing (T, 
blue) strains]. Empty symbols represent the projected validation data, 
and time points are displayed as different symbols (48 h circle, 72 h 
square and 96 h triangle). Coloured arrows represent the direction of 
separation according to incubation time
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The principal components-discriminant function anal-
ysis (PC-DFA) results (Fig. 2) displayed tighter clustering 
of the empty plasmid (E  48  h) with mTNFα-producing 
strain (T 48 h) at 48 h of growth, after which these strains 
also started to separate at later time points (72 and 96 h). 
This separation could be a reflection of the recombinant 
mTNFα production on the mTNFα-producing strain, 
which could be enhanced with increasing incubation 
time and the depletion of nutritional resources in the 
medium.

Metabolic profiles and footprints
GC–MS is one the most established techniques in the 
field of metabolomics due to its many advantages, and is 
considered as one of the gold standard technologies. In 
this study, the intracellular metabolic profiles (cellular 
extracts or endo-metabolome) and extracellular metabolic 
footprints (spent medium or exo-metabolome) of three 
different S.  lividans strains were analysed by GC–MS. 
The normalized peak areas of the detected metabolites 
were subjected to weighted-consensus principal compo-
nent analysis (CPCA-W) to study and compare the meta-
bolic behaviour of mTNFα-producing and non-producing 

S.  lividans strains at different time points. Initially the 
GC–MS dataset containing the metabolic profiles of all 
the samples was arranged into three blocks based on the 
three different S. lividans strains (strain-blocked), to com-
pare the metabolic behaviour of each strain individually 
with respect to incubation time (Fig. 3).

Block-scores plots of the wild type data-block (Fig. 3a) 
demonstrated a clear separation between samples taken 
at 24  h of incubation and samples from the following 
time points (48, 72 and 96 h) according to principal com-
ponent 1 (PC1) which accounted for 25  % of the total 
explained variance (TEV). However, the overall cluster-
ing pattern of the wild type data-block indicated a grad-
ual time-dependant change in the metabolic profiles of 
the cells, as highlighted by the dashed arrow (Fig.  3a). 
Scores plots of the empty plasmid (Fig. 3b) and mTNFα-
producing (Fig.  3c) strains followed the same clustering 
pattern, demonstrating the clear separation of the 24  h 
samples from the remaining samples according to PC1, 
whilst exhibiting a similar time-dependent clustering 
pattern. Super scores plot of the strain-blocked model 
(Fig.  4a) also exhibited this time-dependant trend, fur-
ther confirming the above findings.

Fig. 3  CPCA-W scores plots of the strain-blocked GC–MS metabolic profiles data. The scores plots for each of the strain-blocked data are presented 
on a–c plots, where samples taken at separate time points are presented by different coloured circles. The dashed arrows display the direction of the 
separation according to incubation time. Different letters on each plot indicate the S. lividans strains; wild (W), empty plasmid (E), and mTNF-produc-
ing (T)
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In order to identify the similarities and differ-
ences in the metabolic profiles of the three strains 
at each time point individually, the dataset was rear-
ranged into four blocks (time-blocked) based on the 
four sampling time points (24, 48, 72 and 96  h). The 
scores plot of the 24  h data-block (Fig.  5a) exhibited 
a clear separation between the three strains. Whilst 
the scores plots of the following time points exhibited 
similar clustering patterns (Fig. 5b–d), the separation 
increased with time. The strain most affected by incu-
bation time appeared to be the mTNFα-producing 
strain (T), as it clustered further away from the two 
other strains. Super scores plot of the time-blocked 
model (Fig. 4b) was in agreement with the above find-
ings as it also displayed the separation of all three 
strains.

CPCA-W results of the GC–MS footprint dataset 
(Additional file 1: Figure S1) displayed similar results to 
the metabolic profiles, where strain-blocked scores plots 
demonstrated a gradual time-dependent change in the 

metabolic footprint of each strain, which was in agree-
ment with its corresponding super scores plot (Addi-
tional file  1: Figure S2a). Furthermore, the footprint 
time-blocked dataset displayed a tight clustering of the 
footprint data in the 24  h data-block (Additional file  1: 
Figure  S3a) followed by a gradual separation in the fol-
lowing time-blocks (Additional file  1: Figure S3b–d). 
Super scores plot of the time-blocked footprint data set 
(Additional file 1: Figure S2b) also exhibited a clear sep-
aration between the mTNFα-producing (T) and non-
producing strains (W and E), emphasizing further the 
metabolic burden of recombinant mTNFα production in 
S. lividans cells.

