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Abstract

magnetosome Yyield.

Background: Magnetotactic bacteria have long intrigued researchers because they synthesize intracellular
nano-scale (40-100 nm) magnetic particles composed of FesO,, termed magnetosomes. Current research focuses
on the molecular mechanisms of bacterial magnetosome formation and its practical applications in biotechnology
and medicine. Practical applications of magnetosomes are based on their ferrimagnetism, nanoscale size, narrow
size distribution, dispersal ability, and membrane-bound structure. However, the applications of magnetosomes
have not yet been developed commercially, mainly because magnetotactic bacteria are difficult to cultivate and
consistent, high yields of magnetosomes have not yet been achieved.

Results: We report a chemostat culture technique based on pH-stat feeding that yields a high cell density of
Magnetospirillum gryphiswaldense strain MSR-1 in an auto-fermentor. In a large-scale fermentor, the magnetosome
yield was significantly increased by adjusting the stirring rate and airflow which regulates the level of dissolved
oxygen (DO). Low concentration of sodium lactate (2.3 mmol Iy in the culture medium resulted in more rapid cell
growth and higher magnetosome yield than high concentration of lactate (20 mmol I). The optical density of

M. gryphiswaldense cells reached 12 ODsgs nm after 36 hr culture in a 42 L fermentor. Magnetosome yield and
productivity were 83.23 + 5.36 mg I (dry weight) and 5549 mg "' day ™', respectively, which were 1.99 and

3.32 times higher than the corresponding values in our previous study.

Conclusions: Compared to previously reported methods, our culture technique with the MSR-1 strain significantly
increased cell density, cell yield, and magnetosome vyield in a shorter time window and thus reduced the cost of
production. The cell density and magnetosome vyield reported here are the highest so far achieved with a
magnetotactic bacteria. Refinement of this technique will enable further increase of cell density and

Background

Magnetotactic bacteria, first described by Richard
Blakemore [1], have long intrigued researchers because
they synthesize intracellular nano-scale (40-100 nm)
magnetic particles composed of Fe;O,4, termed magneto-
somes. The extensively studied strains of magnetotactic
bacteria include Magnetospirillum gryphiswaldense
MSR-1, M. magnetotacticum MS-1, M. magneticum
AMB-1, Magnetococcus sp. MC-1, and magneto-ovoid
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strain MO-1 [2-6]. Interestingly, a variety of higher
organisms, including bees [7], algae [8], pigeons [9], eels
[10], and humans [11], are also capable of synthesizing
intracellular magnetite. The formation and physiological
function of magnetic crystals in these organisms are not
known. However, thorough understanding of bacterial
magnetosome formation will serve as a model to
uncover the mechanism of magnetosome formation and
function in other species.

Current research focuses on the molecular mechanisms
of bacterial magnetosome formation [12] and its practical
applications in biotechnology and medicine [13]. Com-
plete or partial genomes of M. magnetotacticum MS-1,
M. gryphiswaldense MSR-1, M. magneticumm AMB-1,
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Magnetococcus sp. MC-1 and magneto-ovoid strain
MO-1 have been published [14,15]. Functional analysis of
several genes involved in magnetosome formation, e.g.,
mam], mamK, magA [12,16-23] have revealed the roles
of membrane associated proteins in transport and biomi-
neralization processes required for the assembly of
magnetosomes.

Practical applications of magnetosomes are based on
their ferrimagnetism, nanoscale size, narrow size distri-
bution, dispersal ability, and membrane-bound structure
[13]. Bacterial magnetosomes have been used experi-
mentally as carriers of enzymes [24], antibodies [25,26]
for highly sensitive immunoassay, and as efficient
sorbents for isolation and purification of DNA or RNA.
Artificial magnetic nanoparticles have been used as
carriers for cancer diagnosis and targeted therapy in
experimental animals [27-30]. Similarly, magnetic nano-
particles enclosed in biological membranes can be linked
to genes or drug molecules and thus could be used as
carriers of drugs for targeted therapy of tumors [31].
Several recent reports indicate that purified, sterilized
magnetosomes from M. gryphiswaldense MSR-1 are
non-toxic for mouse fibroblasts in vitro, and may be
useful as carriers of genes, or drugs for cancer therapy
or other diseases [32,33]. However, the applications of
magnetosomes have not yet been developed commer-
cially, mainly because magnetotactic bacteria are difficult
to cultivate and consistent, high yields of magnetosomes
have not yet been achieved [34-37].

