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Abstract

Background: Bacterial inclusion bodies are submicron protein clusters usually found in recombinant bacteria that
have been traditionally considered as undesirable products from protein production processes. However, being
fully biocompatible, they have been recently characterized as nanoparticulate inert materials useful as scaffolds for
tissue engineering, with potentially wider applicability in biomedicine and material sciences. Current protocols for
inclusion body isolation from Escherichia coli usually offer between 95 to 99% of protein recovery, what in practical

biological interfaces.

protein folding features.

terms, might imply extensive bacterial cell contamination, not compatible with the use of inclusion bodies in

Results: Using an appropriate combination of chemical and mechanical cell disruption methods we have
established a convenient procedure for the recovery of bacterial inclusion bodies with undetectable levels of viable
cell contamination, below 107" cfu/ml, keeping the particulate organization of these aggregates regarding size and

Conclusions: The application of the developed protocol allows obtaining bacterial free inclusion bodies suitable
for use in mammalian cell cultures and other biological interfaces.

Background

Bacterial inclusion bodies (IBs) are water-insoluble pro-
tein aggregates formed in the bacterial cytoplasm (and
eventually periplasm) during the overproduction of
recombinant proteins, especially those from viral or
mammalian origin [1]. The diameter of these insoluble
proteinaceous particles range from about 50 nm to
500 nm, depending on the background of the producer
strain, harvesting time, culture conditions and recombi-
nant protein [2]. Although IBs have traditionally been
described as biologically inert protein clusters, recent
insights show that these nanoparticles have not only an
important level of molecular organization, but also that
they are formed by a considerable extent of functional
polypeptides [3-7]. In fact, IBs are pure [8], structurally
organized [9], mechanically stable and biocompatible
protein deposits [2], formed through stereospecific pro-
tein-protein cross-molecular interactions under amyloid-
like schemes [9,10]. This turn in the understanding of
IB biological nature has prompted to explore potential
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applications of such aggregates as straightforward bac-
terial products. One of the major IB applications is their
use as particulate catalysts for different bioprocesses
when formed by enzymes. It has been successfully
proved with different enzyme-based IBs that these
aggregates efficiently catalyse bioprocesses, becoming a
promising alternative to classical enzyme immobilization
[7,11]. In the completely different context of tissue engi-
neering and regenerative medicine, it is widely accepted
that the nano- and micro-modification of flat surfaces
by different procedures, such as etching, lithography and
particle decoration, can not only favour mammalian cell
binding but also improve cell proliferation and substrate
colonization [12]. In this regard, we have recently
explored the performance of IBs as biocompatible parti-
culate materials suitable for engineering surfaces rough-
ness at a micro- and nano-scale level to stimulate, by
mechano-transduction events, the growth of cultured
mammalian cells [2,13,14].

On the other hand, a wide range of protocols for the
purification of cytoplasmic IBs are available, all of them
including bacterial lysis and IB washing steps. Bacterial
lysis is achieved using either mechanical or non mechani-
cal methods, or a combination of both, while washing
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steps include, among others, detergent and/or DNase
treatments. These protocols have been mainly aimed to
obtain IBs suitable for in vitro protein refolding attempts
[15]. Since most of them permit the recovery of high
amounts of pure IBs (usually representing between 90
and 95% of the total aggregated proteins), the presence of
viable bacteria in the final sample is not routinely veri-
fied. Residual bacterial contamination may not be a criti-
cal issue when using IBs as the starting material for
protein refolding procedures [16-18] (Table 1[19-58]).
However, for applications in which IBs act as materials in
biological interfaces, for instance in tissue engineering [2]
or as biocatalysts [11], the presence of living bacteria
would be not acceptable.

The aim of this study has been the development of an
IB purification protocol rendering bacterial-free protein
particles, which could not compromise the applicability
of IBs as biomaterials for biomedical applications.

Results

To explore the efficiency of conventional IB purification
protocols based on lysozyme treatment combined with
repeated detergent washing steps, we have determined
the number of viable bacterial cells before and after cell
lysis, using different bacterial strains (MC4100, DnaK"
and ClpP’) carrying plasmids encoding different recom-
binant proteins (VP1GFP, VP1LAC and VPINLSCt)
(Figure 1). Our results indicate that the used standard
protocol is inefficient concerning the complete removal
of viable bacteria (Figure 1). The integrity of bacterial
cells upon IB purification was confirmed by scanning
electron microscopy (SEM) (Figure 2). Comparing the
results obtained with Escherichia coli MC4100 carrying
different plasmids, we noticed that, being the initial
amount of bacteria around 1-10° cfu/ml in all cases,
remaining viable cells after the protocol application ran-
ged from 5.10” to 1-10° cfu/ml (Figure 1). In particular,
we noted that the ClpP” strain carrying pTVP1GEFP plas-
mid was the most resistant to cell lysis, since more than
10”7 cfu/ml remained after IB purification (Figure 1).
Intriguingly, replicas of ClpP"/pTVP1GFP and MC4100/
pTVP1LAC cultures gave quite similar viable cell
counts, but the lysis of DnaK/pTVP1GFP, MC4100/
pTVP1GFP and MC4100/pTVPINLSCt showed an
important variability (Figure 1).