Interpretation of the metabolic profile and footprint
Block loadings (data not shown) of the different GC–
MS data blocks, including metabolic profile (Fig.  4) 
and footprint data sets (Additional file  1: Figure S2), 
were employed to identify the most significant metab-
olites contributing towards the observed clustering 
patterns. The relative peak intensities of these metab-
olites at separate time points were plotted as box–
whisker plots and overlaid onto the metabolic map of 
S. lividans (Fig.  6), to determine the differences and 
changes in the metabolic behaviour of the examined 
strains during the time-course of the experiment. Full 
lists of these significant metabolites and their corre-
sponding MSI level of identification [46] can be found 
in the supplementary information (Additional file  1: 
Tables S1, S2).

The levels of glucose and aspartate in the footprint of 
all three strains (Fig. 6) demonstrated a gradual deple-
tion, as did aspartate and glucose 6-phosphate (Fig. 6). 
This is not surprising as S. lividans can take up these 
metabolites and use them as carbon and/or nitrogen 
sources [43, 44]. However, the footprint data clearly 
displayed a higher uptake and consumption rate for 
both aspartate and glucose by mTNFα-producing strain 
(strain T) compared to non-producing strains (W and 
E).

The aspartate taken up by the cells is converted to 
oxaloacetate, via the activity of aspartate oxidase (EC 
1.4.3.16), and directed towards the tricarboxylic acid 
(TCA) pathway [47] (Fig. 6, green arrow). The produced 
oxaloacetate can then be converted to citrate, by citrate 
synthase (EC 2.3.3.1) and continue its path in the TCA 
cycle, providing different precursor metabolites (e.g. 
2-ketoglutarate, as well as ATP and NADH) feeding into 
various amino acids biosynthetic pathways. In addition, 
oxaloacetate could also be directed towards gluconeo-
genesis and pyruvate production through the activity of 
phosphoenolpyruvate carboxykinase (EC 4.1.1.32) (Fig. 6, 
cyan arrow).

Fig. 4  CPCA-W super scores plots of GC–MS metabolic profiles. a 
Super scores plot of the strain-blocked model, different coloured sym-
bols indicate sampling time. b Super scores plot of the time-blocked 
model, where coloured symbols represent different S. lividans strains
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The footprint results (Fig.  6) displayed the excretion 
or secretion of several organic acids including pyru-
vate, lactate, 2-ketoglutarate and propanoate. Although 
Streptomycetes species are considered strictly aerobic, 
accumulation of lactate by these microorganisms in the 
culture medium has been reported previously [43, 48]. It 
is commonly believed that due to the unique morpholog-
ical properties and life cycle of these bacteria, resulting 
in cell-pellet (clump) formation during growth in liquid 
culture, oxygen availability could be limited in the centre 
of the pellets resulting in a micro-aerobic environment 
in which lactate may be produced through conversion 
of pyruvate by the activity of lactate dehydrogenase (EC 
1.1.1.28) [48, 49]. The lactate excreted by W and T strains 
during the entire experiment was at comparable levels, 
while E strain exhibited a slightly higher level (Fig. 6).

Several studies have reported the excretion or secretion 
of pyruvate and 2-ketoglutarate by different Streptomyces 
species, when grown on defined and complex media con-
taining rapidly usable carbon and nitrogen sources, such 
as glucose and amino acids (e.g. aspartate) [47, 50–52]. 
In this study, although the footprint of W and E strains 
(Fig. 6) also exhibited the accumulation of pyruvate and 
2-ketoglutarate in the medium, these metabolites were at 
much higher levels for the strain (T) producing mTNFα. 

The detected levels of pyruvate and 2-ketoglutarate in 
the cell extracts followed the same trend (Fig.  6). These 
metabolites displayed an almost constant level in the cell 
extracts of W and E strains throughout the different time 
points. By contrast, T strain exhibited the accumulation 
of pyruvate and 2-ketoglutarate (Fig.  6) which started 
after the first 24 h, coinciding with an increase in mTNFα 
production (Fig. 1).

Madden and colleagues [47] used fluxomics strategies 
to trace the contribution of glucose and different amino 
acids towards the excretion of various organic acids. 
These authors reported that S. lividans cells grown in 
minimal medium, with glucose and aspartate as carbon 
and/or nitrogen sources, demonstrated a higher contri-
bution of glucose (21  %) towards the excreted organic 
acids, than that of aspartate (5 %).

