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Abstract

Background: The shikimic acid (SA) pathway is a fundamental route to synthesize aromatic building blocks for cell
growth and metabolic processes, as well as for fermentative production of various aromatic compounds. Genes
encoding enzymes of SA pathway are not continuous on genome and they are differently regulated.

Results: In this study, efforts were made to construct continuous genetic modules of SA pathway that are
regulated by a same Ptac promoter. Firstly, aro genes [aroG (NCgl2098), aroB (NCgl1559), aroD (NCgl0408) and aroE
(NCgl1567)] from Corynebacterium glutamicum and ribosome binding site (RBS) libraries that were tailored for the
above genes were obtained, and the strength of each RBS in the 4 libraries was quantified. Secondly, 9 genetic
modules were built up from the RBS libraries, a previously characterized ribozyme insulator (RiboJ) and
transcriptional promoter (Ptac) and terminator, and aroG, aroB, aroD and aroE. The functionality and efficiency of
the constructed genetic modules were evaluated in C. glutamicum by determination of SA synthesis. Results
showed that C. glutamicum RES167ΔaroK carrying a genetic module produced 4.3 g/L of SA, which was 54 folds
higher compared to that of strain RES167ΔaroK (80 mg/L, without the genetic module) during fermentation in
250-mL flasks. The same strain produced 7.4, and 11.3 g/L of SA during 5-L batch and fed-batch fermentations,
respectively, which corresponding to SA molar yields of 0.39 and 0.24 per mole sucrose consumption.

Conclusion: These results demonstrated that the constructed SA pathway modules are effective in increasing SA
synthesis in C. glutamicum, and they might be useful for fermentative production of aromatic compounds derived
from SA pathway.

Keywords: Shikimic acid pathway, Corynebacterium glutamicum, Shikimate production, Synthetic biology,
Genetic modules, Ribosome binding site (RBS)
Background
The shikimic acid (SA) pathway exists in prokaryotes
and plants, and is the common route for the synthesis of
aromatic amino acids (Trp, Phe, Tyr) [1–3] and vitamins
such as phylloquinone [4]. Since its discovery, the SA
pathway has attracted extensive interest from science
and industries. Recent investigations have demonstrated
that more chemicals can be produced by expanding the
SA pathway [5]. Seven steps of reactions complete the SA
pathway, leading to the conversion of phosphoenolpyr-
uvate (PEP) and erythrose 4-phophate (E4P) to chorismic
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acid [1]. In Corynebacterium glutamicum, the aro genes en-
coding DAHP synthase (aroG/ncgl2098), 3-dehydroquinate
synthase (aroB/ncgl1559), 3-dehydroquinate dehydratase
(aroD/ncgl0408) and shikimate dehydrogenase (aroE/
ncgl1567) are involved in conversion of PEP and E4P to shi-
kimic acid, and they are located at different transcriptional
regulation units [6–9] (Fig. 1). Recent study showed that
transcription of aroE was correspondent to the levels of shi-
kimate in C. glutamicum [9]. Genes encoding the enzymes
of SA pathway are not continuous on genome and are
differently regulated; this would results in extra difficulties
for genetic manipulation and metabolic engineering of
SA pathway.
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Fig. 1 Overview of shikimic acid pathway (a) and location of its encoding genes in C. glutamicum chromosome (b). aroG codes for
3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase, aroB for 3-dehydroquinate synthase, aroD for 3-dehydroquinate dehydratase and
aroE for shikimate dehydrogenase
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The development of synthetic biology brings new con-
cepts to design and construct genetic modules or metabolic
engineering for bioprocesses. Genetic elements that regu-
late transcription, translation or encode various enzymes
are used as “parts” to build genetic modules [10, 11].
Ideally, the properties of the parts and modules can be ac-
curately and quantitatively predicted when they are im-
planted into chassis cells [12, 13]. Recently, scientists have
designed and constructed a series of parts libraries of pro-
moters, ribosome binding sites (RBS) and terminators,
which enabled the regulation of gene expression over wide
dynamic ranges in Escherichia coli cells [14, 15]. For ex-
ample, RBS of different strengths have been applied to
optimize the metabolic flux of mevalonate-based farnesyl
pyrophosphate biosynthetic pathway [16]. So far, synthetic
parts and modules are very limited for C. glutamicum, an
important industry production workhorse that has been
used for decades to produce amino acids, vitamins, nucleo-
tides [17–20], and recently biofuels and chemicals [21–24].
In this study, efforts were made to construct continu-

ous genetic modules for SA pathway with synthetic biol-
ogy logistics. Four RBS libraries that were tailored for
C. glutamicum and 9 genetic modules for SA synthesis
were constructed. The functionality and efficiency of the
constructed SA pathway modules were evaluated by deter-
mination of SA production with C. glutamicum. Results
suggested that the newly constructed pathway modules
were effective. During batch and fed-batch fermentation,
SA production reached titers of 7.4 and 11.3 g/L, respect-
ively. This represented the highest titer of fermentative
production of SA with C. glutamicum.
Results
Design, construction, and screening of RBS libraries for
aroB, aroD, aroE and aroG
RBS sequences such as AGAAAGGAGG and GAAAGG
AGG [25–27] had been previously identified in C. gluta-
micum. In addition, the sequence of AAAGGAGGA had
been used for expression of genes involving in biopolye-
ster synthesis with C. glutamicum [28]. All these RBS se-
quences shared a common feature of AAAGGAGG,
which is correspondent to the anti-Shine-Dalgarno se-
quence at the 3’-end of the 16S rRNA from corneybacteria
[26]. In addition, it was reported that the spaces between
RBS and translational start codon were found to be dom-
inantly 5–10 nucleotides in C. glutamicum [27]. Based on
these observations, we generalized a seeding sequence of
AAAGG(N)6–9. According to this design, a pool of RBS
sequences was chemically synthesized.
For easy screening of RBS sequences of different