Recently, we described a novel culture method for
high-yield growth and magnetosome production of
M. gryphiswaldense [38], but large-scale cultivation
requires further refinement of nutrient control and other
culture conditions. Here we report a chemostat culture
technique by pH-stat feeding, leading to rapid cell growth
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and maximized magnetosome formation by Magnetospiril-
lum gryphiswaldense strain MSR-1 at low dissolved oxygen
concentration and carbon source limitation. pH-stat feed-
ing is a feeding strategy based on a pH feedback control.
The substrate feeds into the system in response to the
change in pH of the culture. This technique allows the
concentrations of carbon, nitrogen, and iron sources to be
easily controlled at constant levels and scaled up for large-
scale preparation of magnetosomes. Moreover, it provides
a useful guideline for resolving the problem of difficult
cultivation of some micro-aerobic microorganisms.

Results

Optimal shaking conditions for flask cultures
Experiments investigating the effects of medium compo-
nents on MSR-1 cell growth in shake-flasks indicated
that mineral elixir, but not vitamin elixir, is essential for
culture [39]. Sodium lactate was determined to be the
best carbon source (data not shown), at a maximum
concentration of 20 mmol 1! (Figure 1a). NH4Cl was
better than NaNOj as the nitrogen source (Figure 1b).

Chemostat culture

Optimized conditions for shake-flask culture are not
directly applicable to large scale cultivation in fermentor.
To investigate the effects of sodium lactate and NH,Cl
concentrations on MSR-1 cell growth and magnetosome
formation, we developed a “chemostat culture” techni-
que based on pH-stat feeding during the cultivation
process, to control concentrations of carbon, nitrogen,
and iron sources at a constant level. The feed solution
contained (per liter) 4.2 g ferric citrate, 129 g sodium
lactate, 52.6 g lactic acid, and 54.9 g NH,Cl; these con-
centrations were determined in preliminary experiments.
Chemostat conditions at various lactate concentrations

1.0 r
~ 0'8 [ +
g
&
e 0.6
g
; 04 r
E
e 02
)
0.0 — — — .
10 20 30 40 50

sodium lactic (mmol 1)
a

1.6 - —¢ NH,(CI

B 12 F
g
@)
9 08 r
<
Z 04
S
6]
0.0
0 8 16 24 34 46
Time (hrs)
b

Figure 1 Effects of carbon source and nitrogen source concentration on growth of M. gryphiswaldense. a: effect of sodium lactate
concentration on cell growth. b: effects of NH,Cl and NaNOs concentration on cell growth. All experiments are repeated three times
independently and for each time three parallel samples were used to generate the average.
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were achieved by pH-stat feeding and adjusting initial
sodium lactate in the cultivation medium. The growth
rate was higher at a low concentration of sodium lactate
(2.3 mmol 1'!) than at a high concentration (20 mmol I
(Figure 2). We also studied the effects of C/N ratios 2/1,
4/1, and 6/1 on cell growth at a constant sodium lactate
concentration (2.3 mmol I'') in a fermentor, by regulating
the concentration of NH,4Cl. A C/N ratio of 4/1 was used
in subsequent experiments as no significant influence on
cell density and growth rate was observed with changes
in this parameter.

