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Abstract

Background: Mannosylerythritol lipids (MEL) are glycolipids with unique biosurfactant properties and are produced
by Pseudozyma spp. from different substrates, preferably vegetable oils, but also sugars, glycerol or hydrocarbons.
However, solvent intensive downstream processing and the relatively high prices of raw materials currently used for
MEL production are drawbacks in its sustainable commercial deployment. The present work aims to demonstrate MEL
production from cellulosic materials and investigate the requirements and consequences of combining commercial
cellulolytic enzymes and Pseudozyma spp. under separate hydrolysis and fermentation (SHF) and simultaneous
saccharification and fermentation (SSF) processes.

Results: MEL was produced from cellulosic substrates, Avicel® as reference (>99% cellulose) and hydrothermally
pretreated wheat straw, using commercial cellulolytic enzymes (Celluclast 1.5 L® and Novozyme 188%) and Pseudozyma
antarctica PYCC 5048 or Pseudozyma aphidis PYCC 5535'. The strategies included SHF, SSF and fed-batch SSF with
pre-hydrolysis. While SSF was isothermal at 28°C, in SHF and fed-batch SSF, yeast fermentation was preceded by
an enzymatic (pre-)hydrolysis step at 50°C for 48 h. Pseudozyma antarctica showed the highest MEL yields from both
cellulosic substrates, reaching titres of 4.0 and 1.4 g/I by SHF of Avicel® and wheat straw (40 g/I glucan), respectively,
using enzymes at low dosage (3.6 and 8.5 FPU/ggiucan at 28°C and 50°C, respectively) with prior dialysis. Higher MEL
titres were obtained by fed-batch SSF with pre-hydrolysis, reaching 4.5 and 2.5 g/I from Avicel® and wheat straw

(80 g/I glucan), respectively.

Conclusions: This work reports for the first time MEL production from cellulosic materials. The process was
successfully performed through SHF, SSF or Fed-batch SSF, requiring, for maximal performance, dialysed commercial
cellulolytic enzymes. The use of inexpensive lignocellulosic substrates associated to straightforward downstream
processing from sugary broths is expected to have a great impact in the economy of MEL production for the
biosurfactant market, inasmuch as low enzyme dosage is sufficient for good systems performance.
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Background

Surfactants are amphiphilic molecules possessing surface
and interfacial activity and the ability of forming orga-
nized molecular assemblies, monolayers, micelles, vesi-
cles and membranes [1,2]. Biosurfactants are produced
by a variety of microorganisms including bacteria, fila-
mentous fungi and yeasts from different substrates, in-
cluding oils, sugars and glycerol. Biosurfactants are a
group of bio-based products with increasing scientific,
environmental and economic interest. These bio-based
products are expected to partially replace conventional
(oil-based) surfactants and, due to their unique struc-
tures, properties, low toxicity and high biodegradability,
may conduct to novel applications in industrial and en-
vironmental biotechnology sectors [1,2].

Among microbial surfactants, the glycolipids known as
mannosylerythritol lipids (MEL) (Figure 1) contain 4-O-
-D-mannopyranosyl-meso-erythritol and fatty acids as
the hydrophilic and hydrophobic moieties, respectively
[2,3]. According with the degree of acetylation at manno-
syl C-4 and C-6, and their elution on thin-layer chroma-
tography (TLC), MELs are classified as MEL-A, -B, -C
and -D. MEL-A represents the diacetylated compound
while MEL-B and MEL-C are monoacetylated at mannosyl
C-6 and C-4, respectively. The completely deacetylated
structure is known as MEL-D [3]. The sugar moiety is
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acylated at mannosyl C-2 and C-3 with heterogeneous
fatty acid chains usually containing 8 to 12 carbons [3].

MELs exhibit excellent surface-active properties and
versatile biochemical functions including: antimicrobial
activity against gram positive bacteria [4]; excellent
growth inhibition and differentiation-inducing activities
against human leukemia cells [5], rat pheochromocytoma
[6] and mouse melanoma cells [7]; high affinity binding
towards different immunoglobulins [8] and lectins [9];
properties of self-assembling [10,11], with potential use
in gene transfection and drug delivery [12]; constituent
of ice-slurry as an anti-agglomeration compounds [13];
skin care properties by recovery effect on SDS-induced
damaged cells treated with MEL-A, suggesting MEL-A
has ceramide-like skin care properties [14].

MEL is mainly produced by anamorphic basidiomyce-
tous yeasts Pseudozyma spp. and fungi, Ustilago maydis
[1,2]. Several substrates have been used for MEL produc-
tion with Pseudozyma spp., including soybean oil, alkanes,
glycerol, glucose and xylose [3,15-19]. The metabolism of
Pseudozyma spp. for MEL production from sugar and oils
is necessarily different. The utilization of lipidic substrates
by yeasts requires active lipid metabolism, including the
action of lipases, activation of fatty acids, [-oxidation
towards the production of shorter fatty acids and C2
units, which in turn are used in gluconeogenesis for
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the production of sugar-phosphates. The carbohydrate
metabolism involves glycolysis, pentose phosphate path-
way (PPP) and fatty acids biosynthesis, with high demand
for NADPH. Soybean oil has been the preferred substrate
for MEL production, leading to the highest titres, yields
and productivities, probably because the lipidic moiety is
directly generated by partial 3-oxidation of oil fatty acids
and does not require de novo synthesis [20].

However, the sustainability of MEL production from li-
pidic substrates is doubtful due to the environmental
impact of cultivation of dedicated crops for oil produc-
tion, to the price of vegetable oils, and to the difficulties
associated with MEL recovery from oily broths, which
requires solvent intensive and low-yield downstream
separation processes [2,21]. Therefore, the use of sugar
substrates for MEL production may represent an up-
grading on process sustainability, both on substrate level,
if using inexpensive substrates with low environmental
impact (like lignocellulosic residues), and on downstream
level, due to the requirement of a single solvent extraction
process for MEL recovery.

Lignocellulosic materials are the focus of relevant sci-
entific and industrial efforts that are being made to build
efficient and sustainable technologies for the conversion
of renewable carbon sources into advanced biofuels and
other bio-based products [22-24]. Lignocellulose, the most
abundant renewable carbon resource on earth, is present
in wood, agricultural and forest residues, agro-industrial
and municipal solid wastes, and is mainly composed of
cellulose (40-60%), hemicellulose (20-40%) and lignin
(15-30%) [23,25].