strengths and for the purpose to prevent the influence of
neighboring elements on gene translation, the enhanced
green fluorescence protein (eGFP) [29] and the ribozyme-
based insulator RiboJ [30] genes were applied to make
constructions for screening tailored RBS libraries for indi-
vidual aroG, aroB, aroD and aroE. Construction and
screening of the tailored RBS libraries are diagramed in
Fig. 2. As showed in Fig. 2, 146, 52, 59 and 54 clones were
randomly selected for aroB, aroD, aroE and aroG, respect-
ively. Plasmids harboring RBS sequences of different
strengths were extracted from E. coli clones, and were fur-
ther sequenced. These plasmids were then transferred into
C. glutamicum. RBS of different strengths were screened



Fig. 2 Procedures of construction and screening of RBS libraries tailored for aroG, aroB, aroD and aroE. Numbers of RBS sequences in each library
are represented by the clone numbers of E. coli or C. glutamicum
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by quantification of fluorescence intensities in C. glutami-
cum, and finally 4 RBS libraries were obtained that had 33,
43, 49 and 42 members for aroB, aroD, aroE and aroG, re-
spectively. The RBS sequences of these libraries and the
strength of individual RBS are showed in Fig. 3. As seen
from Fig. 3, the strengths of the RBS libraries spanned
wide ranges. Specifically, the individual RBS strengths of
aroB, aroD, aroE and aroG libraries had 70, 21, 19 and 10-
folds differences, respectively.

Construction and evaluation of genetic modules for
SA pathway
The above RBS libraries were exploited to build up gen-
etic modules for SA pathway. Each genetic module had
aroB, aroD, aroE and aroG genes that were independ-
ently regulated by RBS of different strengths. The
organization of the genetic modules is generalized in
Fig. 4a. To simplify the construction and evaluation of
genetic modules, RBS with relative high (H), medium
(M) or low (L) strength (Fig. 3) from each of the four li-
braries, were selected for aroG, aroB, aroD or aroE.
Starting with these building blocks (3 RBS of different
strengths and 4 genes with the order of aroG-aroB-
aroD-aroE), there were theoretical 81 combinations (i.e.
genetic modules that possible have different levels of
gene expression). By using a mathematic model of com-
binatorial approach, such 81 combinations were scaled
down to 9 combinations (Fig. 4c).
Genetic modules of the above 9 combinations were con-

structed and were inserted into pXMJ19. Thus, 9 pXMJ19
derivatives, namely plasmid-1 to plasmid-9, were obtained
and were transferred into C. glutamicum RES167ΔaroK
cells. To determine that if gene translations in the genetic
modules were exactly correlated to their RBS strengths as
they were previously determined, shikimate dehydrogen-
ase (AroE) activities were determined. As shown in
(Fig. 4b), those modules (GHBLDLEL, GMBHDMEL, and
GLBMDHEL) harbored low strengths of RBS exhibited low
AroE activities and those modules (GHBHDHEH,
GMBMDLEH, and GLBLDMEH) harbored higher strengths
of RBS exhibited higher AroE activities. These results sug-
gested that levels of gene translations in the 9 genetic
modules were highly correlated to RBS strengths deter-
mined previously via EGFP fluorescence intensities.



Fig. 3 Quantification of RBS strength in C. glutamicum by measuring fluorescence emitted from eGFP fusion proteins with AroG (a), AroB (b),
AroD (c), or AroE (d). Columns appeared in dark were RBS selected for construction of genetic modules
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Genetic modules increased SA synthesis with
C. glutamicum
In order to obtain a mutant that accumulated SA, the
aroK that encodes shikimate kinase was deleted from C.
glutamicum RES167, generating the mutant RES167ΔaroK.
Plasmids (Table 1) harboring the SA pathway modules
(Fig. 4c) were transferred into C. glutamicum RES167ΔaroK
cells and the effect of those genetic modules on SA produc-
tion was observed. Results showed that the SA production
varied significantly among different genetic modules (Fig. 5),



Fig. 4 The components and structure of the genetic modules (a) and AroE activities from cellular lysates of C. glutamicum harboring various
genetic modules (b). In panel b, the RBS were determined by a combinatorial approach (c). For each aroG, aroB, aroD and aroE gene, three levels
of RBS strength [high (H), medium (M), low (L), see Fig. 3] were selected, and totally 9 genetic modules were obtained. Three parallel experiments
for AroE activity were performed and the standard deviations are showed in panel b
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although the growth of C. glutamicum was not affected by
those genetic modules (Data not shown). The SA produc-
tion with RES167ΔaroK/plasmid-2 that carried genetic
module of GHBMDMEM was 6.8 higher than that of
RES167ΔaroK, suggesting that the module of GHBMDMEM

was the most effective combination for SA synthesis in
C. glutamicum.

Insertion of transcriptional terminators into genetic modules
further increased SA production with C. glutamicum
The genetic module GHBMDMEM was designed that there
is a tac promoter for each gene but only one terminator
after the last gene (Fig. 4a). Since terminator regulates also
gene transcription and subsequently translation, 3 new SA
pathway modules with insertion of terminators were con-
structed (Fig. 6a). The SA productions with those new
combinations by C. glutamicum are shown in Fig. 6b. It
was found that insertion of a terminator between aroB
and aroD (GHBMTDMEM) resulted in improvement of SA
production by about 56 % (Fig. 6b).
SA production in 250-mL flasks and 5-L fermenters with
C. glutamicum RES167ΔaroK/pXMJ19-GBTDE
To evaluate SA productivity, C. glutamicum RES167ΔaroK/
pXMJ19-GBTDE was cultivated in 250-mL flasks and 5-L
fermenters. Cell growth, SA production, consumption of
sucrose and accumulation of 3-dehydroshikimate were
monitored (Fig. 7a, 7b, 7c). SA productions were 4.3, 7.4,
and 11.3 g/L during 250-mL flask, 5-L batch and fed-batch
fermentations, respectively. SA yields from sucrose were
0.22, 0.39, 0.24 mol SA per mole sucrose consumption.



