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Abstract

Background: The presence of terminal, surface-exposed sialic acid moieties can greatly enhance
the in vivo half-life of glycosylated biopharmaceuticals and improve their therapeutic efficacy.
Complete and homogeneous sialylation of glycoproteins can be efficiently performed enzymically
in vitro but this process requires large amounts of catalytically active sialyltransferases.
Furthermore, standard microbial hosts used for large-scale production of recombinant enzymes
can only produce small quantities of glycosyltransferases of animal origin, which lack catalytic
activity.

Results and conclusion: In this work, we have expressed the human sialyltransferase
ST6GalNAc | (ST6), an enzyme that sialylates O-linked glycoproteins, in Escherichia coli cells. We
observed that wild-type bacterial cells are able to produce only very small amounts of soluble ST6
enzyme. We have found, however, that engineered bacterial strains which possess certain types of
oxidative cytoplasm or which co-express the molecular chaperones/co-chaperones trigger factor,
DnaK/Dna), GroEL/GroES, and Skp, can produce greatly enhanced amounts of soluble ST6.
Furthermore, we have developed a novel high-throughput assay for the detection of
sialyltransferase activity and used it to demonstrate that the bacterially expressed ST6 enzyme is
active and able to transfer sialic acid onto a desialylated O-glycoprotein, bovine submaxillary mucin.
To the best of our knowledge, this is the first example of expression of active human
sialyltransferase in bacteria. This system may be used as a starting point for the evolution of
sialyltransferases with better expression characteristics or altered donor/acceptor specificities.

Background eukaryotes [1]. More than 30% of all therapeutic proteins
The covalent attachment of oligosaccharides on peptides  are glycosylated (glycoproteins) and their folding, biolog-
and proteins (protein glycosylation) is one of the most  ical activity, biodistribution and pharmacological efficacy
complex and frequent post-translational modificationsin  is critically dependent on the attachment of the correct
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glycan structure [1]. Most of the widely used bacterial
expression hosts, such as Escherichia coli, cannot perform
protein glycosylation [1]. Although eukaryotic hosts,
such as yeast, insect, and non-human mammalian cell
lines are capable of protein glycosylation, they introduce
non-native glycosylation patterns that can result in unde-
sired effects, including decreased biological potency and
immunogenicity [1]. While animal cells have been engi-
neered to produce proteins containing glycans that resem-
ble more those found in humans, an ensemble of partially
glycosylated forms is also synthesized and these have to
be removed during downstream processing [1].

One of the most important examples of the influence of
glycan structure on pharmacological properties of thera-
peutic proteins is the strong dependence of the serum
half-life of a glycoprotein on the presence of sialic acid
moieties attached to the terminal site of its glycans [2]. For
example, recombinant human erythropoietin (EPO) nor-
mally has a plasma half-life of more than five hours in
rodents [3]. Removal of the terminal sialic acid moieties
(desialylation) prior to administration reduces EPO's
half-life dramatically to less than 2 minutes [3]. It has
been shown that the in vivo half-life and biological
(hematopoietic) activity of EPO is directly proportional to
the number of sialic acid moieties attached to its four nat-
urally occurring glycosylation sites [4]. Site-specific incor-
poration of additional glycosylation sites into the
protein's sequence and the resulting increase in the
number of attached sialic acids per molecule has been
shown to increase the half-life of EPO [5].

Due to its biological importance, the FDA has mandated
the close monitoring of sialic acid content in therapeutic
proteins [2]. Recently, glycoengineered mammalian,
insect and yeast cell lines have been developed with the
ability to achieve enhanced sialylation levels for recom-
binant glycoproteins [2]. A promising alternative
approach for producing fully sialylated proteins is to iso-
late the recombinantly produced polypeptide and append
the sialic acid moiety in vitro using purified sialyltranse-
fases and activated sialic acid donors (GlycoAdvance™ sys-
tem, Neose Technologies Inc.). In vitro sialylation,
however, is predicated on the availability of large quanti-
ties of the glycosyltrasferase enzymes. However, extensive
studies have shown that the expression of mammalian
glycosyltransferases in bacteria or lower eukaryotes typi-
cally results in very low yields of soluble and active
enzyme [6]. In particular, there have been no reports of
active human sialyltransferase expression in bacteria.