Optimal dissolved oxygen concentration (DO)
Since high density cultures yield increased levels of pro-
ducts, we investigated the role of oxygen in cell density
in cultures. As for all magnetotactic bacteria, oxygen
increased MSR-1 cell density but reduced or blocked
magnetosome formation [34-36]. Thus, there is a con-
flict between cell growth and magnetosome formation.
As shown in Figure 3 cell density of MSR-1 depended
on oxygen concentration in the medium during cultiva-
tion (Figure 3a, b). This is one of the reasons why high
cell density and large magnetosome yield are so difficult
to achieve simultaneously with magnetotactic bacteria.
Air flow rate and stirring rate, which affect DO, were
experimentally optimized for chemostat culture. In
order to maintain the low DO necessary for magneto-
some formation, air flow and stirring rate were initially
set at 0.3 1 min™' and 100 r min™, respectively [38].
Under these conditions, the DO became undetectable,
and the cell density was only 0.26 ODs¢5 ny, at 4 h of
incubation (Figure 3a). In order to accelerate cell
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Figure 2 Effect of sodium lactate concentration on cell growth
of M. gryphiswaldense during cultivation in a 7.5 | fermentor.
The experiment was carried out in Na-lactate medium as described
previously [37]. The initial Na-lactate concentrations in the medium
were adjusted to 20 mmol I'" and 2.3 mmol I'" respectively. The
concentrations of Na-lactate could be auto-controlled at a constant
level during the cultivation process using the “chemostat culture”
technique based on pH-stat feeding. All experiments are repeated
three times independently to prove it is reproducible.
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growth, the stirring rate was increased by 40 r min™' at
14, 20, 28, and 40 hr, successively; however, the DO
remained at zero. Finally, the cell density reached 6.5
ODsg5 nm after 54 hr (Figure 3a). Formation of magne-
tosomes in the cells began one hour after the DO
became undetectable, and continued along with cell
growth until the end of cultivation. The dry weight and
productivity of the magnetosomes were 40.0 mg 1" and
17.5 mg I" day’, respectively. Although the growth rate
and magnetosome yield under these conditions were
similar relative to previous results [38], it was clear that
growth rate was slow at initial growth phase, resulting
from the low DO. We therefore tried to enhance DO in
the initial growth phase in order to accelerate growth
and shorten the cultivation period.

When the stirring rate and initial air flow were
increased to 200 r min™' and 2.0 1 min™!, respectively,
the DO decreased relatively slowly and became unde-
tectable at 20 hr whereas the growth rate increased
greatly. The cell density reached 2.4 ODsg5 py, units at
this point. However, similar to the foregoing results, no
magnetosomes were observed by transmission electron
microscopy (TEM) in this phase. Magnetosome forma-
tion occurred in all periods of growth only if DO was
undetectable after 1 or 2 hr incubation (Figure 4). We
subsequently increased airflow to 4, 8, or 161 min! at
24, 32, or 42 h, although the DO level remained unde-
tectable. The resulting cell density and magnetosome
yield were 12.5 ODs65 nm and 60.0 mg 1" (dry weight)
at 48 h, respectively (Figure 3b). The productivity was
30.0 mg 1" day ™. In view of these results, we increased
the DO level by increasing the air flow and stirring rate
during the initial growth phase, in order to enhance
growth rate and magnetosome yield. However, no mag-
netosomes were formed in the cells until the DO level
decreased to undetectable.

Due to the microaerobic character of MSR-1, initial
air flow and stirring rate were maintained at 1 1 min™
and 200 r min™' in order to decrease the DO during the
initial growth phase of the culture for further experi-
ments. To increase the DO in the late culture phase, air
flow and stirring rate were adjusted to 2 1 min™ at 20 hr
and 300 r min' at 28 hr, respectively. Under these con-
ditions, cells grew more rapidly; DO became undetect-
able at 12 h, and cell density reached 12.3 ODsg5 nm
within 36 h (Figure 3c). Concentrations of sodium
lactate and ferric citrate were controlled between
3-6 mmol 1! and 70-110 pmol 1"}, respectively, through-
out the course of cultivation (Figure 3d). Resulting mag-
netosome yield and productivity were 83.23 + 5.36 mg 1"
and 55.49 mg 1" day ™, respectively. These values are the
highest so far reported, and are 1.99 and 3.32 times
higher, respectively, than those achieved in our previous
study [38].