Table 1 Bacterial strains and plasmids used in this study

Strains/plasmids Relevant characteristics Source/reference/notes

Strains

E. coli DH5α F−endA1thi-1 recA1 relA1 gyrA96deoRΦ80dlacΔ(lacZ) M15
Δ(lacZYA-argF)U169hsdR17(rK−, mK

+) λ−supE44 phoA
Invitrogen

C. glutamicum RES167 Restriction-deficient mutant of ATCC 13032, Δ(cglIM-cglIR-cglIIR) University of Bielefeld

Res167ΔaroK Res167 derivate, a fragment of DNA encoding for aroK was deleted This study

Res167ΔaroK/pZB-aroG Res167ΔaroK derivate, containing plasmid pZB-aroG This study

Res167ΔaroK/pZB-aroB Res167ΔaroK derivate, containing plasmid pZB-aroB This study

Res167ΔaroK/pZB-aroD Res167ΔaroK derivate, containing plasmid pZB-aroD This study

Res167ΔaroK/pZB-aroE Res167ΔaroK derivate, containing plasmid pZB-aroE This study

Plasmids

pK18mobsacB Mobilizable vector, for gene disruption in C. glutamicum University of Bielefeld

pK18mobsacB-aroK Derived from pK18mobsacB, carrying aroK gene This study

pK18mobsacB-ΔaroK Derived from pK18mobsacB-aroK, a 573 bp fragment of aroK was deleted This study

pUC19-RiboJ pUC19 carrying RiboJ Sangon Biotech

pACGFP Plasmid carrying enhanced green fluorescence protein (GFP) gene Invitrogen

pXMJ19 Shuttle vector (Camr, Ptac, lacIq, pBL1 oriVC.glu. pK18 oriVE. coli.) University of Bielefeld

pXMJ19-RiboJ pXMJ19 carrying RiboJ gene This study

pZB Derived from pXMJ19, carrying both RiboJ and GFP genes This study

pZB-aroG Derived from pZB, carrying aroGMU gene with various RBS This study

pZB-aroD Derived from pZB, carrying aroDMU gene with various RBS This study

pZB-aroB Derived from pZB, carrying aroBMU gene with various RBS This study

pZB-aroE Derived from pZB, carrying aroEMU gene with various RBS This study

pXMJ19-aroGMU pXMJ19 carrying aroG of which recognition sites of HindIII and PstI were mutated This study

pXMJ19-aroBMU pXMJ19 carrying aroB of which recognition sites of BamHI and SpeI were mutated This study

pXMJ19-aroDMU pXMJ19 carrying aroD of which recognition site of PstI were mutated This study

pXMJ19-aroEMU pXMJ19 carrying aroE of which the recognition sites of EcoRI and SalI were mutated This study

pXMJ19-RiboJ-aroGMU-H pXMJ19 carrying RiboJ and aroGMU gene with high strength RBS This study

pXMJ19-RiboJ-aroGMU-M pXMJ19 carrying RiboJ and aroGMU gene with medium strength RBS This study

pXMJ19-RiboJ-aroGMU-L pXMJ19 carrying RiboJ and aroGMU gene with low strength RBS This study

pXMJ19-RiboJ-aroBMU-H pXMJ19 carrying RiboJ and aroBMU gene with high strength RBS This study

pXMJ19-RiboJ-aroBMU-M pXMJ19 carrying RiboJ and aroBMU gene with medium strength RBS This study

pXMJ19-RiboJ-aroBMU-L pXMJ19 carrying RiboJ and aroBMU gene with low strength RBS This study

pXMJ19-RiboJ-aroDMU-H pXMJ19 carrying RiboJ and aroDMU gene with high strength RBS This study

pXMJ19-RiboJ-aroDMU-M pXMJ19 carrying RiboJ and aroDMU gene with medium strength RBS This study

pXMJ19-RiboJ-aroDMU-L pXMJ19 carrying RiboJ and aroDMU gene with low strength RBS This study

pXMJ19-RiboJ-aroEMU-H pXMJ19 carrying RiboJ and aroEMU gene with high strength RBS This study

pXMJ19-RiboJ-aroEMU-M pXMJ19 carrying RiboJ and aroEMU gene with medium strength RBS This study

pXMJ19-RiboJ-aroEMU-L pXMJ19 carrying RiboJ and aroEMU gene with low strength RBS This study

pXMJ19-GHBH Plasmid pXMJ19-RiboJ-aroGMU-H derivate, containing aroB-H module
(Ptac-RiboJ-aroB, aroB gene with high strength RBS)

This study

pXMJ19-GHBHDH pXMJ19-GHBH derivate, containing aroD-H module (Ptac-RiboJ-aroD, aroD gene
with high strength RBS)

This study

plasmid-1 pXMJ19-GHBHDH derivate, containing aroE-H module (Ptac-RiboJ-aroE, aroE gene
with high strength RBS)

This study

plasmid-2 Plasmid pXMJ19-RiboJ-aroGMU-H derivate, containing aroB-M module, aroD-M
module, aroE-M module