The development of efficient technologies for the con-
version of lignocellulosic materials into ethanol is enab-
ling the production of other bio-based products with a
potential positive impact in the environment and in
the expansion of the bioeconomy [22,24]. Lignocellulosic
ethanol usually includes a physical-chemical pretreatment
of biomass, followed by enzymatic hydrolysis of the cellu-
lose fraction and fermentation of released sugars by yeasts
(Saccharomyces cerevisiae) [25]. Enzymatic hydrolysis and
fermentation may occur sequentially as separate hydrolysis
and fermentation (SHF) or at the same time, as simultan-
eous saccharification and fermentation (SSF). The SSF
process significantly decreases product inhibition of cellu-
lolytic enzymes since the sugars released during hydrolysis
are continuously consumed by the fermenting micro-
organism [26]. In both processes, enzymes represent one
of the most significant operational costs of lignocellulosic
ethanol. Therefore the use of low enzyme loading is desir-
able, even if significant improvements have been achieved
on enzyme engineering and reduction on production cost
[26]. An example is the engineering of B-glucosidases
towards the alleviation of end-product inhibition, which
has been one of the focuses of research by enzyme
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manufacturers in the development of superior commer-
cial enzyme cocktails [27], allowing SHF processes to be
more efficient. Although some microorganisms are able,
or have been engineered, to assimilate pentoses and/or
produce their own cellulolytic and hemicellulolytic en-
zymes enabling Consolidated Bioprocessing (CBP), most
commercial or pre-commercial processes for the produc-
tion of biofuels [25], chemicals (e.g. succinic acid) [28]
and materials (e.g. PHA) [29] still operate under SHF or
SSF using only the cellulosic fraction of lignocellulosic
materials [30].

The present study aims to demonstrate, for the first
time, the conversion of cellulosic materials into gly-
colipid biosurfactants, MEL, using a model substrate,
Avicel® cellulose, and a natural lignocellulosic substrate,
pretreated wheat straw (cellulose-enriched solid fraction).
While Avicel® is commercial crystalline cellulose (>99%),
lignocellulosic residues, like forestry, agro-industrial and
agriculture residues (e.g. wheat straw), often contain
approx. 50% (on a dry-weight basis) of cellulose [31] and,
after hydrothermal pretreatment (autohydrolysis), the
solid fraction is enriched in cellulose and lignin due to
the solubilisation of hemicellulose. The biochemical con-
version of the two cellulosic materials into MEL was in-
vestigated by the combination of commercial cellulolytic
enzyme cocktails and two different Pseudozyma strains
under different process configurations (SHF, SSF and
Fed-batch SSF with pre-hydrolysis).

Results and discussion

Overview of strategies for MEL production from cellulosic
materials

The aim of the current study was to investigate the use
of cellulose-rich substrates, represented by the solid frac-
tion of pretreated wheat straw (composition presented
in Table 1), for the production of MEL by Pseudozyma
yeasts, P. antarctica PYCC 5048" and P. aphidis PYCC
5535". Avicel® was used as reference cellulosic substrate
since it consists of pure crystalline cellulose. The overall
strategy considered the development of different process
configurations with the use of commercial cellulolytic
enzyme cocktails to support the saccharification of cellu-
lose prior to yeast bioconversion of glucose into MELs
(Figure 1). First, this work explored two strategies: sim-
ultaneous saccharification and fermentation (SSF) and
separate hydrolysis and fermentation (SHF). The SSF

Table 1 Lignocellulosic composition of the solid fraction
of pretreated wheat straw

Lignocellulosic component Content (g/100 g dry matter)

Glucan (cellulose) 59.0
Xylan (hemicellulose) 113
Lignin 21.7
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process was performed at 28°C, which according with
previous studies is within the optimal temperature range
for Pseudozyma spp. growth and MEL production [3,32].
Under SSF, glucose released by enzymatic hydrolysis was
concomitantly consumed by yeast. The SHF setup con-
sisted of a two-step process, with an enzymatic hydrolysis
step at the optimal temperature of commercial cellulo-
lytic enzymes, 50°C [33], for 48 h, followed by yeast bio-
conversion at 28°C for 10 days. In order to improve MEL
titres, a third approach, fed-batch SSF with enzymatic
pre-hydrolysis, was performed.

The use of a separate hydrolysis step has the potential
of making available a significant fraction of fermentable
sugars in the beginning of the yeast bioconversion
process. Preliminary studies revealed that glucose release
from 4.0% w/v Avicel® increased with enzyme loading,
with 50% or 71% of total cellulose converted into glu-
cose at low or medium enzyme dosage, respectively,
after a 48 h-hydrolysis at 50°C. In the SHF strategy
followed in this study, enzymes were not removed before
fermentation and, therefore, after the enzymatic hydroly-
sis stage at 50°C, hydrolysis of the remaining cellulose
continues during Pseudozyma spp. conversion of sugars
into MEL, at yeast optimal growth temperature, i.e. 28°C.
However, enzymatic hydrolysis at 28°C is slower than at
50°C for the same enzyme loading, which is explained by
lower cellulolytic activities at 28°C than at 50°C (40% and
20% activity at 28°C for Celluclast 1.5 L* and Novozyme
188, respectively).

The availability of sugars obtained from enzymatic hy-
drolysis influences the bioconversion process, as in SSF
processes for the production of ethanol with Saccharo-
myces cerevisiae, where fermentation is often limited by
the rate of hydrolysis, i.e. glucose concentration is virtu-
ally zero throughout the process [34]. However, the spe-
cific glucose consumption rate of Pseudozyma spp. is
lower than S. cerevisiae. Therefore, enzyme loading and
consequent rate of cellulose enzymatic hydrolysis can be
balanced with yeast loading and respective glucose con-
sumption rate.

Under this perspective, the kinetics of glucose release
by enzymatic hydrolysis and glucose consumption by
yeast were assessed at 28°C, towards a SSF approach.
Enzymatic hydrolysis of 4.0% w/v Avicel® at different
enzyme loading (low, medium and high, i.e. 3.6, 10 and
30 FPU/g, respectively) generated glucose at average
rates of 0.2-0.3 g/l/h, at 28°C, during the first 96 h. In
parallel, glucose consumption rate by P. antarctica and
P. aphidis, under favourable conditions for MEL pro-
duction (28°C, approx. 0.5 g/L yeast loading), was 0.18
and 0.21 g/l/h, respectively. Under these consumption
rates, SSF process can be performed at low enzyme load-
ing, with benefits in the economy of MEL production from
cellulosic materials. The influence of process configuration
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(SHE vs SSF), substrate (Avicel® vs wheat straw), enzyme
loading and feeding strategy were evaluated.