Because of the poor performance of the standard proto-
col cell lysis based on lysozyme, we decided to explore the
effectiveness of other cell disruption protocols (Table 1).
Viable bacteria were still observed after the application of
lysis methods such as the French Press and freeze-thawing
(data not shown). Specifically, we determined the viable
cell concentration after using the French Press up to 7
rounds at 2,000 psi, observing a non significant decrease
in the viable cell counts. Additionally, the effectiveness of
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freeze-thawing rounds was also not relevant. Thus, neither
the physical nor the chemical methods tested were effec-
tive enough to obtain IBs free from bacterial contamina-
tion. Therefore, as the bacterial lysis was a bottleneck of
the whole IB purification process, we decided to develop
an improved protocol by combining both sonication and
lysozyme treatment. After testing several combinations of
these procedures and determining cell counts at the end
of each process, the best protocol (Figure 3) combined
both physical and chemical lysis methods with some wash-
ing steps and a DNase treatment (Figure 3). After the soni-
cation step (Figure 3), no viable bacteria were observed in
the sample containing purified IBs, regardless of the strain
and plasmid used. However, the number of sonication
cycles needed to eliminate all viable bacteria clearly
depended on the particular protein encoded in the plasmid
(Figure 4). Full lysis of Escherichia coli strains overprodu-
cing VP1GFP needed 5 sonication rounds of 10 min at
40% amplitude under 0.5 s cycles, independently of the
genetic background (Figure 4). However, strains overpro-
ducing VP1LAC or VPINLSCt proteins required 6 and 9
disruption cycles, respectively (Figure 4).

Since the IB-forming VP1GFP protein, encoded in all
the plasmids used here, is a suitable model protein to
easily determine functionality, IB architecture and
mechanical stability [2,28], we evaluated the degree of
IB purity as well as the functionality of the embedded
protein, after IB isolation from MC4100/pTVP1GFP,
DnaK'/pTVP1GEP and ClpP"/pTVP1GEFP cells, by con-
focal microscopy. The obtained images confirmed that
isolated IBs were still fluorescent and their morphology
fully preserved. This demonstrates that the developed
protocol does not significantly alter the final protein
quality of highly pure IBs (Figure 5).

Discussion

The presence of bacteria in purified IB samples can be a
major drawback when using these nanoparticles for bio-
medical and industrial applications. Although many IB
purification protocols have been developed, their effec-
tiveness regarding residual cell viability had not been
tested. In this study we have explored different IB purifi-
cation methods, focusing our attention on the lysis step,
which seems to be decisive to obtain bacteria-free sam-
ples. The obtained results clearly show that IB purifica-
tion methods based on lysozyme treatment, French
press or freezing-thawing cycles are not effective con-
cerning complete bacterial cell lysis, while the combina-
tion of both sonication and lysozyme treatments was the
most effective option (Figure 3). Even though these
methods have already been combined in different proto-
cols, cell lysis efficiency remained unproved. Menzella
and co-workers and Schrodel and collaborators used
5 min of sonication in order to obtain pure IBs [54,56].
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Table 1 Bacterial lysis methods for IB purification
Lysis method IB protein DNase Detergents Tested Reference
viability
NON MECHANICAL LYSIS METHODS LYSOZYME LACVP1 Yes Yes No [19-22]
VP1LAC Yes Yes No [7-9,19-27]
V2LAC Yes Yes No [22]
TSP Yes Yes No [23]
VP1GFP Yes Yes No [7,28-30]
hDHFR Yes Yes No 71
AB42-BFP Yes Yes No 7]
B-lactamase Yes Yes No [31]
Prochymosin No Yes No [32]
HET-s fungal prion Yes Yes No [33]
AB42-GFP Yes Yes No [30,34]
AB42-BFP Yes Yes No [30]
MalE-Bla and MalE31-Bla No No No [35]
MalE-PhoA and MalE31-PhoA No No No [35]
NON-IONIC DETERGENTS  CBDclosN-SAA No Yes No [36]
SAA-6HisC No Yes No [36]
Maltodextrin phosphorylase No Yes No [37]
CBD¢josSabA No Yes No [38]
MECHANICAL LYSIS METHODS HOMOGENIZER rhBMP-2 No Yes No [17,39]
G-CSF No No No [40]
rhMCSF No No No [41]
rHEWL No Yes No [42]
GFP No No No [43]
FRENCH PRESS EGD No No No [44]
TvDAO No Yes No [45,46]
NS3 protein No Yes No [47]
SONICATION IFN-a No No No [48]
B-galactosidase No No No [49]
pGH No No No [50]
Pre-3-lactamase No No No [51]
Procathepsin B No Yes No [52]
COMBINED LYSIS METHODS SONICATION NP fusion proteins No Yes No [53]
HOMOEENIZER
SONICATION Prochymosin No Yes Yes [54]
LYSO;YME
or
LYSOZYME
SONICTATION
CroB-gal Yes Yes Yes [55]
His-GST-GFP Yes No No [56]
Prochymosin B No Yes No [54]
CLIPB14 Serine protease Yes Yes No [57]
FRENCH PRESS PHA synthase Yes Yes No [58]
LYSO-;YME
or
LYSOZYME
FRENCl: PRESS
Class Il PHA synthase Yes Yes No [58]
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Figure 1 Viable cells counts before (grey bars) and after (black bars) cell lysis, using a standard protocol based on lysozyme and
detergent treatment. E1, E2 and E3 correspond to three different replicas.
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Figure 2 Scanning Electron Microscopy (SEM) images of MC4100, DnaK™ and ClpP™ overexpressing VP1GFP (top) and of MC4100
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Figure 3 IB purification protocol: lysozyme-detergent, sonication and repeated detergent washing treatment.
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Figure 4 Viable cells counts in initial bacterial cultures (grey
bars) and sonication cycles needed to eliminate all viable