This study
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Table 1 Bacterial strains and plasmids used in this study (Continued)

plasmid-3 Plasmid pXMJ19-RiboJ-aroGMU-H derivate, containing aroB-L module, aroD-L module, aroE-L module This study

plasmid-4 Plasmid pXMJ19-RiboJ-aroGMU-M derivate, containing aroB-H module, aroD-M module, aroE-L module This study

plasmid-5 Plasmid pXMJ19-RiboJ-aroGMU-M derivate, containing aroB-M module, aroD-L module, aroE-H module This study

plasmid-6 Plasmid pXMJ19-RiboJ-aroGMU-M derivate, containing aroB-L module, aroD-H module, aroE-M module This study

plasmid-7 Plasmid pXMJ19-RiboJ-aroGMU-L derivate, containing aroB-H module, aroD-L module, aroE-M module This study

plasmid-8 Plasmid pXMJ19-RiboJ-aroGMU-L derivate, containing aroB-M module, aroD-H module, aroE-L module This study

plasmid-9 Plasmid pXMJ19-RiboJ-aroGMU-L derivate, containing aroB-L module, aroD-M module, aroE-H module This study

pXMJ19-GBTDE Plasmid 2 derivate, containing a terminator between aroB and aroD Module This study

pXMJ19-GBTDTE Plasmid pXMJ19-GBTDE derivate, containing a terminator between aroD and aroE module This study

pXMJ19-GTBTDTE Plasmid pXMJ19-GBTDTE derivate, containing a terminator between aroG and aroB module This study
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Discussion
Several methods, such as overexpression of aro genes [31,
32] and the use of enzymes with improved properties [33],
have been reported to enhance the metabolic flux into SA
pathway, thus finally increase the production of aromatic
amino acids or shikimic acid. This current study revealed
a new synthetic biology strategy: Four aro genes were or-
ganized as continuous genetic modules and their tran-
scriptions were coordinated by the same tac promoter,
RiboJ and terminator. The translation levels of aro genes
in the genetic modules were regulated by their RBS, which
were quantatively characterized in this study.
Fig. 5 Production of shikimic acid by C. glutamicum RES167ΔaroK harborin
250-mL flasks and the standard deviations of shikimic acid production are i
RBS is vital to initiate genetic translation, and are use-
ful synthetic biology parts for construction modules
[16]. In this study, four tailored-made RBS libraries were
constructed and the strength of each RBS sequence was
determined in the background of C. glutamicum cells.
Although the RBS libraries were tailored for aroG, aroB,
aroD and aroE, it is believed that these RBS would be
applicable also for other purposes when C. glutamicum
was used as host. Similarly, the constructed SA pathway
modules were tested for SA production in this study,
they should be also useful for productions such as aro-
matic amino acids that are derived from SA pathway.
g various genetic modules. Three cultivations were conducted in
ndicated



Fig. 6 Insertion of transcriptional terminators into genetic modules at various position (a) and their effects on shikimic acid production by
C. glutamicum RES167ΔaroK (b). In panel B, three cultivations were conducted in 250-mL flasks and the standard deviations of shikimic acid
production are indicated
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SA is a highly valued commercial compound. Efforts
were made to improve SA production by de-repressing
of feedback inhibition of enzymes involved in SA synthe-
sis [33], increasing glucose availability [34], and optimiz-
ing metabolic fluxes [31], with E. coli or B. subtilis. So
far as we know, C. glutamicum has not been exploited
for SA production. By implementing the constructed
genetic modules in the shikimate kinase deficient mu-
tant, C. glutamicum was successfully engineered to pro-
duce SA at 11.3 g/L in 5-L fermenter. So far, this
represents the highest titer of SA production with
C. glutamicum. The SA production with C. glutamicum is
comparable to the productivity with B. subtilis (19.7 g/L)
[35]. Although this SA titer is lower when compared to
SA production by E. coli (84 g/L) [33], C. glutamicum is
still a promising SA producer due to its non-pathogenic
nature, and its productivity can be further improved by
optimization of fermentation process, or by replacement
of the tryptophan- and prephenate-sensitive DAHP
synthase [36, 37].

Conclusion
Synthetic biology tool boxes for manipulating C. gluta-
micum were expanded by including 4 RBS libraries, in
addition to the previous reported promoters [38, 39] and
CoryneBrick [40]. The RBS libraries represent the first
set of RBS libraries that were quantatively characterized
in C. glutamicum. The selected RBS and aro genes could
be organized as continuous genetic modules and their
transcriptions could be coordinated. Genetic modules
were successful constructed for SA pathway, and were
demonstrated to be useful for increase of SA synthesis.
In fed-batch fermentation, C. glutamicum harboring
newly constructed SA pathway modules achieved 11.3 g/L
SA, which represented the highest SA production with
C. glutamicum.

Materials and methods
Microorganisms, plasmids, medium, and cultivation
The bacterial strains and plasmids used in this study are
listed in Table 1. C. glutamicum was cultivated at 30 °C
in Luria Bertani (LB) [41] broth or Brain Heart Infusion
(BHI) medium [42]. E. coli was cultivated at 37 °C in
50 mL of LB broth in 250-ml flasks on a rotary shaker at
200 rpm. When needed, chloramphenicol at a final con-
centration of 10 or 20 μg/mL in medium was used for
cultivation of C. glutamicum or E. coli. Expression of
genes with C. glutamicum was induced with 0.5 mM iso-
propyl β-D-1-thiogalactopyranoside (IPTG).
Fermentative production of shikimic acid with C. glu-

tamicum was carried out in 250 mL flasks and 5-L fer-
menter (Bioflo Model 3000 bioreactor, New Brunswick
Scientific, N.J., U.S.A.). Seeding cultures were grown
with Medium A (g/L): K2HPO4 · 3H2O (0.5); KH2PO4