SSF of Avicel®

MEL production was initially investigated in SSF experi-
ments using Avicel®, a model substrate consisting of pure
crystalline cellulose. The conversion of 4.0% w/v Avicel®
was performed with low enzyme loading (3.6 FPU/ggjucan
at 28°C) and approx. 0.5 g/l yeast loading (P. antarctica
or P. aphidis). Both yeast strains consumed glucose con-
comitantly with sugar release from enzymatic hydrolysis,
as denoted by vestigial glucose concentrations (<3 g/l)
throughout SSF process (Figure 2a). This observation
confirmed that enzymatic hydrolysis and glucose con-
sumption rates under this SSF setup were similar. Glucose
concentration decreased to virtually zero after day 4 and
MEL accumulated up to 2.7 and 1.1 g/l with P. antarctica
and P. aphidis, respectively.

When glucose is directly used as substrate (40 g/l)
under similar conditions (media, carbon source concen-
tration, temperature, agitation), the same strains gener-
ated maximum MEL titres of 5.4 g/l in P. antarctica and
3.4 g/l in P. aphidis [19], which are 2- and 3-fold higher
than those obtained under SSF of Avicel®, respectively.
In other study [29], other P. antarctica strain (T-34) and
the same P. aphidis strain (PYCC 5535", CBS 6821) gen-
erated 4.2 and 0 g/l of MEL from D-glucose, respect-
ively. The reasons for the lower MEL titres and yields
obtained in SSF of Avicel® when compared to those ob-
tained in glucose cultivations were investigated in the
next sections with respect to the influence of using com-
mercial cellulolytic cocktails and to the initial glucose
concentration (SSF vs SHF).

MEL production was confirmed by TLC (Figure 2b)
using a MEL-A to -D reference. Glycolipid spots were
identified in samples from both cultures at day 10, MEL-A
being the most abundant MEL form.

The total fatty acid profile of the whole broth shows
that MEL acyl groups (C8-C12) were mainly composed
of C10:n and C12:n (Table 2). Such profile was slightly
different from that found in MEL produced from soy-
bean oil, preferentially C8:0 and C10:n, as previously re-
ported [3]. The carbon chain length pattern of MEL acyl
groups was similar to that found when sugars (hexoses
and pentoses) or fatty acid methyl ester C18:0 were used
as substrates [3,19]. This suggests that the building
blocks of MEL lipidic chains are obtained from a partial
B-oxidation of fatty acids, usually accumulated in the
form of triglycerides (C16-C18) [20,35]. Accordingly,
with this putative metabolic pathway, when Avicel® cellu-
lose is used as substrate, sugars made available for culti-
vation are partially converted into fatty acids (mainly
C18:n) and then, after an incomplete (-oxidation, the
shorter acyl groups (C8-C12) are assembled to the sugar
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Figure 2 MEL production from commercial grade cellulose (Avicel’) by P. antarctica PYCC 5048" and P. aphidis PYCC 5535" by SSF. SSF
was carried out with 40 g/l glucan at 28°C and 140 rpm, supplemented with low enzyme loading. (a) Time course of SSF showing glucose concentration
(squares) and MEL formation (triangles) with P. antarctica (continuous line) and P. aphidis (dashed line). (b) Thin Layer Chromatography (TLC) of MEL
obtained from liquid-liquid extraction with ethyl acetate of culture broth samples (after 10 days of SSF). Samples were eluted with the solvent system of
CHCI3/CH30H/NH40H (65:15:2) to separate MEL-A, -B, -C and -D, which were visualized after reaction of a-naphthol reagent with the sugar moiety of

MEL. Lines: 1 and 4 - MEL standard (MEL-A, -B, -C and -D [19)); 2 - P. antarctica SSF; 3 - P. aphidis SSF.

moiety (mannosylerythritol) for MEL production [20,36].
The metabolic pathways for MEL production from
sugars are not yet fully understood, but the hypothesis
presented above might explain why P. antarctica accu-
mulated more C8-C12 fatty acids while P. aphidis accu-
mulated more C16-C18 fatty acids (Table 2, Figure 3a),
ie. P. antarctica had a more efficient B-oxidation of
C16-C18 fatty acids into C8-C12 (for MEL assembly)
than P. aphidis, leading to relatively higher MEL titres in
P. antarctica cultures. The lower MEL vyield from glucose
or cellulose than from lipids is probably related to the
de novo fatty acids biosynthesis (C16-C18) and its energy
requirements, which can be provided by NADPH gener-
ated through oxidative PPP at the expense of carbon.

Selection of conditions for SSF and SHF processes

As in other bioprocesses, the conversion of cellulose into
MEL can be accelerated by increasing the concentration,
and thus the activity, of biocatalysts, in this case, enzyme
and yeast. Moreover, increase in rate of enzymatic hy-
drolysis (i.e. the rate of glucose release from Avicel®)
with temperature can be explored in SHF processes,

where enzymatic hydrolysis can be performed at optimal
temperature (50°C) prior to yeast inoculum. In this sec-
tion, the advantages and disadvantages of increasing en-
zyme loading (Celluclast 1.5 L* and/or Novozyme 188°),
as well as of using of different process configurations
(SSF vs SHF), were evaluated.

Impact of enzyme dosage in yeast cultivation

Although the increase in enzyme loading has the poten-
tial of improving hydrolysis productivity, commercial
cellulolytic enzymes may have a negative impact on cell
viability and growth of (non-conventional) yeasts under
SSF processes [37]. Therefore, growth and viability of
yeasts were accessed under different enzyme loadings,
using the same initial glucose content as carbon source
(Figure 3). The commercial cellulolytic enzymes used in
the cocktails were tested separately at low (L), medium
(M), medium-high (MH) and high (H) loadings, i.e. con-
centration ranging from 1.75 to 5.25% v/v of Celluclast
1.5 L° (Figure 3a and 3c — A) or from 0.25 to 0.75% v/v
of Novozyme 188° (Figure 3b and 3c — B) (see details in
Materials and methods section). Growth rate (Figure 3a)

Table 2 Total fatty acid profile of the whole broth after 10 days of SSF of Avicel®

Fatty acid form P. antarctica PYCC 5048"

P. aphidis PYCC 5535"

Concentration (mM)

