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Abstract

Background: The assembly and spatial organization of enzymes in naturally occurring multi-protein complexes is
of paramount importance for the efficient degradation of complex polymers and biosynthesis of valuable products.
The degradation of cellulose into fermentable sugars by Clostridium thermocellum is achieved by means of a multi-
protein “cellulosome” complex. Assembled via dockerin-cohesin interactions, the cellulosome is associated with the
cell surface during cellulose hydrolysis, forming ternary cellulose-enzyme-microbe complexes for enhanced activity
and synergy. The assembly of recombinant cell surface displayed cellulosome-inspired complexes in surrogate
microbes is highly desirable. The model organism Lactococcus lactis is of particular interest as it has been
metabolically engineered to produce a variety of commodity chemicals including lactic acid and bioactive
compounds, and can efficiently secrete an array of recombinant proteins and enzymes of varying sizes.

Results: Fragments of the scaffoldin protein CipA were functionally displayed on the cell surface of Lactococcus
lactis. Scaffolds were engineered to contain a single cohesin module, two cohesin modules, one cohesin and a
cellulose-binding module, or only a cellulose-binding module. Cell toxicity from over-expression of the proteins
was circumvented by use of the nisA inducible promoter, and incorporation of the C-terminal anchor motif of the
streptococcal M6 protein resulted in the successful surface-display of the scaffolds. The facilitated detection of
successfully secreted scaffolds was achieved by fusion with the export-specific reporter staphylococcal nuclease
(NucA). Scaffolds retained their ability to associate in vivo with an engineered hybrid reporter enzyme, E. coli
b-glucuronidase fused to the type 1 dockerin motif of the cellulosomal enzyme CelS. Surface-anchored complexes
exhibited dual enzyme activities (nuclease and b-glucuronidase), and were displayed with efficiencies approaching
104 complexes/cell.

Conclusions: We report the successful display of cellulosome-inspired recombinant complexes on the surface of
Lactococcus lactis. Significant differences in display efficiency among constructs were observed and attributed to
their structural characteristics including protein conformation and solubility, scaffold size, and the inclusion and
exclusion of non-cohesin modules. The surface-display of functional scaffold proteins described here represents a
key step in the development of recombinant microorganisms capable of carrying out a variety of metabolic
processes including the direct conversion of cellulosic substrates into fuels and chemicals.

Background
Macromolecular enzyme complexes catalyze an array of
biochemical and metabolic processes such as the degrada-
tion of proteins [1,2] or recalcitrant polymers [3] as well as
the high-yield synthesis of valuable metabolic products
via substrate channeling [4]. From a biotechnological

perspective, mimicking such process by incorporating cat-
alytic modules or enzymes of interest within synthetic
complexes can significantly enhance the efficiency of such
bioprocesses via substrate channeling [5] and increased
enzyme synergy [3]. In a cellulosome, multiple enzymes
assemble into a macromolecular complex by their associa-
tion with a scaffold protein for the efficient degradation of
cellulose [6]. In the case of the gram-positive thermophile
Clostridium thermocellum, the cellulosome is anchored to
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the surface of cells, resulting in one of the most efficient
systems for bacterial cellulose hydrolysis [3,7].
Cellulosomal enzymes bear C-terminal type 1 dock-

erin (dock1) modules, which target them to a central
scaffold protein (CipA) via chemically and thermally
stable non-covalent interactions with one of nine cohe-
sin (coh) modules [8]. CipA also contains a type 3a
cellulose-binding module (CBM3a), allowing the differ-
ent cellulases to act in synergy on the crystalline sub-
strate, as well as a type 2 dockerin module which
binds anchor proteins, ensuring the cellulosome ’s
attachment to the cell [9,10]. Therefore, the architec-
ture of the cellulosome establishes proximal and syner-
gistic effects of enzymes within the complex when
associated with the substrate [8,11,12]. These synergis-
tic effects are further augmented by an extra level of
synergy resulting from the cellulosome’s association
with the surface of cells, yielding cellulose-enzyme-
microbe (CEM) ternary complexes [6,7,13-18]. CEM
ternary complexes benefit from the effects of microbe-
enzyme synergy, ultimately limiting the escape of
hydrolysis products and enzymes, increasing access to
substrate hydrolysis products, minimizing the distance
products must diffuse before cellular uptake occurs,
concentrating enzymes at the substrate surface, pro-
tecting hydrolytic enzymes from proteases and thermal
degradation, as well as optimizing the chemical envir-
onment at the substrate-microbe interface [6,7,13-16].
In this work, we describe the cell surface display of

small cellulosome scaffold proteins in Lactococcus lactis,
a first and necessary step for the eventual engineering of
extracellular protein complexes in this, and other bac-
terial hosts. “Mini” scaffold proteins have been intracel-
lularly expressed and purified from hosts such as
Escherichia coli or Bacillus subtilis for the purpose of
assembling mini-cellulosomes in vitro [19-23]. The pro-
duction of mini-cellulosomes in vivo has also been
reported in Clostridium acetobutylicum and B. subtilis,
however, complex localization was limited to secretion
into the culture supernatant [24,25]. More recently, the
surface-display of mini-cellulosomes was described in
Saccharomyces cerevisiae, in some cases enabling growth
on cellulosic substrates [26-29]. However, there have
been no reports on the recombinant assembly of cellulo-
some-inspired complexes on the surface of bacterial
cells. For this purpose, we chose L. lactis, a gram-posi-
tive bacterium with established commercial value.
L. lactis is of specific interest as it is generally regarded
as safe (GRAS), has been used to produce valuable com-
modity chemicals such as lactic acid [30] and bioactive
compounds [31], and has been successfully engineered
to secrete and/or display on its cell surface, a wide vari-
ety of proteins ranging from 9.8 to 165 kDa [32]. The
metabolic engineering tools available in conjunction

with the successful controlled expression and high-yield
production of enzymes and proteins [32] make it an
ideal candidate for the recombinant expression of cellu-
losomal components. Using L. lactis as a surrogate host,
we successfully secreted fragments of CipA (CipAfrags)
to the cell surface and the scaffolds retained functional-
ity. All scaffolds containing functional cohesins were
capable of associating with an engineered test enzyme,
E. coli b-glucuronidase (UidA) fused with a dockerin.
We envision expanding on this work to eventually engi-
neer larger scaffolds that will serve as the basis for
assembling and immobilizing large extracellular enzyme
complexes.

Results
Regulated expression of CipAfrags yields the surface-
display of scaffold proteins
L. lactis HtrA NZ9000 cells were successfully trans-
formed with either the pAW500 series or pAW300 ser-
ies of vectors (Fig. 1A), resulting in strains expressing
fragments of CipA (CipAfrags) alone, or as fusions with
the NucA export-specific reporter, and/or the cwaM6 for
anchoring of the scaffold to the cell-surface (Fig. 1B).
Growth curves of engineered L. lactis strains were used
to determine if the expression and secretion of scaffold
proteins resulted in growth inhibition. Results from the
growth experiments showed a correlation between cipA-

frag gene expression and growth inhibition (Fig. 2). The
constitutive over-production of recombinant proteins
targeted to the cell surface in L. lactis may interfere
with the integrity of the cell wall [33], whereas in
C. thermocellum, the constitutive expression of CipA is
modulated through catabolite repression [34]. In the
absence of the inducer nisin, all cipAfrag-expressing
strains grew similarly to the control L. lactis HtrA
NZ9000 with a final cell density corresponding to an
OD600 approaching 0.7 (Fig. 2A, D, G). This indicated
that little change in growth profile resulted from any
leaky expression of the recombinant proteins. Nisin
induction at inoculation resulted in cellular toxicity, as
demonstrated by extended lag phases, lower growth
rates and final cell yields (Fig. 2B, E, H). In all cases,
when induction of protein expression was carried out
after 4 hrs of growth (corresponding to an OD600 ≈ 0.3),
cultures did not display growth retardation and final cell
densities were similar to those attained with no induc-
tion (Fig. 2C, F, I). Expression of the various cipAfrags