(0.5); (NH4)2SO4 (10); glucose (40); MgSO4 · 7H2O (0.2);
phenylalanine (0.15); tyrosine (0.15); tryptophan (0.15);
CaCO3 (30); FeSO4 · 7H2O (0.02); MnSO4 · 4H2O (0.02);
biotin (50 μg); thiamine (200 μg), pH 7.4.
Fermentation was conducted with Medium B (g/L):

K2HPO4 · 3H2O (0.5); KH2PO4 (0.5); Urea (3); sucrose
(38); MgSO4 · 7H2O (0.2); Yeast extract (10); peptone (4);
FeSO4 · 7H2O (0.02); MnSO4 · 4H2O (0.02); biotin
(50 μg); thiamine (200 μg), pH 7.4. The fermenter was
stirred at 300 rpm, aerated at 3.0 vol/vol per minute,
and pH was maintained at 7.0. Cell growth was moni-
tored by measuring optical density at 600 nm (OD600)



Fig. 7 The growth (solid squares), sucrose consumption (open squares), productions of shikimic acid (circles) and 3-dehydroshikimic acid (open
circles) with recombinant C. glutamicum RES167ΔaroK harboring pXMJ19-GBTDE, during shake-flask (a), batch (b), and fed-batch cultivation (c).
Data are averages of three parallel fermentations
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with a spectrophotometer (Biospec-1601 DNA/Protein
Enzyme Analyzer, Shimadzu). Cellular dry weights were
determined by centrifugation and lyophilization with 3
parallel samples.
C. glutamicum was cultivated in mineral salts (MS)

medium when RBS strength were tested. The MS
medium contained following components (g/L, pH 8.0):
Na2HPO4 · 12H2O (2); KH2PO4 (0.5); MgSO4 · 7H2O
(0.03); NH4C1 (0.53); trace element solution 2 mL. Trace
element solution (g/L, pH 6.0): EDTA, (0.5); ZnSO4 ·
7H2O, (0.22); CaCl2, (0.055); MnCl2 · 4H2O, (0.051);
FeSO4 · 7H2O, (0.0499); (NH4)6Mo7O24 · 4H2O, (0.011);
CuSO4 · 5H2O, (0.0157); CoCl2 · 6H2O, (0.0161); biotin
(0.0125); thiamine (0.05).
DNA extraction, amplification, plasmid construction and
genetic transformation
Plasmid and chromosomal DNAs were isolated using
the OMEGA Plasmid Mini Kit and the OMEGA Bacter-
ial DNA Kit (Omega genetics, Beijing), respectively.
DNA fragments from PCR amplification were purified
with the OMEGA Cycle-Pure Kit (Omega genetics,
Beijing). Restriction enzymes, ligases and other DNA-
manipulating enzymes were used according to their
manufacturer’s instructions. Genetic transformation of
C. glutamicum and E. coli was carried out by electropor-
ation, and recombinant strains were selected according
to Tauch et al. [43].
Construction of pXMJ19-aroGMU, pXMJ19-aroDMU

pXMJ19-aroBMU, pXMJ19-aroEMU and pZB
The aro genes, i.e., aroG (GenBank accession number,
NP_601382.1), aroB (NP_600835.1), aroD (NP_599670.1),
and aroE (NP_600843.1) were PCR amplified from gen-
omic DNA of C. glutamicum RES167 using primers listed
in Table 2. Subsequently, these aro genes were cloned into
pXMJ19, generating pXMJ19-aroG, pXMJ19-aroB,
pXMJ19-aroD, and pXMJ19-aroE. For subsequent clon-
ing, the following silent mutations were made with
primers listed in Table 1: the HindIII and PstI of aroG,
BamHI and SpeI of aroB, PstI of aroD, and EcoRI and SalI
of aroE. The resulting plasmids were named pXMJ19-
aroGMU, pXMJ19-aroBMU, pXMJ19-aroDMU, and
pXMJ19-aroEMU.
pZB was derived from pXMJ19. Chemically synthesized

gene of RiboJ (27) was cloned into pXMJ19 at HindIII and
PstI sites, resulting in pXMJ19-RiboJ. This pXMJ19-RiboJ
was digested with EcoRI and KpnI, and a genetic fragment
encoding the enhanced green fluorescence protein was
cloned at the KpnI and EcoRI sites. The resulting plasmid
was named pZB, and was used for later construction of
RBS libraries.
Design and construction of RBS libraries tailored for aroG,
aroB, aroD and aroE, and evaluation of RBS strength
according to fluorescence intensity
Based on the currently known RBS sequences from C.
glutamicum, we designed a seeding sequence of
AAAGG(N)6–9, where “N” represents any nucleotide of
A, T, G, or C. From this seeding sequence, oligonucleo-
tides tagged as MU-RBSAG-F, MU-RBSAB-F, MU-
RBSAD-F, and MU-RBSAE-F, were chemically synthe-
sized. These oligonucleotides and their partner primers
(Table 2) were used to amplify the aro genes from plas-
mid pXMJ19-aroGMU, pXMJ19-aroBMU, pXMJ19-
aroDMU, pXMJ19-aroEMU. The amplified aro genes,
each had a specific RBS sequence at its 5’-end, were
digested with restriction endonuclease and were cloned
into the samely digested pZB. Thus, four RBS libraries
were constructed and were named as pZB-aroG, pZB-
aroB, pZB-aroD, and pZB-aroE (Fig. 2).
The strength of each RBS for genetic translation was

determined according to its fluorescence intensity. C.
glutamicum cells harboring single plasmid (thus a single
RBS) of libraries of pZB-aroG, pZB-aroB, pZB-aroD,
and pZB-aroE were cultivated in the presence of
0.5 mM IPTG at 30 °C in MS medium. After incubation
for 48 h at 30 °C and 200 rpm, 200 μl of cell suspension
was transferred into a 96-well plate. The fluorescence
from the eGFP in C. glutamicum cells and optical dens-
ity were measured using a BioTek® synergy H4 Hybrid
Reader (Keruiente, Beijing, China).