Relative composition in MEL (%)

Concentration (mM) Relative composition in MEL (%)

8.0 1.20 17.1
C10n 3.64 518
C12n 2.19 312
C14.0 0.00
C1e:0 0.96
C18n 290

0.51 18.3
1.32 475
0.95 342
0.37
6.40

12.67
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Figure 3 Influence of commercial cellulolytic enzyme cocktails in yeast (P. aphidis) growth and viability in 40 g/l glucose (carbon source).
(a) Yeast growth in the presence of Celluclast 1.5 L® loading: medium, 1.75% v/v (triangles), medium-high, 3.50% v/v, (squares), high, 5.25% Vv/v (crosses);
(b) Yeast growth in the presence of Novozyme 188° loading: medium, 0.25% v/v (triangles), medium-high, 0.50% v/v (squares), high 0.75% v/v (crosses);
(c) Viable yeast cells after 96 h-culture in the presence of: medium (1.75% v/v), medium-high (3.5% v/v) and high (5.25% v/v) Celluclast 1.5 L® loading (A);
and medium (0.25% v/v), medium-high, (0.50% v/v) and high (0.75% v/v) Novozyme 188° loading (B); (d) Yeast growth in the presence of Celluclast®
15 L, 525% v/v plus Novozyme 188°, 0.75% v/v (black lines): active enzymes (filled diamonds), inactivated enzymes (open diamonds). Control (glucose
without enzymes) (dashed grey line, open diamonds).

and viability (Figure 3c — A) were significantly reduced
at high Celluclast 1.5 L* loading, moderately affected at
medium-high enzyme dosage, but the effects observed
were negligible at medium enzyme loading. In the case
of Novozyme 188°, only at high enzyme dosage (0.75% v/v)
yeast viability (Figure 3c — B) was significantly reduced
and growth (Figure 3b) was moderately affected. These
results recommend the use of low or medium enzyme
loading in SHF and SSF processes, where growth and
relatively long yeast cultivation periods are expected to
occur after or during enzymatic hydrolysis. The combin-
ation of both commercial enzymes in cocktails at low
(0.58% v/v Celluclast 1.5 L° and 0.08% v/v Novozyme 188°)
and medium (1.75% v/v Celluclast 1.5 L° and 0.25% v/v
Novozyme 188°) loading did not affect growth (data not
shown), indicating no negative synergistic effects at low
and medium cocktail loadings.

The negative effect of Celluclast 1.5 L° on cell viability
and growth rate was previously reported for the yeast
Kluyveromyces marxianus [37]. However, in that case,
ethanol production was not significantly reduced. Here,
the impact of the combination of both commercial en-
zymes in MEL production was evaluated at medium and
high loading, using glucose as carbon source (Table 3).
High loading of enzyme cocktail impaired MEL production

from glucose by both P. antarctica and P. aphidis. Al-
though medium enzyme loading did not affect yeast
growth, this enzyme dosage reduced MEL production
in 60-70% in comparison to the control (glucose, enzyme
not applied) (Table 3).

To understand if the negative effect on cell viability,
growth rate and MEL production resulted from the dir-
ect action of the hydrolytic enzymes present in the cock-
tail, those were inactivated at 100°C for 10 min, prior to
use. The use of inactivated enzymes still negatively af-
fected growth (Figure 3d), which points out for an in-
hibitory effect promoted by other cocktail component(s),

Table 3 Effect of enzyme loading in MEL production by
P. antarctica PYCC 5048" and P. aphidis PYCC 5535" using
glucose as carbon source, after 14 days at 28°C, 140 rpm

Enzyme MEL (g/1)

loading P. antarctica PYCC 5048"  P. aphidis PYCC 55357
na’ 34402 2301

Medium® 11+01 09+03

High® 00+ 00 00 £ 00

°Not applied.

PCelluclast 1.5 L® (1.75% v/v) and Novozyme 188° (0.25% V/v).
“Celluclast 1.5 L® (5.25% v/v) and Novozyme 188° (0.75% V/v).
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possibly enzyme preservatives or stabilizers, rather than
by enzyme activity. Therefore, the solutions of enzyme
cocktails went through dialysis prior to use in order to
remove putative inhibitors of yeast growth and metabol-
ism present in commercial enzyme cocktails. Dialysis in-
creased MEL production both for SHF and SSF process
as discussed below.

Comparison of the system performance under SHF and

SSF processes

The SSF process was performed isothermally at 28°C,
which is within the range of optimal temperature for
Pseudozyma spp. growth and metabolism towards max-
imum MEL production [3,32], but sub-optimal for en-
zymatic hydrolysis [34]. However, to enhance enzymatic
hydrolysis and understand if the higher sugar concentra-
tion at the beginning of the cultivation promotes higher
MEL production, the SHF process was also performed,
with enzymatic hydrolysis taking place at 50°C for 48 h,
followed by yeast loading and fermentation (and further
enzymatic hydrolysis) at 28°C for, at least, 10 days.

MEL production was assessed in SHF and SSF pro-
cesses with 4.0% w/v Avicel at low enzyme loading with
and without prior dialysis. Interestingly, P. antarctica
generated higher MEL titres (max. 4.0 g/l) under SHF,
while P. aphidis generated higher MEL titres (max.
1.9 g/l) under SSF, both with prior enzyme dialysis
(Table 4). This differential behaviour is in line with the
hypothesis that P. antarctica is not limited in the step of
partial B-oxidation of fatty acids, and thus can benefit
from higher initial glucose concentration (generated in
the hydrolysis step of SHF) and consequent higher intra-
cellular fluxes for the production of fatty acids.

Dialysis of enzyme cocktails promoted an improve-
ment in MEL production from 4.0% w/v Avicel®, both
under SHF and SSF processes. The effect of dialysis was
more pronounced in P. aphidis than in P. antarctica,
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with an increase in MEL production over 80% under both
processes. In P. antarctica the improvement in MEL titres
was 11% under SSF and 41% under SHF. These results
indicate that dialysis is required to remove inhibitors of
yeast metabolism and to improve MEL production.

The use of dialysed medium enzyme dosages in SHF
and SSF processes generated similar MEL concentrations
to those obtained with dialysed low enzyme dosages
(data not shown). Therefore, dialysed low enzyme load-
ing were used in subsequent studies, inasmuch as en-
zymes are one of the most important costs in both SSF
and SHF processes [20] and the optimization towards
use of low enzyme loading is critical for cost-effective
MEL production from lignocellulosic biomass.