Our results are in agreement with the above stud-
ies, as demonstrated by the GC–MS footprint analysis 
(Fig. 6), although aspartate was found to be at lower lev-
els in T strain compared to W and E strains, the level of 
this amino acid in the cell extracts of T strain was also 
lower than that of W and E strains. These findings sug-
gest that T strain utilizes aspartate at a higher level com-
pared to W and E strains. This could be a reflection of the 
burden of recombinant mTNFα production on cellular 

Fig. 5  CPCA-W scores plots of the time-blocked GC–MS metabolic profiles data. The scores plots for each of the time-blocked data are presented on 
a–d plots, where different coloured circles present different S. lividans strains
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metabolism [19, 21], due to higher demand for energy 
(e.g. NADH and FADH2), metabolites and precursors 
(e.g. amino acids), which can be provided through con-
sumption of aspartate and its contribution towards vari-
ous TCA intermediate metabolites.

2-ketoglutarate levels displayed complementary 
results, as this was also higher in T strain compared to 
W and E strains, whilst the level of succinate in the cell 
extracts was not significantly different in all three strains. 
These findings are consistent with the aspartate uptake 
and utilization trend detected in T strain, which could be 
explained by the increased rate of TCA pathway resulting 
from the excess feeding of aspartate into this pathway, in 
the form of oxaloacetate, which leads to the overflow of 
2-ketoglutarate in the cells resulting in a higher excretion 
rate of this metabolite by T strain in comparison to W 

and E strains (Fig. 6). As propanoate production is linked 
to acetyl-CoA, the detected levels of propanoate in the 
footprint may support this claim, as it displayed much 
higher levels in T strain compared to W and E strain. 
This could mean higher acetyl-CoA availability in T 
strain which may also feed into the TCA cycle.

These observations suggest that although aspartate 
may contribute towards pyruvate production (as dis-
cussed above), its contribution towards the TCA cycle 
is of higher significance, especially for the T strain. This 
is perhaps not surprising, considering the role of TCA 
cycle towards energy production and also contribution 
of its intermediates towards the biosynthesis of various 
amino acids (e.g. glutamate, arginine and proline), which 
could be under high demand in the recombinant mTNF-
producing strain, due to the required energy for secretion 

Fig. 6  The relative peak areas (box plots) of the significant metabolites identified by CPCA-W of cell extracts and footprints GC–MS data are plotted 
onto the metabolic map of S. lividans TK24. Different colours of the box plots indicate different strains, wild (W, red), empty plasmid (E, green) and 
mTNFα-producer (T, blue). While the numbers 1–4 represent separate sampling time points, 24, 48, 72 and 96 h respectively. Different coloured arrows 
represent the potential contribution of each substrate towards various metabolites and pathways



Page 8 of 12Muhamadali et al. Microb Cell Fact  (2015) 14:157 

of mTNFα and/or the production of various proteins 
involved in the Sec translocon pathway [53].

The arginine levels detected in the cell extracts con-
firmed the above argument, as it exhibited an increas-
ing trend in the T strain whilst it remained almost 
unchanged in the W and E strains, throughout the differ-
ent time points. However, valine accumulated in the cell 
extracts of W and T strains whilst it remained constant in 
E strain. Alanine was a special case in this study, as it was 
accumulated at much higher levels in W strain and also 
marginally in the E strain compared to T strain (Fig. 6). 
This could be due to an overflow of this amino acid in the 
W and E strains, while T strain utilizes alanine at higher 
rate due to the recombinant mTNFα production. This 
observation is also not surprising, as alanine is the most 
prevalent amino acid (13.6 %, Additional file 1: Table S3) 
found in mTNFα. In addition, alanine production could 
also serve as an overflow mechanism, by which excess 
carbon and nitrogen can be removed from the cell by 
converting pyruvate to alanine via the activity of alanine 
dehydrogenase (Fig.  6). This may have contributed to 
lower pyruvate accumulation and higher alanine levels in 
the W strain, while due to higher demand for nitrogen in 
the T and E strain, alanine remains at comparably lower 
levels.