from the constitutive P59 promoter consistently resulted
in plasmid rearrangements as observed by restriction
digest analysis of the rescued plasmids from both E. coli
and L. lactis (data not shown). From these results, we
hypothesized that unregulated high-level expression of
the CipAfrag proteins was toxic to the cells and using a
constitutive promoter such as P59 induced plasmid
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Figure 1 pAW series of cipAfrag expression vectors and strategy for complex assembly. (A) Vectors were designed for facilitated insertion
of fragments of the gene encoding the cellulosomal scaffold protein CipA, into AscI-NotI restriction sites. Scaffolds can be optionally expressed
with or without an N-terminal nuclease reporter and/or a C-terminal cell wall anchor motif. pAW304 is designed for expression, secretion, and
cell wall-targeting of CipA fragments (CipAfrags) as fusions with the N-terminal NucA reporter. pAW305 is designed for the expression and
secretion of CipAfrags as a fusion with the N-terminal NucA reporter, but without the C-terminal anchor motif. pAW504 is designed for
expression, secretion, and cell wall-targeting of CipAfrags without the N-terminal NucA reporter. pAW505 is designed for the expression and
secretion of CipAfrags with neither the N-terminal NucA reporter nor the C-terminal anchor motif. (B) Graphic depiction of the surface-display
strategy of engineered scaffolds and their association with the b-glucuronidase-dockerin fusion protein (UidA-dock1). All successfully displayed
CipAfrags are portrayed as fusions with both NucA and a cell wall anchor, however were also expressed and tested without these two
components.
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rearrangements that abolished or reduced cipAfrag

expression. These results confirmed the necessity
for regulating expression of the proteins, which was
achieved using the PnisA promoter. With the exception
of cell wall anchored scaffold containing only a cellu-
lose-binding module (CBM3a-cwa) (Fig. 2H), removal of
the NucA lowered or eliminated toxicity to the cells, as
observed by improved growth rates and yields.

NucA-CipAfrag proteins are localized to the cell wall of
L. lactis
In order to quickly evaluate our success at recombinant
protein secretion in L. lactis, a nuclease enzyme was
fused to the CipA fragments to be displayed on the cell
surface. L. lactis cells harboring the pAW300 series of
vectors all displayed a NucA+ phenotype on plates over-
laid with TBD agar, confirming that all variants of the
NucA-CipAfrag proteins were successfully secreted and
that the nuclease retained its function when expressed

as an N-terminal fusion to CipAfrags. To determine the
cellular localization of the expressed CipAfrag fusion pro-
teins, cell fractionations were performed, and cytoplas-
mic, cell wall, and supernatant fractions were spotted on
TBD agar. Of the secreted NucA-CipAfrag proteins,
almost all detectable nuclease activity was found in the
cell wall fractions corresponding to proteins released
from lysozyme/lysostaphin treatments, suggesting suc-
cessful cell wall targeting of the proteins (Fig. 3). CipA-
frag proteins were not detected in the supernatant,
suggesting that secreted proteins remained localized to
the cell wall due to the activity of lactococcal sortase.
Unexpectedly, the NucA-CipAfrag fusions lacking the
cell wall anchor domain were also detected primarily in
the cell wall fractions (Fig. 3) suggesting that fusion of
NucA with CipAfrags caused the scaffolds to remain
associated with the cell wall, even without covalent
cross-linking by sortase. All of the cytoplasmic fractions
were also found to contain varying levels of expressed

Figure 2 Growth profiles of L. lactis expressing CipAfrags alone or as fusions with M6cwa and/or NucA. Panels A, D and G represent
cultures not induced with nisin, panels B, E, H represent cultures induced with 10 ng/mL nisin at inoculation (t = 0 hrs), and panels C, F, I
represent cultures induced with 10 ng/mL nisin in log phase corresponding to an OD600 ≈ 0.3 (t = 4 hrs). Constructs were grouped according to
their modular nature. Top panels depict constructs containing a single cohesin; Middle panels depict constructs containing two CipA modules;
Lower panels depict constructs containing no cohesin modules. Black shapes indicate scaffolds containing a fusion with NucA, and white shapes
indicate scaffolds where NucA has been removed. Solid lines represent scaffolds expressed with a cell wall anchor, and dotted lines represent
scaffolds lacking the cell wall anchor. Experiments were repeated three times yielding identical trends between growth profiles.
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scaffolds, a finding consistent with observations pre-
viously made while exporting recombinant proteins in
L. lactis [35-38]. We hypothesize that these cytoplasmic
proteins were either in the process of being synthesized
and exported by the cell via cytoplasmic chaperones, or
had evaded the sec-pathway due to a lack of recognition
of the signal sequence. In certain instances, the net
charge of N-terminal residues downstream of the signal
peptide can also contribute to the poor secretion effi-
ciency of recombinant proteins [39]. As expected from
previous studies [36,37] in the absence of a cell wall
anchor domain, NucA was secreted into the supernatant
but remained associated to the cell wall if the anchor
domain was present (Fig. 3).

Cell surface displayed CipAfrag scaffolds bind UidA-dock1
In vivo binding assays were performed to determine if a
dockerin-containing enzyme could associate with cell
surface displayed CipAfrag scaffold proteins. L. lactis cells
expressing cell wall and supernatant-targeted scaffolds
were incubated with purified b-glucuronidase enzymes
fused to a dockerin module (UidA-dock1). After incuba-
tion, washed cells were assayed for b-glucuronidase activ-
ity, allowing a relative comparison of CipAfrag display
efficiencies between engineered constructs. All constructs
containing cohesin modules as part of their scaffolds suc-
cessfully bound UidA-dock1, while those lacking cohe-
sins as well as the plasmid-free L. lactis HtrA NZ9000
failed to do so (Fig. 4). Binding experiments using UidA
lacking dock1 resulted in no successful “docking” onto
L. lactis displaying NucA-CBM3a-coh3 (Fig. 4A) or any
other recombinant scaffolds (data not shown). These
results demonstrated that functional recombinant scaf-
folds could be expressed on the surface of L. lactis and
that cell surface complex formation was dependent on
the presence of both cohesin and dockerin modules.
Among those strains secreting and displaying functional

scaffolds, significant variation in display efficiency was
observed. Assuming a 1:1 enzyme-to-cohesin ratio, the
approximate number of cohesins and/or scaffolds per cell
was determined. The strains that displayed the greatest
number of nuclease bearing scaffolds (~9 × 103 scaffolds/
cell) were those expressing the cohesin 1 module alone
(coh1-cwa and NucA-coh1-cwa) (Fig. 4). Strains expres-
sing coh9-cwa, NucA-coh9-cwa, coh1-coh2-cwa,
CBM3a-coh3-cwa and NucA-CBM3a-coh3-cwa, were
estimated to display between 5.0 × 103 and 6.3 × 103

scaffolds/cell. These results suggested that the size of the
CipAfrag is not necessarily the limiting factor influencing
scaffold display. This was further observed with the rela-
tively lower amount of enzymes binding to L. lactis
displaying NucA-coh1-coh2-cwa (1.5 × 103 UidAdock1/
cell). Essentially, NucA-coh1-coh2-cwa is of similar size
to NucA-CBM3a-coh3-cwa (approx. 68 kDa), contains
twice as many cohesins, yet host cells where able to bind
one quarter the amount of UidA-dock1 molecules. The
predicted molecular weights of the engineered scaffolds
were used in order to estimate the net amount of recom-
binant protein on the cell surface of strains producing
scaffolds with a single cohesin. The culture producing
the highest net yield of functional recombinant protein
was the strain anchoring NucA-CBM3a-coh3-cwa on its
surface. Cultures produced and displayed approximately
0.72 mg/mL of recombinant scaffolds, which remained
cell-associated and fully functional.
The effect of the N-terminal nuclease reporter on

secretion efficiency was also analyzed by comparing the
binding capacity of L. lactis harboring the pAW300 ser-
ies (nuclease fusions) with cells harboring the pAW500
(nuclease deficient) series of vectors. Initially included as
a reporter to facilitate detection of exported scaffolds,
we hypothesized that the nuclease fusion might also
increase secretion efficiency, as has been previously
observed [35,38]. Removal of NucA had no detrimental

Figure 3 Cellular localization of NucA-CipAfrag scaffolds expressed by L. lactis with or without M6cwa. NucA activity was detected by
spotting cell fractions on TBD-agar and analyzing for pink color formation. Fractions analyzed are supernatant (sup), cell wall (cw), and cytoplasm
(cyt). Constructs are represented by their respective CipAfrag components and were expressed as fusions with NucA with or without cell wall
anchor (cwa) domains.
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effects on scaffold display for all constructs (Fig. 4B), as
similar amounts of anchor-containing scaffolds were
located to the cell surface. Furthermore, removal of
NucA resulted in a fourfold increase in the amount of
coh1-coh2-cwa successfully displayed when compared to
its NucA-containing counterpart. The presence of NucA
appeared to interfere with the secretion of supernatant-
targeted scaffolds from the cell, given that the cwa-
deficient variants of coh1, coh9, and CBM3a-coh3
remained associated with the cell to a much larger
extent than their NucA-deficient counterparts (Fig. 4).