Furthermore, the kinetics of enzymatic hydrolysis and
enzyme stability were characterized with low enzyme
loading (with and without dialysis), at 28°C and 50°C,
using Avicel (4.0% w/v) as substrate. The dialysis of the
enzyme cocktail did not affect enzyme activity since
similar rates and yields of hydrolysis were achieved with
dialysed and non-dialysed enzyme cocktails at both 28°C
and 50°C (Figure 4a,b). In agreement, enzyme stability
over time was similar with or without dialysis of enzyme
cocktails (Figure 4c). Noteworthy, at 28°C, the enzyme
activity was kept above 70% over the 4 days of experi-
ment and over 90% of the initial enzymatic activity for at
least 48 h (from 3.6 FPU/g to 3.2 FPU/g) (see Figure 4c).
However, although enzymatic hydrolysis is more efficient
at 50°C (Figure 4a), a steeply loss of enzyme activity to
values around 60-70% was observed after 6 h (from 8.5
FPU/g to 5-6 FPU/g) (Figure 4c), reaching a value of
50% by day 4. Therefore, in SHE, the enzymatic hydroly-
sis at 50°C during 48 h, with low enzyme dosage, gener-
ated a 50% glucan conversion into glucose after 48 h,
still maintaining more than 60% of enzyme activity,
while in SSF (isothermal process at 28°C), the glucose
release was slower but enzyme activity was maintained

Table 4 MEL production (titres and yields) and initial glucose concentration for SSF and SHF of Avicel® and wheat
straw, using P. antarctica PYCC 5048" and P. aphidis PYCC 5535" and low enzyme loading (with prior dialysis)

P. antarctica PYCC 50487

P. aphidis PYCC 55357

Initial glucose concentration MEL Ymews© Initial glucose concentration MEL Ymewss®
(at fermentation step)b (g/1) (g/l) (9/9) (at fermentation step)b (g/1) (g/1) (9/9)
Avicel®
SSF? <30 29 £ 00 0.07 <30 1.9 £ 0.1 0.05
SHFP 238+ 19 40+ 03 0.10 254+ 1.1 1.1+03 0.03
Wheat straw
SSF? <30 1.1 +03 0.03 <30 09 £ 04 0.02
SHF® 256 £10 14 +02 0.04 238 £ 1.1 09 £+ 0.1 0.02

2SSF: enzymatic hydrolysis and fermentation were carried simultaneously with 40 g/l glucan, at pH 5.5, 50°C, 140 rpm for 10 days.
BSHF: enzymatic hydrolysis was carried out at 40 g/I glucan, pH 5.5, 50°C, 140 rpm for 48 h; fermentation (and further enzymatic hydrolysis) were conducted at

pH 5.5, 28°C, 140 rpm for 10 days.
“MEL produced (g) per total glucan (g).
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Figure 4 Effect of dialysis on the performance of cellulolytic commercial enzyme cocktails on the cellulosic substrates used. Kinetics of
enzymatic hydrolysis of Avicel® (a) and pretreated wheat (b) straw and enzyme thermal stability (c) were performed at 50°C (continuous lines)
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close to maximum activity for the first 48 h. Although
Celluclast 1.5 L* is relatively stable at 50°C, Novozyme
188 (B-glucosidase) suffers significant heat-induced de-
naturation at this temperature leading to protein precipita-
tion, which in the case of Celluclast 1.5 L°/Novozyme 188°
cocktails correspond to 50% after 4-days incubation [38].

Comparison of SSF and SHF of Avicel® and wheat straw
for MEL production under selected conditions

Both SHF and SSF processes were applied for MEL pro-
duction with wheat straw using P. antarctica or P. aphidis
and dialysed low enzyme loadings and compared with the
results obtained with Avicel’. Wheat straw went through
prior hydrothermal pretreatment, which optimal condi-
tions where previously established for maximal sugar re-
covery [39]. The solid fraction obtained, mainly composed
of cellulose and lignin (Table 1), was used as substrate for
MEL production from natural lignocellulosic materials, at
6.6% w/v solids, i.e. at 40 g/l glucan, and the results were
compared to those with 4.0% w/v Avicel® (Table 4), also at
40 g/1 glucan.

The kinetics of enzymatic hydrolysis of the solid frac-
tion of pretreated wheat straw (6.6% w/v) was similar
either using dialysed or non-dialysed enzyme cocktails
and to that of 4.0% w/v Avicel® (Figure 4a,b). By washing
the solids after hydrothermal pretreatment, the potential
inhibitors of enzymatic hydrolysis (and fermentation)
were removed, producing no effect on enzymatic

hydrolysis performance when compared to the hydroly-
sis of Avicel®. Also, under those conditions, the presence
of lignin and other constituents of pretreated wheat
straw did not significantly affect enzyme performance
when compared to the hydrolysis of pure (crystalline) cel-
lulose (Avicel®), even if exhibiting higher viscosity at the
same glucan content. Accordingly, under SHE, the enzym-
atic hydrolysis step (48 h at 50°C) released 23-25 g/l of
glucose from both Avicel” and wheat straw (Figure 4a,b,
Table 4).

After yeast inoculation (10% v/v inoculum), glucose
concentration was reduced to low levels between days 4
and 7 (<4 g/l) and became not detectable at day 10. In
SHF of wheat straw, xylose (<3 g/l) was obtained from
the hydrolysis of hemicellulose present in the solid frac-
tion and maintained up till day 7, becoming virtually
zero at day 10, which confirmed xylose assimilation cap-
acity by Pseudozyma spp. [19]. The highest MEL pro-
duction was obtained using Avicel® and P. antarctica in
the SHF approach resulting in a MEL titre of 4.0 g/l and
yield of 0.10 gner/gglucan Pseudozyma antarctica and
P. aphidis produced MEL from SHF of wheat straw at
concentrations of 1.4 and 0.9 g/l, respectively, after 10 days
(Table 4).