Comparison of the footprint data suggested that glu-
cose was also utilized by T strain at a higher rate com-
pared to W and E strains (Fig. 6). However, the level of 
glucose 6-phosphate in T strain was lower compared to 
that of E and W strains (Fig.  6). Fructose  6-phosphate 
exhibited a similar response, where it was depleted in the 
T strain at a much higher rate compared to the W and E 
strain (Fig. 6). This is to be expected as fructose 6-phos-
phate is positioned between glucose 6-phosphate and 
pyruvate, which are two of the most highly consumed 
metabolic substrates feeding into pentose phosphate, 
amino acid biosynthesis and TCA pathways.

The combined effects of the above pathways could 
be explained as follows: (1) the redirection of glucose 
6-phosphate from glycolysis towards pentose phosphate 
pathway (Fig.  6) may reduce the flux of carbon feeding 
into glycolysis, reducing the fructose 6-phosphate pro-
duction rate; (2) contribution of pyruvate towards the 
TCA cycle and its consumption by the cells as one of the 
main substrates for production of various metabolites 
may accelerate the consumption of fructose 6-phosphate 
and its flux through its following reactions, depleting the 
pool of this metabolite.

In addition, the level of fructose detected in the cell 
extracts of the T strain (Fig.  6) was significantly higher 
than those of W and E strains, which may possibly be due 
to the conversion of glucose to fructose via the activity of 
xylose isomerase (EC 5.3.1.5). The fructose resulting from 

this reaction could be phosphorylated and converted to 
fructose 6-phosphate via the activity of fructokinase (EC 
2.7.1.4) enzyme. The above pathway could be a stress 
response mechanism activated by the high demand for 
fructose 6-phosphate in T strain, acting as a shortcut 
pathway to replenish the fructose 6-phosphate pool. This 
could be investigated further in future studies by employ-
ing enzyme analysis and metabolic fluxomics strategies.

Mannose, xylitol and inositol 3-phosphate (Fig.  6) 
were also identified as significant metabolites affecting 
the clustering pattern in the super scores plots (Fig.  4). 
Inositol 3-phosphate in Streptomyces is produced from 
glucose 6-phosphate via the activity of myo-inositol-
1-phosphate synthase (EC 5.5.1.4), which can then be 
converted to inositol by inositol-phosphate phosphatase 
(EC 3.1.3.25) (Fig. 6). Zhang and colleagues [54] reported 
the importance of inositol in Streptomyces during cellular 
differentiation and growth. Our footprint results dem-
onstrated that, as the biomass of different Streptomyces 
strains increased with incubation time and the cells were 
passing through different growth phases (Fig. 1), the level 
of inositol 3-phosphate (Fig.  6) also increased accord-
ingly. However, T strain exhibited the lowest level of this 
metabolite throughout the different time points, which 
might be linked to the stress of recombinant mTNFα 
production, interfering with various developmental 
processes.

Conclusion
In this study we observed that recombinant mTNFα pro-
duction did not significantly affect the final biomass yield 
or growth rate of the mTNFα-producing strain (Fig.  1), 
which is perhaps not surprising given the low levels of 
mTNFα produced (only 18  mg/L). The results obtained 
from the FT-IR fingerprinting and GC–MS metabolic 
profile and footprint analyses clearly demonstrated the 
metabolic effects of mTNFα-production on the strep-
tomycetes cells. An overflow metabolism of several 
organic acids, including pyruvate, 2-ketoglutarate, and 
propanoate, was evident in the mTNFα-producing strain 
which resulted in the excretion of these metabolites by 
the cells. Several sugars (xylitol, mannose and fructose) 
were also detected at significantly higher concentrations 
in the T strain compared to the W and E strains.

Overall the GC–MS results demonstrated a higher 
uptake and consumption rate of glucose and aspartate by 
the mTNFα-producing strain compared to the wild type 
and empty plasmid bearing strains. The above observa-
tions could be linked with the imposed metabolic load of 
recombinant mTNFα production in S. lividans, directing 
available resources towards various essential pathways to 
meet the metabolite and energy demand resulting from 
the recombinant mTNFα production and secretion.
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Comparison of the growth profile of the mTNF-
producing strain with the level of mTNFα produced 
by this strain at different phases of growth, suggested 
that although the recombinant mTNFα production is 
controlled by a constitutive promoter, no direct corre-
lation was found between biomass levels and mTNFα 
production. These findings put forward the claim that, 
even though using aspartate as the nitrogen source 
improved the final biomass yield, it did not increase 
mTNFα production. This suggests that aspartate is 
mainly directed towards biomass production and not 
protein synthesis. However, a clearer picture on the 
consumption of aspartate and its contribution towards 
recombinant protein production in S. lividans could be 
achieved by employing fluxomics strategies in future 
studies. This is of course worth pursuing, as it may 
provide deeper insights into the metabolic response of 
Streptomyces towards different substrates and the rate 
to which different metabolic pathways are activated, 
which may further aid and support the production and 
optimisation of various recombinant products in this 
important industrial microorganism.