bacteria (white circles).
A\

cycles are needed to reach a sample completely free
from contaminating bacteria. Furthermore, the obtained
results indicated that sonication cycles, sonication time
but also lysozyme concentration must be determined for
each specific protein (Figure 4).

As mentioned before, our results showed a surprising
variability among bacterial strains overproducing differ-
ent recombinant proteins. Villa and collaborators have
recently described that membrane lipids are dramatically
influenced by the stress resulting from recombinant
protein production [59]. Therefore, as the membrane
protein composition and permeability in recombinant
bacteria can be influenced by the specific produced
protein [59,60], the observed variability regarding lysis
efficiency could be accounted by different features of
the recombinant polypeptide, that dissimilarly causes
stress effects on the host cell.

Conclusion

Results presented here prove that the existing IB purifi-
cation protocols may be not appropriate when those
aggregates have to be used for both catalysis and biome-
dical purposes, due to residual but significant levels of
metabolically active bacterial cells. In this context, a
novel protocol developed in this study, which combines
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Figure 5 Confocal microscopy images of ClpP-, DnaK- and MC4100 cells overproducing VP1GFP (top). Confocal microscopy images of IBs

both sonication-lysozyme treatment with DNase and
detergent washing steps, has proved to be highly effi-
cient regarding cell lysis and useful to obtain prepara-
tions of cell-free IBs.

Materials and methods

Strains and plasmids

The Escherichia coli strains used in this work were
MC4100 (araD139 AlargF-lac) U169 rpsL150 relAl
fIbB5301 deoC1 ptsF25 rbsR, Strep®) [61] and their deri-
vatives JGT19 (clpP::cat Strep®) and JGT20 (dnak756
thr::Tnlo0, StrepR, Tc®) [62]. The strain MC4100 was
transformed with three different plasmids: pTVP1GFP,
pTVP1LAC or pTVPINLSCt encoding engineered ver-
sions of GFP and P-galactosidase [7] respectively. The
three proteins were fused to the VP1 capsid protein of
foot-and-mouth disease virus that dramatically reduces
the solubility of the whole fusion, resulting in its aggre-
gation as IBs [22]. JGT10 and JGT20 were only trans-
formed with pTVP1GEFP.

Culture conditions

Bacterial strains were cultured in shake flask cultures at
37°C and 250 rpm in LB rich medium [61] plus 100 pg/ml
ampicillin for plasmid maintenance. Recombinant gene
expression was induced when the optical density at

550 nm reached 0.5, by adding IPTG to 1 mM. Cell sam-
ples were taken at 3 h after induction of gene expression
and were processed for bacterial counts, IB sampling and
purification and microscopy analyses. Data for further ana-
lysis were obtained from three independent experiments.

Bacterial counts

The concentration of colony forming units (cfu/ml) was
determined on LB plates with the corresponding anti-
biotics. After an appropriate dilution in Ringer 1/4,
samples were inoculated on LB plates and incubated at
37°C o/n. Cell counting was always performed in
triplicate.