Liu et al. Microbial Cell

Factories 2010, 9:99

http://www.microbialcellfactories.com/content/9/1/99

Page 4 of 8

=
<

o

Growth (ODsg50m)
[\

Growth (ODsgspp)
S o

[=J S e

0

10 20 30 40 50
Time(hrs)
a

5 10 15 20 25 30 35
Time (hrs)
C

1 120%

4 100%

80%

60%

40%

20%

0%
60

120%

100%

80%

60%

40%

20%

0%
40

pO, Value (%)

—~

pO, Value (%

Growth (ODsgs,) OF lactic acic

Figure 3 Effect of dissolved oxygen concentration (DO) on cell growth of M. gryphiswaldense during large scale culture in a 42 |
fermentor. a: Cell growth and DO under initial airflow and stirring rate 0.3 | min™ and 100 r min™', respectively; stirring rate was increased by 40
rmin’" at 14, 20, 28, and 40 hr, successively. b: Cell growth and DO under initial airflow and stirring rate 2.0 | min"" and 200 r min"; airflow was
increased to 4, 8, 16 | min™ at at 24, 32, or 42 hr. c: Cell growth and DO under initial airflow and stirring rate 1.0 | min™ and 200 r min™'; air flow
and stirring rate were adjusted to 2 | min™' at 20 hr and 300 r min™" at 28 hr, respectively. d: relationships among concentration of sodium
lactate (lac), ferric citrate (Fe**), and cell growth. All experiments are repeated three times independently to prove it is reproducible.
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Figure 4 The absorption curve of ferric ion during cultivation
in a 7.5 | fermentor. 200 pmol ['was added into initial medium.
All experiments are repeated three times independently to prove

Ferric ion uptake

Since Fe;0, is the major component of magnetosomes,
we investigated the effect of ferric citrate concentration
in the medium on the growth of MSR-1 and magneto-
some formation in shake-flasks and fermentor. No sig-
nificant effect was observed on cell growth rate in the
concentration range of 20-500 pumol 1. Rapid ferric ion
uptake occurred in the log phase of cell growth, but not
in the lag phase or the stationary phase, as shown by
the absorption rate during large scale culture in fermen-
tor (Figure 4). This result suggests that dynamic cell
growth is necessary for uptake of ferric ion and magne-
tosome formation. We adjusted the ferric citrate con-
centration in the feed flask and controlled it at a
constant level (~100 pmol 1'") throughout the course of
experiment (Figure 3d). A total of 9.0 g of ferric citrate
was fed to the 42 L fermentor containing 28.4 L of med-
ium, and 8.1 g was assimilated into cells, for an uptake
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efficiency of ~90%. The theoretical Fe;O, yield in mag-
netosomes in this case should be 65.76 mg 1" (no com-
bined H,0) or 73.60 mg 1™ (contains 10% of combined
H,0); the practical magnetosome yield was 83.23 +
5.36 mg 1! (dried using a vacuum freeze drier) or 75.96 +
4.99 mg 1" (dried at 105°C for 24 hrs). These results also
indicate that a large amount of the ferric iron taken up is
associated with magnetosome formation after the DO
became undetectable. Electron micrographs of cells in
large scale culture in various phases show chain arrange-
ments of magnetosomes after DO became undetectable
for 1-2 hr (Figure 5), consistent with the findings of
Staniland et al. [40].