Methods
All chemicals were purchased from Sigma Aldrich, UK 
unless stated otherwise.

Bacterial strains
Streptomyces lividans TK24 was kindly provided by Prof. 
Lieve Van Mellaert, Rega Institute, KU Leuven, Bel-
gium. The strains used in study include: (1) S. lividans 
wild type (denoted as W), (2) S. lividans harbouring the 
plasmid pIJ486 (denoted as E), (3) S. lividans harbouring 
pIJ486 encoding and secreting mTNF-α (denoted as T) 
[43].

Spore stock preparation
Initial spore stocks for all the strains were prepared by 
inoculating 25  mL of phage medium (glucose 10  g/L, 
tryptone 5  g/L, yeast extract 5  g/L, Lab lemco 5  g/L, 
CaCl2·2H2O 0.74  g/L, MgSO4·7H2O 0.5  g/L, contain-
ing 50 µg/mL thiostrepton where necessary) with a sin-
gle colony of each strain, followed by 72 h incubation at 
27 °C with 280 rpm shaking using a Multitron standard 
shaker incubator (INFORS-HT Bottmingen Switzer-
land). 1  mL of mycelium from each strain was spread-
plated onto mannitol soya flour agar (agar 15  g/L, 
mannitol 20  g/L, soya flour 20  g/L) under sterile con-
ditions, followed by incubation at 27  °C for 7–14  days. 
Spores were collected from the surface of the agar and 
washed as described by Kieser et al. [55], resuspended in 
1–2 mL sterile 20 % glycerol, briefly agitated and stored 
at −80 °C.

Culturing condition
Pre-cultures were prepared by inoculating 50  mL of 
phage medium, in 250  mL baffled conical flasks, with 
spore stocks to a final density of 108 spores per mL to 
promote dispersed growth and avoid clump formation. 
The flasks were incubated at 30  °C with 280  rpm shak-
ing for 24  h using a Multitron standard shaker incuba-
tor. Cells were harvested by centrifugation (4000 g at 4 °C 
for 10  min), supernatant was removed and the biomass 
was washed twice using 50 mL sterile 0.9 % (w/v) saline 
solution.

Washed cells were resuspended in 20  mL of modi-
fied minimal medium (NMMP [55] containing: glu-
cose 10  g/L, aspartic acid 13.3  g/L, NaH2PO4 2.7  g/L, 
MgSO4·7H2O 0.6  g/L, K2HPO4 3.92  g/L and 1  mL/L of 
trace elements solution (ZnSO4·7H2O 1 g/L, FeSO4·7H2O 
1 g/L, MnCl2·4H2O 1 g/L, CaCl2 anhydrous 1 g/L). The 
pre-culture suspensions were used for inoculation of the 
minimal medium (500  mL) with the appropriate strain 
to a final OD450nm of 0.1. All strains (8 biological repli-
cates of each) were incubated as batch cultures at 27  °C 
for 96 h with 200 rpm shaking Multitron standard shaker 
incubator (INFORS-HT, Bottmingen, Switzerland).

Dry cell weight
To determine the dry cell weight (DCW), samples (2 mL) 
were taken at different time points (24, 48, 72 and 96 h) 
and transferred to pre-dried and pre-weighed Eppen-
dorf microcentrifuge tubes (Eppendorf Ltd., Cambridge, 
UK), followed by centrifugation at 13,000 g for 5 min at 
4 °C. The supernatant was transferred to a sterile tube to 
be used for mTNF-α quantification, whilst the cell pel-
lets were washed using sterile distilled water and dried at 
55 °C to constant weight.

mTNFα quantification
Secreted recombinant mTNF-α was quantified using the 
PeproTech mTNF-α ELISA kit, following manufacturer 
recommended protocol (PeproTech, Rocky Hill, USA).

FT‑IR analysis
Samples (1 mL) were taken at different time points (48, 
72 and 96 h) and the biomass was harvested by centrifu-
gation at 5000 g, 4 °C for 5 min. Supernatants were trans-
ferred to sterile tubes and flash-frozen in liquid nitrogen 
to be used for footprint analysis, while the cell pellets 
were washed twice with 0.9 % saline solution. All samples 
were stored at −80 °C until further analysis.