Construction of genetic modules for SA pathway
To construct the nine plasmids with the combination
of different strength RBS, aroG gene with high, middle
and low strength RBS were amplified from pXMJ19-
aroGMU and cloned between SalI and BamHI cloning
sites of plasmid pXMJ19-RiboJ. These three plasmids
were named as pXMJ19-RiboJ-aroGMU-H, pXMJ19-
RiboJ-aroGMU-M and pXMJ19-RiboJ-aroGMU-L, re-
spectively. Taking the same way, we got plasmids
pXMJ19-RiboJ-aroBMU-H, pXMJ19-RiboJ-aroBMU-M,
pXMJ19-RiboJ-aroBMU-L, pXMJ19-RiboJ-aroDMU-H,
pXMJ19-RiboJ-aroDMU-M, pXMJ19-RiboJ-aroDMU-L,
pXMJ19-RiboJ-aroEMU-H, pXMJ19-RiboJ-aroEMU-M
and pXMJ19-RiboJ-aroEMU-L, which also have the
high, middle and low strength RBS, accordingly. Then,
Ptac-RiboJ-aroBMU-H fragments with BamHI and XmaI
sites were amplified from plasmid pXMJ19-RiboJ-aroBMU-
H and cloned into plasmid pXMJ19-RiboJ-aroGMU-H,
resulting plasmid named pXMJ19-GHBH. Then fragments
Ptac-RiboJ-aroDMU-H with XmaI and KpnI sites were
cloned into plasmid pXMJ19-GHBH, resulting plasmid
named pXMJ19-GHBHDH. From plasmid pXMJ19-
RiboJ-aroEMU-H we got fragments Ptac-RiboJ-aroEMU-
H with KpnI and EcoRI sites and cloned the fragments



Table 2 Oligonucleotides used in this study

Primers Sequences Notes

aroG-F CGCGCGTCGACATGAATAGGGGTGTGAGTTG Amplification of aroG from genome,
SalI and KpnI underlined

aroG-R CGCGCGGTACCTTAGTTACGCAGCATTTCTGCAACG

aroB-F CGCGCGTCGACATGAGCGCAGTGCAGATTTTC Amplification of aroB from genome,
SalI and KpnI underlined

aroB-R CGCGCGGTACCTTAGTGGCTGATTGCCTCATAGCA

aroD-F CGCGCGTCGACATGCCTGGAA AAATTCTCCT Amplification of aroD from genome,
SalI and KpnI underlined

aroD-R CGCGCGGTACCTTACTTTTTGAGATTTGCCAGGATA

aroE-F CGCGCCTGCATATGGGTTCTCACATCACTCAC Amplification of aroE from genome,
PstI and KpnI underlined

aroE-R CGCGCGGTACCTTAGTGTTCTTCTGAGATGCCT

MU-aroG-1-F GGCCTTACCGTTGGCAACATCAGCCAGCTTCTGCTTCAGCTCAAGTACC Mutate HindIII in aroG

MU-aroG-1-R CCTGAGGTACTTGAGCTGAAGCAGAAGCTGGCTGATGTTG CCAACGGT

MU-aroG-2-F TCGCGCCAACGTAAAGACTCTGCTCCAGATGGCAGTTGTTTTGACCT Mutate PstI in aroG

MU-aroG-2-R CGTAGGTCAAAACAACTGCCATCTGGAGCAGAGTCTTTACGTTGGCGC

MU-aroG-3-F GTGTCCGATGAGTCCCTGCGTGCTGCCGATATCTACTGCTCCCACGAGG Mutate PstI in aroG

MU-aroG-3-R AGCCTCGTGGGAGCAGTAGATATCGGCAGCACGCAGGGACTCATCGGAC

MU-aroB-1-F GCCTGACGCGGAAATCATCGCGGGTTCCGCCGAAATCATCAAAACTGG Mutate BamHI in aroB

MU-aroB-1-R AACCAGTTTTGATGATTTCGGCGGAACCCGCGATGATTTCCGCGTCAGG

MU-aroB-2-F CATCCGAGTTGGATGCAGCACTGGTCGCTGCTGGTTTGAAGGTCCTGC Mutate SpeI in aroB

MU-aroB-2-R TGCAGGACCTTCAAACCAGCAGCGACCAGTGCTGCATCCAACTCGGATG

MU-aroD-F TTAGCTCACCTTCGTGATTGCTCTGGAGCGCCTCAACCTCAAGGCCGTG Mutate PstI in aroD

MU-aroD-R GCACGGCCTTGAGGTTGAGGCGCTCCAGAGCAATCACGAAGGTGAGCT

MU-aroE-2-F CATGCCGTCTAAATTCGCAGCTCTTGAATTTGCCGACGAAGTAACCGAACGCGCCTGC Mutate EcoRI in aroE

MU-aroE-2-R GCAGGCGCGTTCGGTTACTTCGTCGGCAAATTCAAGAGCTGCGAATTTAGACGGCATG

MU-aroE-2-F ATGGCGCGCCGACAACACCGACGTTGACGGCATCAGGGGAGCTCTCGG Mutate SalI in aroE

MU-aroE-2-R CACCGAGAGCTCCCCTGATGCCGTCAACGTCGGTGTTGTCGGCGCGCC

RiboJ-F CGCGAAGCTTAGCTGTCACCGGATGTGCTTTCCGGTCTGATGAGTC Amplification of RiboJ from pUC19,
HindIII and PstI underlined