Discussion
Several recent studies have reported on the recombi-
nant expression of mini cellulosome scaffold proteins
in Saccharomyces cerevisiae [26-29]. In these examples,
the potential application of the engineered strains for
the direct conversion of cellulosic biomass to ethanol
was the driving factor for choosing S. cerevisiae as a

host. However, many more platform strains have been
or are now being developed that will produce ethanol,
biofuels other than ethanol, and non-biofuel chemicals
[5,14,40-47]. The economics of these processes would
be greatly improved if these engineered microbes could
use cellulosic substrates. With this goal in mind, the
first logical step in establishing this system was the
successful secretion and display of cohesin-bearing
scaffold proteins. Previous studies have demonstrated
that controlled gene expression in L. lactis can reduce
toxicity and increase net protein yields [33,48,49]. In
our study, the constitutive expression of the scaffold
proteins consistently led to cellular toxicity, a problem
that was solved by delaying the onset of gene expres-
sion until the cells had reached mid log-phase. In cell
division, higher concentrations of recombinant cell
wall-targeted proteins are localized to the septum, the
site of cell wall biosynthesis [33]. It is thus likely that
over-expression of our scaffold proteins targeted to the

Figure 4 In vivo binding of UidAdock1 on live intact L. lactis cells displaying CipAfrags. CipAfrags were expressed and anchored as fusions
with the NucA reporter enzyme (A), or lacking the NucA reporter (B). Quantification of UidAdock1 molecules bound to L. lactis cells corresponds
to equivalent amounts of functional cohesin assuming a 1:1 ratio of dockerin-cohesin association. Dark grey bars represent scaffolds containing
the C-terminal M6 cell wall anchor motif (cwa), and light grey bars represent their anchor-deficient derivatives. White bars correspond to
indicated controls; “200 μg/mL UidA-dock1” represents binding assay carried out with excess enzyme and L. lactis pAW328 (NucA-CBM3a-coh3-
cwa) to ensure saturation of cohesins. “100 μg/mL UidA” represents binding assay carried out in the presence of UidA and L. lactis pAW328
(NucA-CBM3a-cwa). Binding assay carried out with UidA and all other constructs resulted in no association with scaffold-expressing strains (data
not shown).
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extracytoplasmic space early in the growth phase
impaired cell wall biosynthesis and ultimately resulted
in cell death. Removal of NucA from the scaffolds
decreased or eliminated cellular toxicity for all cohe-
sin-containing constructs (Fig. 2), and we thus suspect
that accumulation of NucA in the cytoplasm may also
contribute to this observed lag in the onset of growth
when induced at t = 0 hrs. In addition, as a larger pro-
portion of scaffolds lacking a cell wall anchor remained
trapped in the cell wall when fused with NucA, it is
also likely that part of this observed reduction in toxi-
city is due to a decrease in the amounts of recombi-
nant proteins being trapped in the cell wall and
ultimately disrupting its integrity.
Quantification of cell surface displayed proteins in

lactic acid bacteria was previously reported using fluor-
escence-activated cell sorting, flow cytometry, or whole-
cell ELISA [50]. In our assay, functionality of the
displayed CipAfrag scaffold proteins could be tested
directly through binding with a dockerin-containing
reporter enzyme, attesting that the number of cohesins
detected was a direct quantification of those that
retained biochemical function. Of the four expressed
CipA fragments containing at least one cohesin (coh1,
coh9, coh1-coh2, CBM3a-coh3), coh1 was displayed
with the highest efficiency (~9 × 103 scaffolds per cell).
Due to its small size and decreased number of modules
compared with coh1-coh2 and CBM3a-coh3, we attri-
bute part of this increase in display to the decrease in
size of the scaffold itself. However, coh1 was also
displayed more efficiently than coh9, which is approxi-
mately the same size and similar in primary amino acid
sequence. One possible explanation may relate to the
position of coh1 relative to coh9 on native CipA scaf-
fold. Coh1 is located at the N-terminus of the 200 kDa
scaffold CipA, adjacent to the processing site of
the signal peptide by the sec-pathway machinery of
C. thermocellum [7]. It is possible that the increase in
secretion efficiency of coh1 when compared with coh9
may be in some part due to differences in amino acid
content adjacent to the signal peptide, possibly increas-
ing its accessibility to the chaperones involved in its
transport to the extracytoplasmic space [51]. This, how-
ever, does not account for the differences in display effi-
ciency between NucA-coh1 and NucA-coh9, as in both
cases, NucA is adjacent to the signal sequence. The
amount of sequence identity among cohesins perhaps
provides a better explanation for these observed differ-
ences. Of the nine cohesin modules on CipA, cohesins 3
through 8 show between 96 to 100% sequence identity,
whereas among the remaining cohesins, coh1 and coh9
show the least amount of sequence identity (69 and
75%, respectively) [52]. These differences in amino acid

content may translate into differences in folding and
solubility of the recombinantly expressed modules.
L. lactis was engineered to display a scaffold contain-

ing 2 cohesin modules (coh1-coh2). Based on a 1:1
binding ratio of the enzyme-cohesin and assuming
equivalent expression and secretion, we expected this
strain to bind twice the amount of UidA when com-
pared to scaffolds of similar size but containing a single
cohesin module (i.e. CBM3a-coh3). However, coh1-coh2
bound similar amounts of UidA as CBM3a-coh3 (Fig
4B). This reduction in UidA binding was not attributed
to CipAfrag size differences, since both mature scaffolds
have a theoretical molecular weight of 68 kDa, suggest-
ing that other factors affected secretion and display effi-
ciency. In fact, protein size is not regarded as a major
bottleneck for protein secretion in L. lactis, as the size
of successfully secreted heterologous proteins ranges
from 6.9 kDa to a staggering 165 kDa [32]. We hypothe-
size that the substitution of a cohesin module by
CBM3a may have enhanced secretion by increasing the
rate of folding of the scaffold into its soluble form. A
similar effect was recently reported with the fusion of
the highly insoluble Clostridium cellulovorans cellulase
CelL with the CBM of cellulase CelD, which resulted in
dramatic increases in its solubility [53].
Comparisons between amounts of UidA binding to

cells expressing CipAfrags with or without the cwaM6

domain revealed that the cell wall anchor motif signifi-
cantly increased the amounts of functional scaffolds dis-
played on the cell (Fig. 4). With NucA present, CipAfrags

lacking cwaM6 remained cell-associated to a larger
extent (Fig. 3) and bound UidA (Fig. 4), suggesting that
NucA fusion proteins remained trapped in the cell wall
for reasons other than covalent cross-linking by the sor-
tase, but yet the cohesin modules were accessible to
UidA. This phenomenon is well-documented in other
studies of protein secretion in L. lactis, as in some cases
the fusion of two generally well-secreted proteins results
in changes in the folding of the hybrid protein, and defi-
ciencies in their release from cells [37,54]. While the
exact mechanism of this phenomenon is not clear,
hydrophobic domains resulting from fusing two recom-
binant proteins may promote cell wall association [37].

Conclusions
Until now, all attempts to anchor enzymes on the sur-
face of a bacterium have been limited to a single enzyme
per anchor [33,35,36,38,50,55-61]. In our system, multi-
ple enzymes could theoretically associate with scaffolds
containing a corresponding number of cohesins. We
used purified b-glucuronidase fused to a dockerin mod-
ule as a probe to establish proper display and function
of the cohesins, but envision co-expression of enzymes
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and scaffold in a subsequent development of the strain.
We thus envision that further development of this cellu-
losome-inspired system may contribute to the efficient
bioconversion of substrates into industrially relevant
fuels and commodity chemicals, and that tailor-designed
synthetic macromolecular complexes could be engi-
neered to contain large permutations and combinations
of desired enzymes of interest.