Upon analysis, cell pellets were normalized using the 
saline solution according to their DCW, followed by 
sonication at maximum power for 1 min to homogenise 
the cell suspension. All samples were spotted onto an 
FT-IR silicon plate as 20 µL aliquots and heated to visible 
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dryness at 55  °C. A Bruker Equinox 55 infrared spec-
trometer (Bruker Ltd., Coventry, UK) was employed for 
FT-IR spectroscopic analysis of the samples. All FT-IR 
spectra were collected in absorbance mode in the mid-
infrared range (4000–600  cm−1) at 4  cm−1 resolution, 
with 64 spectral co-adds following previously published 
methods [56]. FT-IR data were pre-processed by apply-
ing the extended multiplicative signal correction (EMSC) 
algorithm [57] for scaling of the spectra and to reduce 
any variation resulting from the sample size, followed 
by removal of CO2 vibrations (2400–2275 cm−1) and its 
replacement with a linear trend.

Quenching and extraction for GC–MS analysis
Samples (15  mL) taken at different time points were 
quenched by adding 30 mL of cold (−45 °C) 60 % metha-
nol solution in a 50 mL falcon tube following procedures 
described previously [58]. Internal metabolites were 
extracted following a protocol adapted from Ref. [58] 
with the exception of using 100 % cold (−45 °C) metha-
nol as the extraction solvent and centrifugation speed 
being 15,871 g. All extracts were normalized according to 
DCW of the samples followed by combining 50 µL from 
each sample to be used as quality control (QC) [59, 60]. 
Internal standard solution (0.2  mg  mL−1 of succinic-d4 
acid, glycine-d5, benzoic-d5 acid and lysine-d4) was added 
as 100 µL aliquots to all samples before being lyophilised 
overnight using a speed vacuum concentrator (Concen-
trator 5301, Eppendorf, Cambridge, UK). Samples were 
stored at −80 °C until derivatization for GC–MS.

Derivatization
Derivatization of the samples was carried out via a 
two-step process: (1) oximation (using methoxyamine-
hydrochloride in pyridine), and (2) silylation step [using 
N-Methyl-N-(trimethylsilyl) trifluoroacetamide], as 
described by Fiehn et al. [61] and Wedge et al. [62].

GC–MS analysis
A Leco Pegasus III mass spectrometer (St Joseph, USA) 
coupled with an Agilent 6890N GC oven (Wokingham, 
UK) was employed for the analysis of both footprint and 
extract samples following previously published methods 
[63, 64]. All initial identifications adhered to the metabo-
lomics standards initiative (MSI) guidelines [46] followed 
by removal of mass spectral features within the QC sam-
ples with high deviation [62], and normalization of the 
metabolite peak areas according to the peak area of the 
internal standard.

Data analysis
The data collected in this study (FT-IR and GC–MS) 
were analysed using MATLAB version 9 (The Mathworks 

Inc., Natwick, USA). All pre-processed FT-IR spectral 
data were investigated by combining principal compo-
nent analysis (PCA) [65] with discriminant function 
analysis (PC-DFA) to reduce the dimensionality of the 
dataset whilst determining any between-group variation 
based on a priori knowledge of the experimental class 
structure [66, 67]. Validation of the PC-DFA was car-
ried out by projection of 12 randomly selected data from 
each class (test set) onto the resultant PC-DFA model of 
the remaining replicates (training set), as described else-
where [68].

All pre-processed and normalized GC–MS peak areas, 
including those of the metabolites in the media (meta-
bolic footprint) and cell extracts (metabolic profile), were 
subjected to a form of multiblock PCA [69] known as 
weighted consensus PCA (CPCA-W) [70]. The CPCA-W 
functions by arranging the dataset into different blocks 
of data according to the experimental design and condi-
tions, in order to isolate and therefore study the factor 
of interest, that is to say it can be used to remove other 
interfering factors on the data [45, 71]. In this study, 
the GC–MS data were first arranged into three blocks 
according to the number of strains, to study the meta-
bolic behaviour of each of the strains individually at the 
investigated time points (different physiological states). 
The second approach focused on rearranging the GC–
MS data into four blocks based on the separate time 
points (24, 48, 72 and 96 h) so as to examine the meta-
bolic states of each strain in relation to other strains at 
each of the individual time points.
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