In the SSF processes, the initial sugar concentration
(glucose and xylose) did not exceed 3 g/l, remaining low
until day 7, and became virtually zero at day 10. Using
wheat straw as substrate, both P. antarctica and P. aphidis
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produced MEL at 1.1 and 0.9 g/], respectively, after 10 days.
Those values are lower than when Avicel® was used as
substrate for SSE, with P. antarctica reaching 2.9 g/l
and P. aphidis 1.9 g/l of MEL. SHF and SSF processes
using wheat straw as carbon source generated similar
MEL yields of 0.03-0.04 guig1./ggiucan With P. antarctica and
0.02 gnEr/8giucan With P. aphidis. The fatty acid profile of
P. antarctica and P. aphidis cultures in the bioconversion
of wheat straw revealed MEL acyl groups mainly com-
posed of C10:n and C12:n (data not shown), which was
similar to the profile obtained from Avicel® (see Table 2)
and glucose cultures [16,19]. In summary, P. antarctica
produced significantly (p <0.05) higher MEL titres under
SHF than under SSF for both substrates (approx. 40% more
with Avicel® and 30% more with pretreated wheat straw).
In turn, MEL obtained from Avicel® was significantly
(p <0.05) higher (3-fold) than that from wheat straw. On
contrary, P. aphidis produced more MEL under SSF than
under SHF of Avicel’, but not with wheat straw.

The main difference between the two cellulosic sub-
strates set up was related to the total amount of solids in
order to meet the same glucan content (40 g/l). With
wheat straw, a total amount of 6.6% (w/v) solids is re-
quired due to the presence of lignin. Taking into account
that the presence of lignin had no significant impact on
enzymatic hydrolysis when comparing glucose yield
from wheat straw and Avicel® (see Figure 4), lignin might
have had a negative impact on yeast bioconversion due
to potential chemical and/or physical interaction, namely
by affecting the rheology of the system as a result of the
higher viscosity. This effect of lignin was significant for
P. antarctica under both configurations (SHF and SSF)
but only significant for P. aphidis under SSE.

Taking into account that P. antarctica generated the
highest MEL vyields both from Avicel” and wheat straw,
this strain was selected for fed-batch studies in the con-
version of cellulosic materials into MEL aiming at in-
creasing MEL titres.

Fed-batch SSF strategies with pre-hydrolysis

In order to improve MEL titres from cellulosic materials,
a fed-batch SSF with pre-hydrolysis approach was used,
where the enzymatic pre-hydrolysis was performed at
50°C for 48 h, followed by yeast loading, fermentation at
28°C and substrate feeding during the process. The goal
was to increase total substrate loading, up to approx.
80 g/l glucan, either using Avicel® (8.0% w/v) or pre-
treated wheat straw (13.2% w/v). Two different strat-
egies of fed-batch SSF with pre-hydrolysis were used
(Figure 5): Feeding strategy 1 — initial (day -2) 40 g/1 glu-
can (4.0% w/v Avicel® or 6.6% w/v wheat straw) for 48 h
pre-hydrolysis and two pulses of 20 g/l glucan (2.0% w/v
Avicel® or 3.3% w/v wheat straw) at day O and day 4;
Feeding strategy 2 - initial (day -2) 60 g/l glucan
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Figure 5 MEL production from Avicel® (a) and wheat straw (WS)
(b) by fed-batch SSF (at 28°C) with (pre-)hydrolysis (at 50°C) using
P. antarctica PYCC 5048" and low enzyme loading with prior
dialysis. D-Glucose (squares), D-xylose (circles) and MEL (triangles)
concentrations. Feeding strategy 1 (continuous lines): initial 40 g/I
glucan content (4.0% w/v Avicel® or 6.6% w/v wheat straw) for
pre-hydrolysis (48 h) and further 20 g/I glucan feeding (2.0% w/v
Avicel® or 3.3% w/v wheat straw) at day 0 and day 4. Feeding strategy 2
(dashed lines): initial 60 g/l glucan content (6.0% w/v Avicel® or
9.9% w/v WS) for pre-hydrolysis (48 h) and further 20 g/l glucan feeding

(2.0% w/v Avicel® or 3.3% w/v WS) at day 4.

(6.0% w/v Avicel® or 9.9% w/v wheat straw) for 48 h
pre-hydrolysis and one pulse of 20 g/l glucan (2.0% w/v
Avicel® or 3.3% w/v wheat straw) at day 4. In both feeding
strategies, a total of 80 g/l glucan was fed into the system.
Commercial cellulolytic cocktail (Celluclast 1.5 L° and
Novozyme 188°), at low enzyme dosage and prior dialysis,
and P. antarctica were used as biocatalysts.

Both strategies generated, after the pre-hydrolysis step
at 50°C, glucose concentrations above 20 g/l either from
Avicel® or pretreated wheat straw, with slightly higher
concentrations in strategy 2 (initial 6.0% w/v Avicel® or
9.9% w/v wheat straw), due to higher initial glucan con-
tent (Figure 5). However, feeding strategy 1 generated
higher MEL titres (Figure 5). Starting with lower glucan
content (40 g/), the stepwise feeding (2x20 g/l glucan)
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revealed to be more efficient in MEL production, probably
because it maintained lower solid concentration through-
out the process with beneficial rheological properties
for enzymatic hydrolysis and/or fermentation (Figure 5).
This effect was more pronounced when using wheat
straw at the same glucan content (Figure 5b). The higher
glucose concentration throughout the wheat straw con-
version processes (both strategies 1 and 2) indicated that
glucose consumption rate by P. antarctica was reduced
in the presence of a complex substrate. The presence of
the non-fermentable compounds (e.g. lignin), potential
microbial inhibitors and/or lower oxygen availability due
to the higher viscosity are possible explanations for this
observation.

MEL production either from Avicel® or pretreated wheat
straw at higher initial solids loading (feeding strategy 2)
was similar to those obtained under simple SHE, reaching
only 4.0 and 1.4 g/l, respectively (see Table 4). However,
the lower initial solids with two-pulse feeding (strategy 1)
resulted in increased MEL production both from Avicel
(4.5 g/1) and wheat straw (2.5 g/1).

Pseudozyma antarctica T-34 was reported to produce
12 g/l of MEL from D-glucose with a fed-batch strategy
requiring 280 g/l D-glucose and 21 days (yield of 0.04 g/g
and productivity of 24 mg/1/h) [16]. In this study with
P. antarctica PYCC 5048", a lower MEL productivity
was observed either from Avicel® (approx. 13 mg/l/h)
or from pretreated wheat straw (7 mg/l/h). However, a
slightly higher MEL yield with Avicel® (0.06 g/g) and simi-
lar MEL vyield with pretreated wheat straw (0.03 g/g)
were obtained when compared with those reached with
P. antarctica T-34 [16].