Methods
Bacterial strains and plasmids
The bacterial strains and plasmids used in this study are
listed in Table 1. E. coli strains were grown in Luria-
Bertani medium at 37°C with shaking (220 rpm). Lacto-
coccus lactis HtrA NZ9000 was grown in M17 medium
[62] supplemented with 1% (w/v) glucose (GM17) at
30°C without agitation. C. thermocellum was grown in
ATCC1191 medium at 55°C with 0.2% (w/v) cellobiose
as a carbon source. Where appropriate, antibiotics were
added as follows: for E. coli, ampicillin (100 μg/mL), ery-
thromycin (150 μg/mL), chloramphenicol (10 μg/mL)
and kanamycin (30 μg/mL); for L. lactis, erythromycin
(5 μg/mL) and chloramphenicol (10 μg/mL). General
molecular biology techniques for E. coli were performed
as previously described [63]. Genomic DNA was isolated
from C. thermocellum as previously described [64]. To
make competent cells, L. lactis was grown in M17 med-
ium [62] supplemented with 1% (w/v) glucose, 25%
(w/v) sucrose and 2% (w/v) glycine and cells were trans-
formed as previously described [65]. M17 media was
supplied by Oxoid, LB media was supplied by Novagen,
all antibiotics, r-nitrophenyl-b-D-glucuronide and nisin
were provided by Sigma, and X-gal and IPTG were sup-
plied by Fermentas.

Assembly of cassettes for scaffold protein expression and
targeting
The E. coli-L. lactis shuttle vectors pVE5524 and
pVE5523 were used as backbone plasmids for targeting
fragments of the CipA scaffold protein to the cell surface
or supernatant, respectively [36]. The various CipAfrags

were produced as fusions with the N-terminal signal pep-
tide from the lactococcal Usp45 secreted protein
(spUsp45) and for targeting to the cell wall, as a fusion
with the C-terminal anchor from the Streptococcus
pyogenes M6 protein (cwaM6) (Fig. 1). Expression
cassettes were designed to allow the optional fusion of
CipAfrags with an N-terminal nuclease reporter (NucA)
used for detection of the fusion proteins in the extracel-
lular milieu [35,38] (Fig. 1). The strong constitutive lacto-
coccal promoter P59 [36] and the PnisA nisin-inducible
promoter from the nisA gene of L. lactis [66] were tested
for optimal expression of the recombinant scaffolds. Two
ribosome-binding sites were also tested, that of the usp45

gene (rbsusp45) [36] and that of the nisA gene (rbsnisA)
[66]. In order to facilitate the exchange of scaffold frag-
ments in the expression cassette, AscI-NotI restriction
sites were engineered just downstream of nucA (Fig. 1).
To achieve this, an 800-bp fragment containing the nucA
gene was PCR-amplified from pVE5524 using primers a
and b (Table 2), digested with SalI-EcoRV and ligated
into similarly digested pVE5524 and pVE5523, yielding
pAW004 and pAW005. To facilitate detection of E. coli
clones that harbor cipA fragments, a lacZ-a stuffer frag-
ment was PCR-amplified from pUC19 using primers c
and d, digested with AscI-NotI, and subsequently ligated
into similarly cut pAW004 and pAW005, yielding
pAW004Z and pAW005Z, respectively. Since L. lactis
HtrA NZ9000 is resistant to erythromycin, the ery mar-
ker of the pAW vectors was replaced with the cat gene
from pSCNIII. The cat gene was PCR-amplified using
primers e and f, digested with AflII and HpaI, and ligated
into similarly digested pAW004Z and pAW005Z, yielding
plasmids pAW004ZC and pAW005ZC, respectively. For
inducible expression of the scaffolds, we replaced the P59
promoter with PnisA from pSIP502. The PnisA promoter
was isolated using primers o and p, digested with
ApaI-NruI and ligated to similarly digested pAW004ZC
and pAW005ZC, yielding pAW104 and pAW105,
respectively.

Cloning of cipA fragments from C. thermocellum
Five unique cipA fragments were PCR-amplified from
C. thermocellum genomic DNA using primer pairs g-h,
i-j, g-k, l-m and n-m (Table 2), ligated into pGEM-T
(Promega) and sequenced to verify the integrity of the
gene sequence. The resulting pGEM plasmids were
digested with AscI-NotI to release the cipA gene frag-
ments and these were ligated into pAW004ZC and
pAW005ZC. The cipA fragments were chosen on the
basis of containing a single cohesin (coh1 or coh9), two
cohesins of identical specificity (coh1-coh2), one cohesin
and a cellulose-binding module (coh3-CBM3a) and only
a cellulose-binding module (CBM3a) (Fig. 1). The result-
ing spUsp45-nucA-cipAfrag-cwaM6 cassettes were under
control of the P59 promoter and contained rbsusp45. The
same cipA fragments were cloned into pAW104 and
pAW105 for inducible expression of the scaffold
proteins.
For the inducible expression of the fusion proteins

under the control of PnisA with an intact ribosome-bind-
ing site from the nisA gene (rbsnisA), spUsp45-nucA was
PCR-amplified from pAW004ZC using primers q and r,
creating a BspHI cut site at the 5′ end of the PCR pro-
duct. The PCR product was digested with BspHI and
XhoI and ligated to pSIP502 digested with NcoI-XhoI,
effectively replacing the gusA gene with spUsp45-nucA,
retaining the first lysine of the signal peptide, and
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Table 1 Strains and plasmids used in this study

Strain Genotype/Decription Source

L. lactis HtrA NZ9000 MG1363 (nisRK genes on the chromosome) [37]

E. coli TG1 supE thi-1 Δ(lac-proAB) Δ(mcrB-hsdSM)5 (rK- mK-) [F’ traD36 proAB lacIqZΔM15] ATCC

E. coli DH5a fhuA2 Δ(argF-lacZ)U169 phoA glnV44 F80 Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17 Invitrogen

E. coli BL21 (DE3) F- ompT gal dcm lon hsdSB(rB
- mB

-) l(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) Novagen

Plasmid

pVE5524 Eryr, Ampr; pBS::pIL252::ttrpA::P59::rbsusp45::spUsp45-nucA-cwaM6-t1t2 [36]

pVE5523 Eryr, Ampr; pBS::pIL252::ttrpA::P59::rbsusp45::spUsp45-nucA-t1t2 [36]

pSIP502 Eryr; PnisA::rbsnisA::uidA [66]

pSCNIII Cmr J. Seegersa

pUC19 Ampr [69]

pET28(b) Kmr Novagen

pSIPsp-nuc Eryr; PnisA::rbsnisA::spUsp45-nucA This Work

pUC104 Ampr; ttrpA::PnisA::rbsusp45::spUsp45-nucA This Work

pUC104mod Ampr; ttrpA::P59::rbsusp45::spUsp45-nucA This Work

pUC304 Ampr; ttrpA::PnisA::rbsnisA::spUsp45-nucA This Work

pUC504 Ampr; ttrpA::PnisA::rbsnisA::spUsp45 This Work

pAW004 Eryr, Ampr; pBS::pIL252::ttrpA::P59::rbsusp45::spUsp45-nucA-MCS-cwaM6-t1t2 This Work

pAW005 Eryr, Ampr; pBS::pIL252::ttrpA::P59::rbsusp45::spUsp45-nucA-MCS-t1t2 This Work

pAW004Z Eryr, Ampr; pBS::pIL252::ttrpA::P59::rbsusp45::spUsp45-nucA-lacZa-cwaM6-tlt2 This Work

pAW005Z Eryr, Ampr; pBS::pIL252::ttrpA::P59::rbsusp45::spUsp45-nucA- lacZa-tlt2 This Work

pAW004ZC Cmr, Ampr; pBS::pIL252::ttrpA::P59::rbsusp45::spUsp45-nucA-lacZa-cwaM6-tlt2 This Work

pAW005ZC Cmr, Ampr; pBS::pIL252::ttrpA::P59::rbsusp45::spUsp45-nucA- lacZa-tlt2 This Work