Discussion

Several groups have investigated magnetosome forma-
tion in large scale cultures of M. magneticumm AMB-1
(including recombinant forms) and M. gryphiswaldense
MSR-1 [34,35,41,42] and through improvement of cul-
ture conditions, the magnetosome yield has increased
progressively from 4.7 mg 1"' (or 2.4 mg 1"'day™) to
41.7 mg 1" (or 16.7 mg I'" day™,). Control of dissolved
oxygen (DO) in the medium within a low and narrow
range (<0.2 ppm [41], 0.25 mbar [36], 2~7 pmol I [40]
(equivalent to 1.7~6.0 mbar; 1 bar = 10° pa) is essential
for magnetosome formation. Therefore, amplification for
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large-scale cultivation will require precise electrodes for
measurement of DO. The oxygen electrodes presently
used in large fermentors are not sufficiently sensitive for
culture of magnetotactic bacteria. To resolve the para-
doxical situation that the cell growth requires higher
DO whereas magnetosome formation requires low DO
below the detectable range of regular oxygen electrode,
DO was controlled to optimal level using the change in
cell growth rate [38]. In this study, DO was controlled
at undetectable level for magnetosome formation
whereas cell growth improvement has been further
refined by adjusting stirring rate and air flow under
chemostat culture conditions.

Low concentrations of nutrients in medium, special
carbon source were the other key limiting factors that
affect cell density of all magnetotactic bacterial cultures.
Up to now, just only several organic acids were used as
carbon source for cultivation of MS-1, AMB-1 and
MSR-1, whereas NaHCO3 for MC-1 and MO-1. Our
results show that it is important to keep the sodium lac-
tate concentration low for rapid growth of MSR-1, and
to maintain low DO for magnetosome formation in
cells. Since controlling sodium lactate at a low level is
difficult in sizeable scale-up, specific feeding strategies
and feeding parameters needs to be adopted for auto-
fermentors in the laboratory. However, this approach is

500nra

500z 500

got and one representative image was selected.

Figure 5 Electron micrographs of cells in large scale culture at various phases, and purified magnetosomes. a, b, ¢, d,: 1-2 hr, 3-4 hr,
15-16 hr, and 24 hr, respectively, after DO became undetectable. e: purified magnetosomes. For each sample more than 20 micrographs were
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challenging in large-scale industrial bacterial cultivation
because of differences in the types of fermentors and
the difficulty in regulating the carbon source required
maintain cultures under such conditions. This problem
was overcome in our study by using chemostat culture
technology with pH-stat feeding and we achieved a high
density of MSR-1 cells in a 42 L auto-fermentor and
this fundamental research lays a basic foundation for
the establishment of much larger scale production of
mangetosome in fermentation industry.

More than 80% of ferric ion absorption rate occurred
in the log phase of cell growth and this correlated with
magnetosome formation after the DO became undetect-
able (Figure 4, 5b-e). These data suggest that Fe®* was
likely transferred into cells as an electron acceptor for
magnetosome biosynthesis to compensate oxygen insuf-
ficiency. It is well known that oxygen usually serves as a
terminal electron acceptor to generate ATP for living
organisms. In the couple 1/2 O,/H,0, which has a
reduction potential (E0’) of +0.82 volts (V), H,O has a
reduced tendency to donate electrons, but O, has a high
tendency to accept electrons. The reduction potential of
the Fe**/Fe?* couple is +0.2 V (pH 7) whereas +0.76 V
(pH 2) [43]. Hence, under conditions where oxygen is
absent, Fe®* can function as an electron acceptor. In
previous studies with AMB-1, growth with nitrate has
been reported to result in higher yields of magneto-
somes [44] which was further increased by lowering the
nitrate level in chemostat cultures by pH-stat feeding
[45]. Similar to earlier results, our study showed that
cells preferred to use NO3/NO, couple (+0.42 V) as an
electron acceptor, than Fe®**/Fe** couple, and resulting
in magnetosomes yields decrease.

Conclusions

Compared to previously reported methods, our culture
technique with the MSR-1 strain significantly increased
cell density, cell yield, and magnetosome yield in a shorter
time window and thus reduced the cost of production.
This offers two advantages that allow easy upscaling of the
process for industrial fermentors: (i) the concentrations of
carbon, nitrogen, and iron source in the medium can be
auto-controlled at a constant level by pH-stat feeding,
leading to ease of manipulation and eliminating the possi-
bility of nutrient exhaustion during the culture process; (ii)
mass production of magnetosomes by MSR-1 in a large-
scale fermentor can be achieved by solely adjusting the
stirring rate and airflow as observed in our DO data
(Figure 3). DO is the major factor affecting growth rate in
these culture systems and we were able to control this
parameter without using highly sensitive DO electrodes as
described in our earlier study [38]. The cell density and
magnetosome yield reported here are the highest so far
achieved with a magnetotactic bacteria. Refinement of this
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technique will enable further increase of cell density and
magnetosome yield.