This significant increase in MEL titre from pretreated
wheat straw, maintaining similar MEL yields when com-
pared to SHF and SSF processes (from 40 g/l glucan), indi-
cated that further process optimization can be performed
to increase MEL production from cellulosic materials.
Moreover, the simultaneous use of the hemicellulose frac-
tion can be explored since Pseudozyma species are able to
convert xylose into MEL at yields comparable to glucose
conversion [19].

Conclusions

The technical feasibility of the conversion of cellulosic
materials into glycolipid biosurfactants, MEL, was dem-
onstrated for the first time in the present study. Pseudo-
zyma antarctica PYCC 5048 and P. aphidis PYCC
5535" were able to produce MEL from Avicel® and pre-
treated wheat straw under SHEF, SSF or Fed-batch SSF.
Dialysis of commercial enzyme cocktails had a positive
impact in yeast metabolism, including in MEL produc-
tion, and the performance of the processes were com-
patible with the use of low enzyme dosage. Using a
Fed-batch SSF strategy (2 pulses) with pre-hydrolysis
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(for 48 h), P. antarctica PYCC 5048" generated, after
14 days, MEL titres of 4.5 and 2.5 g/l, from Avicel® and
pretreated wheat straw, respectively. The MEL yield of
0.03 g/g from wheat straw can be potentially increased by
using the hemicellulosic sugars (e.g. xylose) [19], together
with further process optimization.

The ability of using renewable sugar-based substrates
may contribute to sustainable MEL production at two
levels: i) substrate — if using inexpensive lignocellulosic
residues with low environmental impact; ii) downstream —
MEL recovery from sugar-based substrates is one-step
liquid-liquid extraction process, while the use of oil-based
substrates requires a solvent intensive and low-yield down-
stream process. The use of lignocellulosic materials for
MEL production represents an increase in process com-
plexity, with pretreatment and enzymatic hydrolysis repre-
senting the main operational costs.

However, the use of inexpensive lignocellulosic sub-
strates associated to straightforward downstream pro-
cessing from sugary broths is expected to have a great
impact in the economy of MEL production for the bio-
surfactant market, inasmuch as low enzyme dosage is
sufficient for good system performance.

Materials and methods

Yeast strains, maintenance and standard cultivation
conditions

Pseudozyma antarctica PYCC 5048T (CBS 5955) and
Pseudozyma aphidis PYCC 55357 (CBS 6821) were ob-
tained from the Portuguese Yeast Culture Collection
(PYCC), CREM, FCT/UNL, Portugal. Yeasts were culti-
vated for 3 days at 25°C on Yeast Malt Agar (YM-agar)
medium (yeast extract, 3 g/l; malt extract, 3 g/I; peptone,
5 g/l; glucose, 10 g/l; agar, 20 g/l). Stock cultures
were prepared by propagation of yeast cells in liquid
medium as described below for the inoculum and stored
(in 20% v/v glycerol aliquots) at -70°C for later use. In-
oculum was prepared by incubation of stock cultures of
P. antarctica or P. aphidis at 28°C, 140 rpm, for 48 h,
in liquid medium containing glucose (40 g/1), NaNO3
(3 g/l), MgSO, (0.3 g/l), KH,PO, (0.3 g/l) and yeast
extract (1 g/l).

The cultivation media, containing a carbon source
(40 g/l glucose or glucan) and the supplements MgSO,
(0.3 g/1), KH,PO, (0.3 g/l) and yeast extract (1 g/l), was in-
oculated with 10% v/v of inoculum culture and incubated
at 28°C, 140 rpm, for 4-14 days. All experiments were
carried out in duplicate.

Raw material - pretreatment and characterization

Glucose and Avicel® cellulose (Avicel PH-101, Sigma-
Aldrich) were directly used for SHF an SSF experiments.
Wheat straw was hydrothermally pretreated following the
conditions previously established elsewhere [39]. A 0.6-L



Faria et al. Microbial Cell Factories 2014, 13:155
http://www.microbialcellfactories.com/content/13/1/155

stainless steel reactor vessel (Parr Instruments Company,
USA) was fed with wheat straw and water at liquid/solid
ratio of 7. The reactor was heated to reach a final
temperature of 210°C (non-isothermal conditions), 250 Psi,
at 150 rpm, in 30 minutes. The reactor was cooled to
100°C in a water-ice bath, in 1.5 minutes. The solid and li-
quid phases were separated by pressing (up to 200 kg/cm?)
using a hydraulic press. The solids were washed with water,
filtered through Whatman No. 41 filter paper and dried
at 50°C for 48 h [39]. The solid fraction was character-
ized by means of a quantitative acid hydrolysis [40] to
determine cellulose content prior to use.

Enzymatic hydrolysis

Celluclast 1.5 L* (Novozymes, Denmark), a cellulase from
Trichoderma reesei QM-9414 exhibiting 58.4 FPU/ml
and 31.2 U (B-glucosidase)/ml at 50°C, and Novozyme
188° (Novozymes, Denmark), a p-glucosidase from As-
pergillus niger, exhibiting 690.8 U (B-glucosidase)/ml
and 1.3 FPU/ml at 50°C, were used. The hydrolysis of
cellulosic substrates (40 g/l glucan content) was per-
formed at four different enzyme loadings:

(i) High (H) - 5.25% v/v Celluclast 1.5 L* (30 and 76.6
FPU/ggucans respectively at 28°C and 50°C), and
0.75% v/v Novozyme 188° (49.47 and 213.2 U
(B-glucosidase)/ggjucan, respectively at 28°C and
50°C);

(ii) Medium-high (MH) - 3.50% v/v Celluclast 1.5 L°
(20 and 51.1 FPU/ggjucan, respectively at 28°C and
50°C) and 0.50% v/v Novozyme 188° (32.9 and
142.1 U (B-glucosidase)/ggrycans respectively at 28°C
and 50°C);

(iii) Medium (M) - 1.75% v/v Celluclast 1.5 L° (10 and
25.5 FPU/ggjucans respectively at 28°C and 50°C)
and 0.25% v/v Novozyme 188° (16.6 and 71.1 U
(B-glucosidase)/ggiucans respectively at 28°C and 50°C);

(iv) Low (L) - 0.58% v/v Celluclast 1.5 L° (3.6 and 8.5
FPU/gg1ucan, respectively at 28°C and 50°C) and
0.08% v/v Novozyme 188° (5.1 and 22.1 U
(B-glucosidase)/ggjucans respectively at 28°C and 50°C).