RiboJ-R CGCGCTGCAGTTAAACAAAATTATTTGTAGAGGCTGTTTCG

EGFP-F CGCGGGTACCGTGAGCAAGGGCGCCGAGC Amplification of egfp from pACGFP,
KpnI and EcoRI underlined

EGFP-R CGCGGAATTCTCACTTGTACAGCTCATCCATGCCGTGGGT

MU-RBSAG-F CGCGCGTCGACAAAGGNNNNNNNNATGAATAGGGGTGTGAGTTG Amplification of aroG with mutated RBS,
SalI and KpnI underlined

MU-RBSAG-R CGCGCGGTACCGTTACGCAGCATTTCTGCAACG

MU-RBSAB-F CGCGCGTCGACAAAGGNNNNNNNNATGAGCGCAGTGCAGATTTTC Amplification of aroB with mutated RBS,
SalI and KpnI underlined

MU-RBSAB-R CGCGCGGTACCGTGGCTGATTGCCTCATAAGCA

MU-RBSAD-F CGCGCGTCGACAAAGGNNNNNNNNATGCCTGGAAAAATTCTCCT Amplification of aroD with mutated RBS,
SalI and KpnI underlined

MU-RBSAD-R CGCGCGGTACCCTTTTTGAGATTTGCCAGGATA

MU-RBSAE-F CGCGCGTCGACAAAGGNNNNNNNNATGGGTTCTCACATCACTCAC Amplification of aroE with mutated RBS,
SalI and KpnI underlined

MU-RBSAE-R CGCGCGGTACCGTGTTCTTCTGAGATGCCT

aroG-H-F CGCGCGTCGACAAAGGGTGAATCTATGAATAGGGGTGTGAGTTG aroG with high strength RBS,
SalI and BamHI underlined

aroG-H-R CGCGCGGATCCTTAGTTACGCAGCATTTCTGCAACG

aroG-M-F CGCGCGTCGACAAAGGTTCTAAAGATGAATAGGGGTGTGAGTTG aroG with medium strength RBS,
SalI and BamHI underlined

aroG-M-R CGCGCGGATCCTTAGTTACGCAGCATTTCTGCAACG

aroG-L-F CGCGCGTCGACAAAGGGCCGAATTATGAATAGGGGTGTGAGTTG aroG with lows trength RBS,
SalI and BamHI underlined

aroG-L-R CGCGCGGATCCTTAGTTACGCAGCATTTCTGCAACG

aroB-H-F CGCGCGTCGACAAAGGGGAGAGCCATGAGCGCAGTGCAGATTTTC aroB with high strength RBS,
SalI and BamHI underlined

aroB-H-R CGCGCGGATCCTTAGTGGCTGATTGCCTCATAAGCA
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Table 2 Oligonucleotides used in this study (Continued)

aroB-M-F CGCGCGTCGACAAAGGCATGTTCTATGAGCGCAGTGCAGATTTTC aroB with medium strength RBS,
SalI and BamHI underlined

aroB-M-R CGCGCGGATCCTTAGTGGCTGATTGCCTCATAAGCA

aroB-L-F CGCGCGTCGACAAAGGAACGACTAATGAGCGCAGTGCAGATTTTC aroB with low strength RBS,
SalI and BamHIunderlined

aroB-L-R CGCGCGGATCCTTAGTGGCTGATTGCCTCATAAGCA

aroD-H-F CGCGCGTCGACAAAGGAGGTTGTCATGCCTGGAAAAATTCTCCT aroD with high strength RBS,
SalI and BamHI underlined

aroD-H-R CGCGCGGATCCTTACTTTTTGAGATTTGCCAGGATA

aroD-M-F CGCGCGTCGACAAAGGCATGGCCGATGCCTGGAAAAATTCTCCT aroD with medium strength RBS,
SalI and BamHI underlined

aroD-M-R CGCGCGGATCCTTACTTTTTGAGATTTGCCAGGATA

aroD-L-F CGCGCGTCGACAAAGGTGGTTCATATGCCTGGAAAAATTCTCCT aroD with low strength RBS,
SalI and BamHI underlined

aroD-L-R CGCGCGGATCCTTACTTTTTGAGATTTGCCAGGATA

aroE-H-F CGCGCGTCGACAAAGGAGGATTAGATGGGTTCTCACATCACTCAC aroE with high strength RBS,
SalI and BamHI underlined

aroE-H-R CGCGCGGATCCTTAGTGTTCTTCTGAGATGCCT

aroE-M-F CGCGCGTCGACAAAGGAGAACGTGATGGGTTCTCACATCACTCAC aroE with medium strength RBS,
SalI and BamHI underlined

aroE-M-R CGCGCGGATCCTTAGTGTTCTTCTGAGATGCCT

aroE-L-F CGCGCGTCGACAAAGGGTTCATAGATGGGTTCTCACATCACTCAC aroE with low strength RBS,
SalI and BamHI underlined