pGEMc9 Ampr; pGEMT::with cloned coh9 from cipA This Work

pGEMc1 Ampr; pGEMT::with cloned coh1 from cipA This Work

pGEMc1-c2 Ampr; pGEMT::with cloned coh1-coh2 from cipA This Work

pGEMcbm-c3 Ampr; pGEMT::with cloned cbm3a-coh3 from cipA This Work

pGEMcbm Ampr; pGEMT::with cloned cbm3a from cipA This Work

pAW104 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsusp45::spUsp45-nucA-LacZa-cwaM6-tlt2 This Work

pAW105 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsusp45::spUsp45-nucA-LacZa-tlt2 This Work

pAW301 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-nucA-cwaM6-tlt2 This Work

pAW302 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-nucA-tlt2 This Work

pAW304 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-nucA-lacZa-cwaM6-tlt2 This Work

pAW305 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-nucA-lacZa-tlt2 This Work

pAW307 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-nucA-coh9-cwaM6-tlt2 This Work

pAW308 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-nucA-coh9-tlt2 This Work

pAW310 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-nucA-coh1-cwaM6-tlt2 This Work

pAW311 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-nucA-coh1-tlt2 This Work

pAW334 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-nucA-coh1-coh2-cwaM6-tlt2 This Work

pAW335 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-nucA-coh1-coh2-tlt2 This Work

pAW328 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-nucA-cbm3a-coh3-cwaM6-tlt2 This Work

pAW329 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-nucA-cbm3a-coh3-tlt2 This Work

pAW331 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-nucA-cbm3a-cwaM6-tlt2 This Work

pAW332 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-nucA-cbm3a-tlt2 This Work

pAW504 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-lacZa-cwaM6-tlt2 This Work

pAW505 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-lacZa-tlt2 This Work

pAW507 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-coh9-cwaM6-tlt2 This Work
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yielding pSIPSPNUC. For the insertion of an upstream
transcriptional terminator and removal of nucA, a 1500-
bp SapI-XbaI fragment was temporarily removed from
pAW104, and was ligated to similarly cut pUC19, yield-
ing vector pUC104. To introduce the E. coli transcrip-
tional terminator from the tryptophan synthase operon
(ttrpA) upstream of PnisA and to introduce a BglII cut
site, a 200-bp fragment containing ttrpA was PCR-ampli-
fied from pVE5524 using primers s and t, digested with
AflIII-NruI and ligated to similarly-cut pUC104, yielding
pUC104mod. Plasmid pSIPSPNUC was digested with
BglII-XhoI and ligated to similarly-digested pUC104mod,
yielding vector pUC304. This was the base vector har-
boring the ttrpA-PnisA-rbsnisA-spUsp45-nucA cassette,
which was digested with ApaI-AscI and ligated into the
pAW100 series of vectors. Inserting this cassette into
ApaI-EcoRV digested pAW110 and pAW111, yielding
pAW301 and pAW302, respectively, created controls
lacking cipA fragments for expression of nucA alone.
For deletion of the nucA reporter and construction of
the pAW500 series, pUC304 was digested with SalI-
XhoI and self-ligated, yielding vector pUC504. The ttrpA-
PnisA-rbsnisA-spUsp45 cassette was released via digestion
with ApaI-AscI, gel-purified, and ligated to similarly-cut
pAW100 series vectors, yielding the pAW500 series of
vectors. This cassette was also ligated into similarly cut
pAW104 and pAW105 yielding base vectors containing
the lacZ-a stuffer fragment. The final expression vectors
for this study included the pAW300 series of vectors for
inducible expression and targeting of NucA-fused scaf-
folds, and the pAW500 series of vectors for inducible
expression and targeting of scaffolds lacking the
N-terminal NucA reporter (Fig. 1).

Expression and localization of CipAfrags in L. lactis
L. lactis HtrANZ9000 was transformed with the
pAW300 and pAW500 series of vectors for the con-
trolled expression of scaffolds. It contains chromosomal
copies of the nisR and nisK genes necessary for nisin-
inducible expression of cassettes under control of the
nisA promoter, and is deficient in a major extracellular
housekeeping protease, which has been shown pre-
viously to be responsible for the proteolysis of exported
recombinant proteins [37]. Growth curves were used to
evaluate the potential of growth inhibition caused by the
over-expressed CipAfrag proteins. Growth curves were
performed in 96 well plates and cells were induced with
10 ng nisin/mL at inoculation (t = 0 hrs), 4 hrs post-
inoculation (t = 4 hrs) or were not induced. For
the expression of CipAfrag proteins in L. lactis HtrA
NZ9000, overnight cultures were diluted 1/50 into fresh
GM17 medium and were induced with 10 ng nisin/mL
when an OD600 ≈ 0.3 was reached (4 hrs). After 20 hrs
growth, successful CipAfrag secretion was evaluated
using a nuclease assay consisting of spotting cells on
TBD-agar and observing pink color formation [36]. For
analysis of NucA-CipAfrag proteins in various cellular
locations, cell fractionation was performed as described
previously [58], with the addition of lysostaphin (0.6
mg/mL) [67]. Aliquots of proteins were blotted on
TBD-agar plates and formation of a pink color was ana-
lyzed after a 1-hr incubation at 37°C.

Expression and purification of CipAfrag-binding
b-glucuronidase
The E. coli b-glucuronidase (UidA) was engineered to
have a C-terminal dock1 module for binding onto

Table 1 Strains and plasmids used in this study (Continued)

pAW508 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-coh9-tlt2 This Work

pAW510 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-coh1-cwaM6-tlt2 This Work

pAW511 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-coh1-tlt2 This Work

pAW534 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-coh1-coh2-cwaM6-tlt2 This Work

pAW535 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-coh1-coh2-tlt2 This Work

pAW528 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-cbm3a-coh3-cwaM6-tlt2 This Work

pAW529 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-cbm3a-coh3-tlt2 This Work

pAW531 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-cbm3a-cwaM6-tlt2 This Work

pAW532 Cmr, Ampr; pBS::pIL252::ttrpA::PnisA::rbsnisA::spUsp45-cbm3a-tlt2 This Work

pETdock1 Knr; pET28(b)::with cloned dock1 from celS This Work

pETUdock1 Knr; pET28(b)::PT7::6xHis-uidA-dock1 This Work

pETU Knr; pET28(b)::PT7::6xHis-uidA This Work
aVector pSCNIII was a gift provided by Jos Seegers (unpublished data).

pAW100 series of vectors are nisin-inducible and contain an intact rbsusp45. pAW300 series vectors are nisin-inducible and contain an intact rbsnisA. pAW500 series
vectors are pAW300 variants lacking an N-terminal NucA fusion. P59, constitutive lactococcal promoter; PT7, inducible T7 promoter; PnisA, inducible nisA promoter;
rbsusp45, Usp45 ribosome-binding site; rbsnisA, nisA ribosome-binding site; spUsp45, signal sequence of Usp45; nucA, staphylococcal nuclease; cwaM6, anchor motif of
M6 protein; llt2, transcriptional terminator of rrnB operon; ttrpA, transcriptional terminator of trpA.
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CipAfrag scaffolds, as well as an N-terminal 6 × His-tag
for protein purification. The dock1 module of
the C. thermocellum celS gene was amplified from
C. thermocellum genomic DNA using primers u and v
(Table 2). PCR products were digested with EcoRI-NotI
and ligated to similarly-digested pET28(b), yielding pET-
dock1. The uidA gene lacking a stop codon was ampli-
fied using primers w and x and pSIP502 as template.
The PCR product was digested with NheI-EcoRI and
ligated to similarly-cut pET28(b) and pETdock1, yielding
His-tagged UidA proteins with and without a dock1
module (pETUdock1 and pETU). His-tagged proteins
were expressed in E. coli BL21(DE3). Cultures were
induced at an OD600 of 0.5 with 1 mM IPTG and incu-
bated for an additional 5 hrs at 37°C. Cells were har-
vested (1000 × g, 10 min, 4°C) and cell pellets were kept
overnight at -80°C. Thawed cell pellets were suspended
in 50 mM phosphate buffer, pH 7.5, containing 300 mM
NaCl. Samples were subjected to sonication (15 sec
pulse, 5 sec between pulses, 2 min total process time)
and lysates were loaded on approximately 10 mL of Ni-
NTA sepharose resin. The resin was washed with phos-
phate buffer (50 mM, pH 6.0) containing 300 mM NaCl
and 20 mM imidazole and eluted using the same buffer
containing 250 mM imidazole. Fifty μL of each elution
fraction were added to 450 μL GUS buffer containing

50 mM sodium phosphate buffer (pH 7), 10 mM b-mer-
captoethanol, 1 mM ethylenediaminetetraacetic acid
and 0.1% (v/v) Triton X-100. Samples were heated
for 1 min, after which p-nitrophenyl-b-D-glucuronide
was added to a final concentration of 4 mg/mL [68].
The UidA-containing fractions were identified by the
appearance of a yellow color. Proteins from the elution
fractions showing UidA activity were visualized by SDS-
PAGE on a 12% (w/v) gel to identify fractions contain-
ing the highest purity of enzyme. The specific activities
of UidA-dock1 and UidA were determined by colori-
metric assays in a thermostated UV-Vis spectrophot-
ometer (Cary 50 WinUv) at 405 nm, using a 1 cm (L)
cuvette, and the known molar extinction coefficient of
p-nitrophenol being 18 000 M-1 cm-1. Quantification of
the proteins was done using a Bradford protein assay kit
(Pierce) and BSA as a standard. Specific activities were
used to evaluate the amount of enzyme bound to cells
in the in vivo binding assay described below.