IBs sampling and purification

Culture samples of 20 ml were taken 3 h after induction
and IBs were purified by using two different purification
protocols as follows.

Lysozyme and repeated detergent washing treatment:
cells were harvested by centrifugation at 15,000 g at
4°C for 15 min and resuspended in 400 pl of lysis buf-
fer (50 mM TrisHCI (pH 8.1), 100 mM NaCl and
1 mM EDTA,) and kept at -80°C o/n. After thawing,
phenylmethanesulphonylfluoride (PMSF) (2.8 ul,
100 mM) and lysozyme (11.2 pl, 10 mg/ml) were
added. After 45 min of incubation at 37°C, 4 pl of
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Nonidet P40 (NP-40) were added and the mixture
incubated at 4°C for 1 h. Then, 12 pl of DNase I (from
a 1 mg/ml stock) and 12 pl of 1 M MgSO, were added
and the resulting mixture was further incubated at
37°C for 45 min. Protein aggregates were separated by
centrifugation at 15,000 g for 15 min at 4°C. Finally,
IBs were washed once with 1 ml of the same lysis buf-
fer containing 0.5% Triton X-100. After a final centri-
fugation at 15,000 g for 15 min at 4°C, pellets were
stored at -80°C until analysis. All incubations were
done under gentle agitation.

Lysozyme-detergent, sonication and repeated detergent
washing treatment: samples of bacterial cultures (20 ml)
were centrifuged at 4°C at 5,000 g for 5 min and resus-
pended in lysis buffer (20 ml, 50 mM TrisHCI (pH 8.1),
100 mM NacCl, and 1 mM EDTA) and frozen at -80°C o/
n. After thawing, phenylmethanesulphonylfluoride
(PMSF) (100 pl, 100 mM) and 1 mg/ml lysozyme (400 pl,
50 mg/ml) were added. After 2 h of incubation at 37°C,
100 pl of Triton X-100 were added (0.5% Triton X-100)
and incubated at room temperature for 1 h. Then, the
mixture was ice-jacketed, and sonicated between 4 and
10 cycles of 10 min at 40% amplitude under 0.5 s cycles.
After sonication, an aliquot of 100 ul of the suspensions
were inoculated on LB plates with the corresponding
antibiotics and incubated at 37°C o/n. After that, 5 pl of
Nonidet P40 (NP-40) were added to the rest of the sus-
pension, and samples incubated at 4°C for 1 h. Then,
DNA was removed with DNase (15 ul, 1 mg/ml) and
MgSOy (15 pl, 1 M) for 45 min at 37°C. Finally, samples
were centrifuged at 4°C at 15,000 g for 15 min, and the
pellet containing pure IBs was washed once with 1 ml of
lysis buffer containing Triton X-100 (0.5%). After a final
centrifugation at 15,000 g for 15 min at 4°C, pellets were
stored at -80°C until analysis. All incubations were done
under agitation.

Microscopy analyses of bacteria and IBs

Fluorescence microscopy

At 3 h post-induction, VP1GFP-producing cells were
fixed with 0.1% formaldehyde in phosphate buffered sal-
ine (PBS) and purified IBs were also resuspended in PBS
and stored at 4°C until observed. Samples of bacterial
cells or IBs were placed on a glass slide, fixed with a
slide cover and observed with a Leica TCS SP2 AOBS
confocal fluorescence microscope (Leica Microsystems
Heidelberg GmbH, Mannheim, Germany) using a Plan-
Apochromat objective (zoom 4 or 8; 1024 x 1024 pixels)
and optical lens magnification (63x, NA 1.4 oil). Photo-
micrographs were obtained after excitation at 488 nm
and at emission wavelengths between 500 and 600 nm.
Scanning Electron Microscopy

Bacterial samples and purified IBs were retained on
a nuclepore membrane (Nuclepore Polycarbonate
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Track-etched Membrane, 0.2 um pore size, Whatman
Ltd.) and fixed with 2.5% phosphate buffered glutaralde-
hyde (Na,HPO, 0.9 M, Na,H,PO, 0.06 M, pH 8.0) for
1 h at 4°C. After that, the samples were dehydrated with
increasing concentrations of ethanol in water (30, 50,
70, 90 and 100%) by consecutive 5 min washing steps.
Ethanol was finally evaporated using the critical point
method in a K850 CPD desiccator (Emitech, Ashford,
UK). The dried membranes were sputtered with gold
using a K550 Sputter Coater (Emitech, Ashford, UK) for
observation. Microscopy was performed with a scanning
microscope Hitachi S-570 (Hitachi LTD. Tokyo, Japan)
using an acceleration between 0.5-30 kV.
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