Methods

Bacterial strain

Magnetospirillum gryphiswaldense MSR-1 (DSM6361)
was purchased from Deutsche Sammlung von Mikroor-
ganismen und Zellkulturen GmbH.

Medium preparation

Flask culture was carried out in Na-lactate medium as
described previously [38]. All medium components
except K,HPO, were dissolved in 5.4 L or 27 L distilled
water in a 7.5 L or 42 L fermentor, respectively, and
then sterilized for 30 min at 121°C. K,HPO, was dis-
solved in 200 ml or 2 L distilled water, and then steri-
lized separately for 30 min at 121°C. Sterilized K,HPO,
solution was pumped into the fermentor before
inoculation.

Preparation of seed culture

A single colony of MSR-1 from Na-lactate medium agar
plates was transferred to a tube containing 10 ml
Na-lactate medium and grown with 100 r min™" orbital
shaking at 30°C for 24 hr. Ten ml of this culture was
inoculated into 90 ml fresh Na-lactate medium in a
250 ml bottle and incubated under the same conditions.
This was used as the initial seed culture. A volume of
900 ml fresh medium in 3000 ml shaking flasks was
inoculated with 10% (vol/vol) of initial seed culture and
grown under the same conditions. On larger scales, 10%
(vol/vol) of seed culture was inoculated into the fermen-
tor for subsequent experiments.

Growth conditions

Temperature and pH were controlled at 30°C and 6.8
during cultivation. pH was adjusted by nutrient solutions
(containing 4.2 g ferric citrate, 129 g sodium lactate,
52.6 g lactic acid, and 54.9 g NH,Cl per liter). Initial air
flow and stirring rate were controlled at 0.5 1 min™" and
200 r min™}, respectively, in the 7.5 L fermentor.

Cell density and cell dry weight

Cell growth (optical density) was measured spectropho-
tometrically at a wavelength of 565 nm. One ODsg5 np,
unit corresponds to 0.3 g 1" dry cell weight. Magneto-
somes were collected and purified as described pre-
viously [33], dried using a vacuum freeze drier (Kinetics,
EZ550Q) or at 105°C for 24 hr, and weighed.

Iron concentration

Aliquots of 1.0 ml of batch culture were centrifuged at
7000 g for 1 min. The supernatant was used for ferric ion
or sodium lactate estimation. Ferric ion concentration was
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determined as described previously [46] with modification
as follows. To 100 pl of sample, 50 ul of 5% hydroxylamine
hydrochloride, 1 ml 15% tartaric acid, 5 ml 0.25% 1,10-
phenanthroline, and 10 ml 25% glacial sodium acetic acid
were added. After 15 min, the absorbance of sample solu-
tions was determined spectrophotometrically at 510 nm.

Lactic acid concentration

The concentration of lactic acid in the supernatant was
analyzed by high performance liquid chromatography
(HPLC) (Waters 510 system, USA) with Aminex HPX-87
H Organic Acid Analysis Column (Bio-Rad, USA), using
a Waters 2414 Refractive Index Detector. The column
temperature was 65°C; detector temperature was 45°C.
A solution of 5 mmol 1"* H,SO, was used as mobile
phase at 0.6 ml min™" flow rate.

Transmission electron microscopy

Cells in the pellets were rinsed three times, suspended in
distilled water, adsorbed onto a 300-mesh carbon-coated
copper grid, and viewed directly by transmission electron
microscope (Philips Tecnai F 30) at an accelerating
voltage of 300 kV for recording magnetosomes.
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