Binding of b-glucuronidase to L. lactis
L. lactis HtrA NZ9000 cells harboring the pAW300 or
pAW500 series of vectors, as well as the plasmid-free
strain were grown overnight in GM17 medium. Cultures
were diluted 1/50 in 5 mL of fresh media and grown for
an additional 4 hrs (OD600 ≈ 0.3) after which cells were
induced with 10 ng nisin/mL for scaffold expression.
After 20 hrs of growth, cells from 1-mL of culture were
harvested (4,300 × g, 5 min, 4°C) washed once in phos-
phate buffer (50 mM, pH 6.0) containing 300 mM NaCl
and suspended in 100 μL of purified UidA-dock1 or
UidA at a concentration 100 μg/mL. To ensure that
saturation of all cohesin sites was achieved, binding
assay with 200 μg UidA-dock1/mL was tested for
L. lactis harboring pAW328. Binding was carried out at
4°C for 10 hrs. Cells were then washed 6 times to elimi-
nate residual enzyme activity and suspended in 100 μL
of phosphate buffer (50 mM, pH 6.0) containing
300 mM NaCl for detection of b-glucuronidase activity.
For quantification of bound UdiA-dock1, 50 μL of
washed cells were analyzed for b-glucuronidase activity.
Reactions were stopped with 250 μL of 1 M sodium car-
bonate once a yellow color appeared, and the duration
of each assay was recorded. The specific activities of the
purified UidA-dock1 and UidA were used to determine
the amount of enzyme bound onto the L lactis cells.
Using the calculated molecular weight of UidA-dock1
and the known amount of cells present in each sample,
the average number of enzyme units bound per cell was
estimated. Assuming a 1:1 cohesin to dockerin ratio, the
number of enzymes present per cell also is a representa-
tion of the number of cohesins present on the cell
surface. The calculated molecular weight of the scaffolds
was used to estimate the net amount of recombinant

Table 2 Primers used in this study

Primer Sequence (5′-3′)

a TATAGATCTTCGATAGCCCGCCTAATGAGC

b ATGATATCGCGGCCGCGGCGCGCCTCGAGATCGATTTG

c TAGATATCGGCGCGCCATTAGCTATGCGGCATCAGAGC

d TAGCTAGCGCGGCCGCGCCCAATACGCAAACCGCCTC

e GATCTAGCCTTAAGTTCAACAAACTCTAGCGCC

f CGTAGATCGTTAACCCTTCTTCAACTAACGGGG

g TCGAGGCGCGCCCGGCCACAATGACAGTCGAGA

h TCGAGCGGCCGCCGGTACGGAACTACCAAGAT

i TAGGCGCGCCATAAGTTGACACTTAAGATAGGCAG

j TAGCGGCCGCAGTTACAAGTACTCCACCATTG

k TCGAGCGGCCGCCGGTGTTGCATTGCCAACGT

l TCGAGGCGCGCCCGGATGATCCGAATGCAATAAAG

m TCGAGCGGCCGCTACTACACTGCCACCGG

n TGAGGCGCGCCCGGCAAATACACCGGTATC

o ATGCGGGCCCGACCTAGTCTTATAACTATACTG

p ATGTACTCGCGATTTATTTTGTAGTTCCTTCGAACG

q AGAACAGTCATGAAAAAAAAGATTATCTC

r ATATCTCGAGATCGATTTGACCTGAATCA

s AGTCACATGTTCTTTCCTGCGTTATCCCCTG

t ATGCTCGCGAAGATCTGGGATCAAAAAAAAGCCCGC

u GCTTGAATTCTCTACTAAATTATACGGCGACGTCAATG

v GCTTGCGGCCGCTTTAGTTCTTGTACGGCAATGTATC

w ATGCGCTAGCATGTTACGTCCTGTAGAAACC

Restriction enzyme cut sites are in bold.

Wieczorek and Martin Microbial Cell Factories 2010, 9:69
http://www.microbialcellfactories.com/content/9/1/69

Page 11 of 13



protein anchored to cells in respective cultures. Experi-
ments were repeated twice and true biological replicates
(independent colonies and cultures) were performed in
triplicate for all samples.

Acknowledgements
We are grateful to Dr. Alexandra Gruss and Dr. Isabelle Poquet for providing
base expression vectors for LAB as well as strains of L. lactis. The authors
would like to acknowledge Dr. Andy Ekins for his help in reviewing the
manuscript. This work was supported by research grants from the Natural
Sciences and Engineering Research Council of Canada (NSERC) (grant
numbers 312357-06 and 330781-06) the Canada Foundation for Innovation
(grant number 202359) and a Canada Research Chair to V.J.J.M. A.S.W. is the
recipient of graduate scholarships from NSERC and the Fonds Québécois de
la Recherche sur la Nature et les Technologies.

Authors′ contributions
VM defined the strategy described and supervised the project. AW designed
and carried out all experiments. AW drafted the initial manuscript, VM
helped draft the manuscript, and both AW and VM edited the manuscript.
VM supervised the entire PhD project of AW. All authors read and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 1 June 2010 Accepted: 14 September 2010
Published: 14 September 2010

References
1. Lowell GH, Ballou WR, Smith LF, Wirtz RA, Zollinger WD, Hockmeyer WT:

Proteosome-lipopeptide vaccines: enhancement of immunogenicity for
malaria CS peptides. Science 1988, 240:800-802.

2. Lowell GH, Smith LF, Seid RC, Zollinger WD: Peptides bound to
proteosomes via hydrophobic feet become highly immunogenic
without adjuvants. J Exp Med 1988, 167:658-663.

3. Bayer EA, Belaich JP, Shoham Y, Lamed R: The cellulosomes: multienzyme
machines for degradation of plant cell wall polysaccharides. Annu Rev
Microbiol 2004, 58:521-554.

4. Conrado RJ, Varner JD, DeLisa MP: Engineering the spatial organization of
metabolic enzymes: mimicking nature′s synergy. Curr Opin Biotechnol
2008, 19:492-499.

5. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV,
Prather KL, Keasling JD: Synthetic protein scaffolds provide modular
control over metabolic flux. Nat Biotechnol 2009, 27:753-759.

6. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose
utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002,
66:506-577, table of contents.

7. Schwarz WH: The cellulosome and cellulose degradation by anaerobic
bacteria. Appl Microbiol Biotechnol 2001, 56:634-649.

8. Kruus K, Lua AC, Demain AL, Wu JH: The anchorage function of CipA
(CelL), a scaffolding protein of the Clostridium thermocellum cellulosome.
Proc Natl Acad Sci USA 1995, 92:9254-9258.

9. Leibovitz E, Beguin P: A new type of cohesin domain that specifically
binds the dockerin domain of the Clostridium thermocellum cellulosome-
integrating protein CipA. J Bacteriol 1996, 178:3077-3084.

10. Lemaire M, Ohayon H, Gounon P, Fujino T, Beguin P: OlpB, a new outer
layer protein of Clostridium thermocellum, and binding of its S-layer-like
domains to components of the cell envelope. J Bacteriol 1995,
177:2451-2459.