When applied in SSF or SHEF, unless otherwise stated,
the enzyme formulation containing Celluclast 1.5 L* and
Novozyme 188° was previously dialysed (Spectra/Por,
Spectrum®, MWCO: 12-14000) for 20 h, at 4°C, in
0.05 M potassium phthalate, pH 5.5.

Enzymatic hydrolysis studies were carried out in 250 ml-
Erlenmeyer flasks, with a total working volume of 50 ml,
containing Avicel® cellulose (4.0% w/v) or the solid fraction
of pretreated wheat straw (6.6% w/v) suspended in 0.05 M
potassium phthalate buffer pH 5.5. After incubation at
28°C or 50°C, 140 rpm, in presence of sodium azide
(0.08% w/v), samples were taken periodically, centrifuged
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and the supernatants analysed for sugar composition and
enzyme activity.

Simultaneous saccharification and fermentation (SSF),
Separate hydrolysis and fermentation (SHF) and
Fed-batch SSF with pre-hydrolysis

Experiments were carried out in 250 ml Erlenmeyer
flasks, with a total volume of 50 ml, containing: (a) cellu-
losic material - either Avicel® or the solid fraction of
pretreated wheat straw at 4.0 and 6.6% w/v solids, re-
spectively (both at approx. 40 g/I glucan); (b) cellulolytic
enzyme cocktails in 0.05 M potassium phthalate buffer
pH 5.5: either medium (M) dosage (1.75% v/v Celluclast
1.5 L° and 0.25% v/v Novozyme 188°) or low (L) dosage
(0.58% v/v Celluclast 1.5 L* and 0.08% v/v Novozyme
188°); (c) inoculum 10% v/v, for initial yeast concentration
of 0.5 g(CDW)/]; and (d) supplements containing MgSO,
(0.3 g/1), KHyPO, (0.3 g/1) and yeast extract (1 g/l).

Several cultivation strategies were studied: (i) SSF ex-
periments were started by simultaneous loading of both
biocatalysts (yeast and enzyme). The flasks were incu-
bated at 28°C, at 140 rpm for 10 days; (ii) SHF experi-
ments were carried out under the same conditions of
SSE, except that yeast loading and supplementation were
performed only after 48 h of enzymatic hydrolysis at
50°C; (iii) Fed-batch SSF with pre-hydrolysis experiments
with Avicel® and wheat straw were performed under the
same conditions used in SSF and SHF concerning en-
zyme loading, medium and inoculum (always considered
at day 0) with the following modifications: (iii.a) Feeding
strategy 1, 40 g/l glucan content (4.0% w/v Avicel® or
6.6% w/v wheat straw) were initially fed for pre-hydrolysis
(48 h at 50°C) and two additional pulses of 20 g/l glucan
were fed (2.0% w/v Avicel® or 3.3% w/v wheat straw) at day
0 and 4; (iii.b) Feeding strategy 2, 60 g/l of glucan content
(6.0% w/v Avicel® or 9.9% w/v wheat straw) were initially
fed for pre-hydrolysis (48 h at 50°C) and an additional
pulse of 20 g/l glucan was fed (2.0% w/v Avicel or
3.3% w/v wheat straw) at day 4.

Analytical methods

Yeast growth and viability

Cell growth was followed spectrophotometrically [optical
density (OD) at 640 nm], by quantification of cell dry
weight (CDW) and/or by quantification of viable yeast
cells (colony forming units — CFU). CDW was deter-
mined with 1 ml of culture broth. Culture broth was
centrifuged at 13000 rpm for 10 min, the pellet was
washed twice in deionized water and dried at 100°C for
24 h. Viable yeast cells were determined, after 96 h cul-
ture, by platting 100 pL of appropriated dilution in YM-
agar and incubation at 25°C, for 48 h, for determination
of CFU.
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Sugar profile

Supernatants were collected, filtered through a 0.45 um-
pore-size filter and analysed for glucose, xylose and
erythritol quantification in high performance liquid chro-
matography (HPLC) system (Merck Hitachi, Darmstadt,
Germany) equipped with a refractive index detector
(L-7490, Merck Hitachi, Darmstadt, Germany) and an
Aminex HPX-87H column (300 mm x 7.8 mm, Bio-Rad),
at 50°C. Sulfuric acid (0.005 M) was used as mobile phase
at 0.4 ml/min.

Cellulolytic enzyme assays
Cellulase activity was assessed according to Ghose [41], as
filter paper activity (FPase) by measuring the release of re-
ducing sugars from Whatman number 1 filter paper. Re-
ducing sugars were estimated by the dinitrosalicylic acid
(DNS) method [42]. The assay was modified according to
King et al. [43] by using filter paper cylinders (2 x 2.2 mg),
in potassium phthalate buffer (0.05 M, pH 5.5), at 28°C or
50°C, in a total reaction volume of 125 pl. Filter Paper
Unit (FPU) is defined as the amount of enzyme required
to release 1 pmol of glucose reducing equivalent per
minute, under the conditions defined by Ghose [41].
B-Glucosidase activity was assayed in a reaction mixture
(0.3 ml) containing 5 mM p-nitrophenyl-p-D-glucoside
(pNPG, Sigma, USA), 0.05 M potassium phthalate, pH
5.5, and appropriately diluted enzyme solution. After incu-
bation at 50°C for 60 min, 0.15 ml of 1 M Na,CO3 was
added to stop the reaction [44]. The p-nitrophenol ab-
sorbance (pNP) was measured at 405 nm. One unit (U) of
B-glucosidase activity is defined as the amount of enzyme
releasing 1 pmol pNP per minute.

MEL and fatty acids profile

The total fatty-acid pattern of biological samples was de-
termined by methanolysis of freeze-dried culture broth
[19,45]. The resulting reaction was extracted with hexane
(1 ml) and 1 pl of the organic phase was analysed by gas
chromatography to determined fatty acid concentrations
against C7:0 internal control/standard [19].

MELs were quantified through the amount of C8, C10
and C12 fatty acids [19]. The identification of MEL was
confirmed by thin layer chromatography (TLC) after
liquid-liquid extraction of the culture broth with one
volume of ethyl acetate [19]. MEL (MEL-A, -B, -C and -D)
produced by P. aphidis cultivation on soybean oil, was used
as reference [19].

Statistical analysis

Statistics were performed by analysis of variance (ANOVA)
and p-values of the differences between groups were cor-
rected for simultaneous hypothesis testing according
to Tukey’s method. The level of significance was set at
p < 0.05.
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