aroE-L-R CGCGCGGATCCTTAGTGTTCTTCTGAGATGCCT

PB-F CGCGGGATCCTTGCGCCGACATCATAACGGTT BamHI and XmaI underlined

PB-R CGCGCCCGGGTTAGTGGCTGATTGCCTCATAAGCA

PD-F CGCGCCCGGGTTGCGCCGACATCATAACGGTT XmaI and KpnI underlined

PD-R CGCGGGTACCTTACTTTTTGAGATTTGCCAGGATA

PE-F CGCGGGTACCTTGCGCCGACATCATAACGGTT KpnI and EcoRI underlined

PE-R CGCGGAATTCTTAGTGTTCTTCTGAGATGCCT

Terminator 1-F CGCGCCCGGGGGCTGTTTTGGCGGATGAGAGAAGATTTTC XmaI underlined

Terminator 1-R CGCGCCCGGGAGAGTTTGTAGAAACGCAAAAAGGCC

Terminator 2-F CGCGGGTACCGGCTGTTTTGGCGGATGAGAGAAGATTTTC KpnI underlined

Terminator 2-R CGCGGGTACCAGAGTTTGTAGAAACGCAAAAAGGCC

Terminator 3-F CGCGGGATCCGGCTGTTTTGGCGGATGAGAGAAGATTTTC BamHI underlined

Terminator 3-R CGCGGGATCCAGAGTTTGTAGAAACGCAAAAAGGCC

aroK-F CGCGGAATTCTGGCTGATTGCCTCATAAGCACTCT EcoRI and HindIII underlined

aroK-R CGCGAAGCTTTTCGATGGACTACAGCAGGTGAATC

KTaroK-F CGCGCCCGGGCCTCTAAACCTTCGAATTTCATTCGTTCCTC XmaI underlined

KTaroK-R CGCGCCCGGGCGATTAATTAAACCGGGCACCTGATTAAC

V-KTaroK-F TCCATGCTGGGCTGGTGCAAAATCGCTACC Primer used to verify ΔaroK

V-KTaroK-R AACCATTGATATGGAAAACGGCAAGGCAGC
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into plasmid pXMJ19-GHBHDH, resulting plasmid
named plasmid-1. Plasmid-2 to plasmid-9 and derivate
plasmids were also got by the way describe above.
Three terminator fragments with XmaI, BamHI and
KpnI cloning sites were amplified from plasmid
pXMJ19, respectively. After terminator with XmaI site
was cloned in plasmid-2, we got plasmid pXMJ19-
GBTDE. Then terminator with BamHI site was cloned
in plasmid pXMJ19-GBTDE to get plasmid pXMJ19-
GBTDTE. Plasmid pXMJ19-GTBTDTE was con-
structed by cloning terminator with KpnI site.
Measurement of SA dehydrogenase activity
The enzyme activities of the shikimate dehydrogenases
were assayed by monitoring the absorbance of NADPH at
340 nm (ε = 6230 M−1 cm−1) using a spectrophotometer
(Specord 205 Analytik, Jena, Germany). The assays were
conducted at 25 °C in a volume of 1 mL solution, contain-
ing 100 mM Tris–HCl buffer at pH 8.0, 1 mM SA, and
2 mM NADP+. Cellular lysates from C. glutamicum were
added finally to trigger the reaction. One unit of enzyme
activity was defined as the amount of enzyme catalyzing
the conversion of 1 μmol of NADP+ per minute at 25 °C.
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For preparation of cellular lysates of C. glutamicum,
cells were harvested by centrifugation (6000 g, 4 °C,
5 min) of culture samples. Supernatants were removed,
the cell pellets were washed and re-suspended in 50 mM
pH 8.0 Tris–HCl buffer. This cell suspension was sub-
jected to sonication (Ningbo Scientz Biotechnology Co.,
LTD, China) and centrifugation (12,000 g, 4 °C, 10 min).
The supernatants were collected and used for enzyme
assays. Protein concentrations were determined using
Bradford method [44].

Construction of C. glutamicum RES167ΔaroK
Disruption of the shikimate kinase gene, aroK, in C. glu-
tamicum was performed using the suicide vector
pK18mobsacB. The intact DNA fragment (2946 bp) of
aroK was amplified from chromosomal DNA of C. gluta-
micum, using the primers aroK-F and aroK-R (Table 1).
This intact aroK fragment was cloned into pK18mob-
sacB EcoRI/HindIII sites. The resulting plasmid was
named pK18mobsacB-aroK, and was amplified with
primers KTaroK-F and KTaroK-R, thus resulting DNA frag-
ments with disrupted aroK gene. After digested with XmaI
restriction endonuclease, DNA fragments were ligated and
transformed into E. coli. The recombinant plasmid was
named pK18mobsacB-ΔaroK and was electroporated into
C. glutamicum RES167. Using the method described by
Schäfer et al. [45], the aroK mutant RES167ΔaroK was
screened out on BHI agar plates. The Disruption of aroK
was verified by PCR amplification and sequence of the
disrupted aroK gene from RES167ΔaroK.

Determination of SA and 3-dehydroshikimic acid
concentrations
The concentrations of SA and 3-dehydroskimic acid
were determined with an HPLC system (Agilent 1200
series, Agilent Technologies, Inc., USA) equipped with a
ZORBAX SB C18 column (4.6 mm x 250 mm x 5 μm)
and detected at 215 nm wavelength. The HPLC was run
with a mixture of solution A (phosphoric acid in water,
pH 2.5) and solution B (methanol) as eluant and was op-
erated at a flow rate of 0.35 mL/min. The following gra-
dient was used: at 0–7.5 min, 95 % of solution A and
5 % of solution B; at 7.5-15 min, 100 % of solution B; 15.0-
22.5 min, 95 % of solution A and 5 % of solution B.
Standard shikimic acid (Cat. No. S5375, Sigma-Aldrich,
USA) and 3-dehydroshikimic acid (Cat. No. 05616,
Sigma-Aldrich, USA) were eluted at 5.411 and 6.241 min,
respectively, under these conditions.
Determination of sucrose concentrations
The sucrose concentrations in fermentation broth were
determined with spectrometric method, as previously
described [46].
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