11. Kosugi A, Amano Y, Murashima K, Doi RH: Hydrophilic domains of
scaffolding protein CbpA promote glycosyl hydrolase activity and
localization of cellulosomes to the cell surface of Clostridium
cellulovorans. J Bacteriol 2004, 186:6351-6359.

12. Garcia-Campayo V, Beguin P: Synergism between the cellulosome-
integrating protein CipA and endoglucanase CelD of Clostridium
thermocellum. J Biotechnol 1997, 57:39-47.

13. Zverlov VV, Klupp M, Krauss J, Schwarz WH: Mutations in the scaffoldin
gene, cipA, of Clostridium thermocellum with impaired cellulosome

formation and cellulose hydrolysis: insertions of a new transposable
element, IS1447, and implications for cellulase synergism on crystalline
cellulose. J Bacteriol 2008, 190:4321-4327.

14. Lynd LR, van Zyl WH, McBride JE, Laser M: Consolidated bioprocessing of
cellulosic biomass: an update. Curr Opin Biotechnol 2005, 16:577-583.

15. Lu Y, Zhang YH, Lynd LR: Enzyme-microbe synergy during cellulose
hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci USA 2006,
103:16165-16169.

16. Miron J, Ben-Ghedalia D, Morrison M: Invited review: adhesion
mechanisms of rumen cellulolytic bacteria. J Dairy Sci 2001, 84:1294-1309.

17. Bayer EA, Kenig R, Lamed R: Adherence of Clostridium thermocellum to
cellulose. J Bacteriol 1983, 156:818-827.

18. Ng TK, Weimer TK, Zeikus JG: Cellulolytic and physiological properties of
Clostridium thermocellum. Arch Microbiol 1977, 114:1-7.

19. Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R,
Shoham Y, Belaich JP: Degradation of cellulose substrates by cellulosome
chimeras. Substrate targeting versus proximity of enzyme components. J
Biol Chem 2002, 277:49621-49630.

20. Fierobe HP, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich JP,
Bayer EA: Design and production of active cellulosome chimeras.
Selective incorporation of dockerin-containing enzymes into defined
functional complexes. J Biol Chem 2001, 276:21257-21261.

21. Fierobe HP, Mingardon F, Mechaly A, Belaich A, Rincon MT, Pages S,
Lamed R, Tardif C, Belaich JP, Bayer EA: Action of designer cellulosomes
on homogeneous versus complex substrates: controlled incorporation of
three distinct enzymes into a defined trifunctional scaffoldin. J Biol Chem
2005, 280:16325-16334.

22. Mingardon F, Chanal A, Tardif C, Bayer EA, Fierobe HP: Exploration of new
geometries in cellulosome-like chimeras. Appl Environ Microbiol 2007,
73:7138-7149.

23. Murashima K, Kosugi A, Doi RH: Synergistic effects on crystalline cellulose
degradation between cellulosomal cellulases from Clostridium
cellulovorans. J Bacteriol 2002, 184:5088-5095.

24. Perret S, Casalot L, Fierobe HP, Tardif C, Sabathe F, Belaich JP, Belaich A:
Production of heterologous and chimeric scaffoldins by Clostridium
acetobutylicum ATCC 824. J Bacteriol 2004, 186:253-257.

25. Sabathe F, Soucaille P: Characterization of the CipA scaffolding protein
and in vivo production of a minicellulosome in Clostridium
acetobutylicum. J Bacteriol 2003, 185:1092-1096.

26. Ito J, Kosugi A, Tanaka T, Kuroda K, Shibasaki S, Ogino C, Ueda M, Fukuda H,
Doi RH, Kondo A: Regulation of the display ratio of enzymes on the
Saccharomyces cerevisiae cell surface by the immunoglobulin G and
cellulosomal enzyme binding domains. Appl Environ Microbiol 2009,
75:4149-4154.

27. Tsai SL, Oh J, Singh S, Chen R, Chen W: Functional assembly of
minicellulosomes on the Saccharomyces cerevisiae cell surface for
cellulose hydrolysis and ethanol production. Appl Environ Microbiol 2009,
75:6087-6093.

28. Lilly M, Fierobe HP, van Zyl WH, Volschenk H: Heterologous expression of
a Clostridium minicellulosome in Saccharomyces cerevisiae. FEMS Yeast
Res 2009, 9:1236-1249.

29. Wen F, Sun J, Zhao H: Yeast surface display of trifunctional
minicellulosomes for simultaneous saccharification and fermentation of
cellulose to ethanol. Appl Environ Microbiol 76:1251-1260.

30. Petrov K, Urshev Z, Petrova P: L+-lactic acid production from starch by a
novel amylolytic Lactococcus lactis subsp. lactis B84. Food Microbiol 2008,
25:550-557.

31. Hernandez I, Molenaar D, Beekwilder J, Bouwmeester H, van Hylckama
Vlieg JE: Expression of plant flavor genes in Lactococcus lactis. Appl
Environ Microbiol 2007, 73:1544-1552.

32. Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-
Humaran LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, et al: Protein
secretion in Lactococcus lactis : an efficient way to increase the overall
heterologous protein production. Microb Cell Fact 2005, 4:2.

33. Narita J, Okano K, Kitao T, Ishida S, Sewaki T, Sung MH, Fukuda H, Kondo A:
Display of alpha-amylase on the surface of Lactobacillus casei cells by
use of the PgsA anchor protein, and production of lactic acid from
starch. Appl Environ Microbiol 2006, 72:269-275.

34. Zhang YH, Lynd LR: Regulation of cellulase synthesis in batch and
continuous cultures of Clostridium thermocellum. J Bacteriol 2005,
187:99-106.

Wieczorek and Martin Microbial Cell Factories 2010, 9:69
http://www.microbialcellfactories.com/content/9/1/69

Page 12 of 13

http://www.ncbi.nlm.nih.gov/pubmed/2452484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2452484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3346624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3346624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3346624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15487947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15487947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18725290?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18725290?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19648908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19648908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12209002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12209002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11601609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11601609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7568112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7568112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8655483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8655483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8655483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7730277?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7730277?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7730277?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15375114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15375114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15375114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15375114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9335164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9335164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9335164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18408027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18408027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18408027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18408027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18408027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16154338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16154338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17060624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17060624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11417686?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11417686?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6630152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6630152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12397074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12397074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11290750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11290750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11290750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15705576?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15705576?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15705576?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17905885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17905885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12193625?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12193625?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12193625?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14679247?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14679247?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12533485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12533485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12533485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19411409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19411409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19411409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19684173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19684173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19684173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19744245?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19744245?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20023102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20023102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20023102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18456109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18456109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17209074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15631634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15631634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15631634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16391053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16391053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16391053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15601693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15601693?dopt=Abstract


35. Dieye Y, Hoekman AJ, Clier F, Juillard V, Boot HJ, Piard JC: Ability of
Lactococcus lactis to export viral capsid antigens: a crucial step for
development of live vaccines. Appl Environ Microbiol 2003, 69:7281-7288.

36. Dieye Y, Usai S, Clier F, Gruss A, Piard JC: Design of a protein-targeting
system for lactic acid bacteria. J Bacteriol 2001, 183:4157-4166.

37. Miyoshi A, Poquet I, Azevedo V, Commissaire J, Bermudez-Humaran L,
Domakova E, Le Loir Y, Oliveira SC, Gruss A, Langella P: Controlled
production of stable heterologous proteins in Lactococcus lactis. Appl
Environ Microbiol 2002, 68:3141-3146.

38. Ribeiro LA, Azevedo V, Le Loir Y, Oliveira SC, Dieye Y, Piard JC, Gruss A,
Langella P: Production and targeting of the Brucella abortus antigen
L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines
against brucellosis. Appl Environ Microbiol 2002, 68:910-916.

39. Langella P, Le Loir Y: Heterologous protein secretion in Lactococcus lactis:
a novel antigen delivery system. Braz J Med Biol Res 1999, 32:191-198.

40. Atsumi S, Hanai T, Liao JC: Non-fermentative pathways for synthesis of
branched-chain higher alcohols as biofuels. Nature 2008, 451:86-89.

41. Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S: Metabolic
engineering of a pentose M\metabolism pathway in ethanologenic
Zymomonas mobilis. Science 1995, 267:240-243.

42. Wu CH, Mulchandani A, Chen W: Versatile microbial surface-display for
environmental remediation and biofuels production. Trends Microbiol
2008, 16:181-188.

43. Rittmann D, Lindner SN, Wendisch VF: Engineering of a glycerol utilization
pathway for amino acid production by Corynebacterium glutamicum.
Appl Environ Microbiol 2008, 74:6216-6222.

44. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD: Metabolic engineering of
microorganisms for biofuels production: from bugs to synthetic biology
to fuels. Curr Opin Biotechnol 2008, 19:556-563.

45. Rogers PL, Jeon YJ, Lee KJ, Lawford HG: Zymomonas mobilis for fuel
ethanol and higher value products. Adv Biochem Eng Biotechnol 2007,
108:263-288.

46. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB,
Keasling JD: Microbial production of fatty-acid-derived fuels and
chemicals from plant biomass. Nature 463:559-562.

47. Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG,
Hogsett DA, Lynd LR: Metabolic engineering of a thermophilic bacterium
to produce ethanol at high yield. Proc Natl Acad Sci USA 2008,
105:13769-13774.

48. de Vos WM: Gene expression systems for lactic acid bacteria. Curr Opin
Microbiol 1999, 2:289-295.

49. Bermudez-Humaran LG, Cortes-Perez NG, Le Loir Y, Alcocer-Gonzalez JM,
Tamez-Guerra RS, de Oca-Luna RM, Langella P: An inducible surface
presentation system improves cellular immunity against human
papillomavirus type 16 E7 antigen in mice after nasal administration
with recombinant lactococci. J Med Microbiol 2004, 53:427-433.

50. Leenhouts K, Buist G, Kok J: Anchoring of proteins to lactic acid bacteria.
Antonie Van Leeuwenhoek 1999, 76:367-376.

51. Gerngross UT, Romaniec MP, Kobayashi T, Huskisson NS, Demain AL:
Sequencing of a Clostridium thermocellum gene (cipA) encoding the
cellulosomal SL-protein reveals an unusual degree of internal homology.
Mol Microbiol 1993, 8:325-334.

52. Lytle B, Myers C, Kruus K, Wu JH: Interactions of the CelS binding ligand
with various receptor domains of the Clostridium thermocellum
cellulosomal scaffolding protein, CipA. J Bacteriol 1996, 178:1200-1203.

53. Murashima K, Kosugi A, Doi RH: Solubilization of cellulosomal cellulases
by fusion with cellulose-binding domain of noncellulosomal cellulase
engd from Clostridium cellulovorans. Proteins 2003, 50:620-628.

54. Bermudez-Humaran LG, Langella P, Miyoshi A, Gruss A, Guerra RT, Montes
de Oca-Luna R, Le Loir Y: Production of human papillomavirus type 16 E7
protein in Lactococcus lactis. Appl Environ Microbiol 2002, 68:917-922.

55. Avall-Jaaskelainen S, Lindholm A, Palva A: Surface display of the receptor-
binding region of the Lactobacillus brevis S-layer protein in Lactococcus
lactis provides nonadhesive lactococci with the ability to adhere to
intestinal epithelial cells. Appl Environ Microbiol 2003, 69:2230-2236.

56. Cortes-Perez NG, Azevedo V, Alcocer-Gonzalez JM, Rodriguez-Padilla C,
Tamez-Guerra RS, Corthier G, Gruss A, Langella P, Bermudez-Humaran LG:
Cell-surface display of E7 antigen from human papillomavirus type-16 in
Lactococcus lactis and in Lactobacillus plantarum using a new cell-wall
anchor from lactobacilli. J Drug Target 2005, 13:89-98.

57. Lindholm A, Smeds A, Palva A: Receptor binding domain of Escherichia
coli F18 fimbrial adhesin FedF can be both efficiently secreted and
surface displayed in a functional form in Lactococcus lactis. Appl Environ
Microbiol 2004, 70:2061-2071.

58. Piard JC, Hautefort I, Fischetti VA, Ehrlich SD, Fons M, Gruss A: Cell wall
anchoring of the Streptococcus pyogenes M6 protein in various lactic
acid bacteria. J Bacteriol 1997, 179:3068-3072.

59. Raha AR, Varma NR, Yusoff K, Ross E, Foo HL: Cell surface display system
for Lactococcus lactis: a novel development for oral vaccine. Appl
Microbiol Biotechnol 2005, 68:75-81.

60. Ramasamy R, Yasawardena S, Zomer A, Venema G, Kok J, Leenhouts K:
Immunogenicity of a malaria parasite antigen displayed by Lactococcus
lactis in oral immunisations. Vaccine 2006, 24:3900-3908.

61. Yang Z, Liu Q, Wang Q, Zhang Y: Novel bacterial surface display systems
based on outer membrane anchoring elements from the marine
bacterium Vibrio anguillarum. Appl Environ Microbiol 2008, 74:4359-4365.

62. Terzaghi BE, Sandine WE: Improved medium for lactic streptococci and
their bacteriophages. Appl Microbiol 1975, 29:807-813.

63. Sambrook J, Russell DW: Molecular cloning: a laboratory manual. Cold
Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 3 2001.

64. Wang WK, Wu JH: Structural features of the Clostridium thermocellum
cellulase SS gene. Appl Biochem Biotechnol 1993, 39-40:149-158.

65. Holo H, Nes IF: High-frequency transformation, by electroporation, of
Lactococcus lactis subsp. cremoris grown with glycine in osmotically
stabilized media. Appl Environ Microbiol 1989, 55:3119-3123.

66. Sorvig E, Gronqvist S, Naterstad K, Mathiesen G, Eijsink VG, Axelsson L:
Construction of vectors for inducible gene expression in Lactobacillus
sakei and L plantarum. FEMS Microbiol Lett 2003, 229:119-126.

67. Steidler L, Viaene J, Fiers W, Remaut E: Functional display of a
heterologous protein on the surface of Lactococcus lactis by means of
the cell wall anchor of Staphylococcus aureus protein A. Appl Environ
Microbiol 1998, 64:342-345.

68. Axelsson L, Lindstad G, Naterstad K: Development of an inducible gene
expression system for Lactobacillus sakei. Lett Appl Microbiol 2003,
37:115-120.

69. Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning
vectors and host strains: nucleotide sequences of the M13mp18 and
pUC19 vectors. Gene 1985, 33:103-119.

doi:10.1186/1475-2859-9-69
Cite this article as: Wieczorek and Martin: Engineering the cell surface
display of cohesins for assembly of cellulosome-inspired enzyme
complexes on Lactococcus lactis. Microbial Cell Factories 2010 9:69.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Wieczorek and Martin Microbial Cell Factories 2010, 9:69
http://www.microbialcellfactories.com/content/9/1/69

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/14660377?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14660377?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14660377?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11418555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11418555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12039780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12039780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11823235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11823235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11823235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10347754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10347754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172501?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172501?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17791346?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17791346?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17791346?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18321708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18321708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18757581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18757581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18996194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18996194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18996194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17522816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17522816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20111002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20111002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18779592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18779592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10383867?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15096553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15096553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15096553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15096553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10532392?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8316083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8316083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8576058?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8576058?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8576058?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12577268?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12577268?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12577268?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11823236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11823236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12676705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12676705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12676705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12676705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15823960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15823960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15823960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15066797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15066797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15066797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9139932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9139932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9139932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15635459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15635459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16545511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16545511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18487403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18487403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18487403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16350018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16350018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8323258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8323258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16348073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16348073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16348073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14659551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14659551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9435087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9435087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9435087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12859652?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12859652?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2985470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2985470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2985470?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Regulated expression of CipAfrags yields the surface-display of scaffold proteins
	NucA-CipAfrag proteins are localized to the cell wall of L. lactis
	Cell surface displayed CipAfrag scaffolds bind UidA-dock1

	Discussion
	Conclusions
	Methods
	Bacterial strains and plasmids
	Assembly of cassettes for scaffold protein expression and targeting
	Cloning of cipA fragments from C. thermocellum
	Expression and localization of CipAfrags in L. lactis
	Expression and purification of CipAfrag-binding &beta;-glucuronidase
	Binding of &beta;-glucuronidase to L. lactis

	Acknowledgements
	Authors' contributions
	Competing interests
	References