In this work, we report the expression of the human sialyl-
transferase ST6GalNAcI (ST6), an enzyme that sialylates
O-linked glycoproteins, in E. coli cells. We are interested in
studying O-linked glycosylated proteins because very little
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is known about O-glycosylation compared to N-glycosyla-
tion [7]. While wild-type bacterial cells were found to pro-
duce very small amounts of soluble ST6, engineered
strains of E. coli which possess certain types of oxidative
cytoplasm or which co-express specific molecular chaper-
ones, can result in significant yields of ST6. Furthermore,
using a novel high-throughput assay for the detection of
sialyltransferase activity, we show that the bacterially pro-
duced ST6 is active and capable of catalyzing the transfer
of sialic acid onto a desialylated O-glycoprotein, bovine
submaxillary mucin.

Results

Expression of STé6 in E. coli strains having an oxidizing
cytoplasm

STG catalyzes the transfer of N-acetylneuraminic acid
(Neu5Ac - the most common type of sialic acid in higher
animals) from the sugar donor CMP-Neu5Ac (or CMP-
SA) onto a terminal B-D-galactopyranosyl (Gal) residue of
an O-linked glycoprotein to generate an a 2-6 linkage [8].
Like other sialyltransferases, ST6 is a type II transmem-
brane glycoprotein, comprised of a short N-terminal
cytosolic tail, a hydrophobic signal-anchor sequence that
is embedded in the membrane, a so-called "stem" region,
and a long C-terminal catalytic domain that is exposed to
the lumen of the Golgi apparatus. In general, the catalytic
domains of sialyltransferases do not require the other
three domains in order to maintain enzymic activity [8].
A codon-optimized gene encoding the catalytic domain of
the human ST6 (amino acids Lys36-end, coST6) was
cloned into pTrc99a downstream from the tac promoter.
To facilitate immunodetection and protein purification, a
FLAG tag and an octahistidine tag were fused at the N- and
C- termini, respectively (Table 1). In addition, coST6 was
cloned into the high-copy number plasmid pCWin2MBP
[9] to generate the vector pCWin2MBP-ST6.
pCWin2MBP-ST6 expresses an N-terminal fusion of ST6
with the E. coli maltose-binding protein (MBP-ST6) under
the control of a dual tac promoter.

The catalytic domain of human sialyltransferases contains
two highly conserved cysteine residues that form a
disulfide bond which is required for proper folding and
activity [10]. The cytoplasmic space of wild-type E. coli
cells is normally maintained in a reduced state that pre-
cludes the formation of disulfide bonds via the action of
the thioredoxin and glutaredoxin/glutathione enzyme
systems. Mutant strains defective in glutathione reductase
(gor) or glutathione synthetase (gshA) together with
thioredoxin reductase (trxB) render the cytoplasm oxidiz-
ing but are unable to reduce ribonucleotides and therefore
cannot grow in the absence of exogenous reductant, such
as DTT. However, suppressor mutations in the gene ahpC
which encodes the peroxiredoxin AhpC, allow the chan-
neling of electrons onto the enzyme ribonulceotide
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Table I: Plasmids used in this work
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Plasmid Protein expressed Antibiotic Marker Origin of replication Source
pTrcST6 FLAG-ST6-Hisg AmpR ColEl This work
pCWinMBP-ST6 MBP-ST6 KanR ColEl This work
pBAD33 Empty vector CmR ACYC Guzman et al.!
pBADtig Trigger Factor CmR ACYC Ref. [17]
pBADAssDsbA Signal sequence-less DsbA (AssDsbA) CmR ACYC Ref. [I1]
pBADAssDsbC Signal sequence-less DsbC (AssDsbC) CmR ACYC Ref. [I1]
pAK]) DnaK/Dnaj CmR ACYC Perez-Perez et al.2
pAG GroEL/GroES CmR ACYC Perez-Perez et al.2
pAS Signal sequence-less Skp (AssSkp) CmR ACYC Ref. [17]

I. Guzman LM, Belin D, Carson M|, Beckwith J: Tight regulation, modulation, and high-level expression by vectors containing the

arabinose PBAD promoter. | Bacteriol 1995, 177(14):4121-4130.

2. Perez-Perez |, Martinez-Caja C, Barbero JL, Gutierrez J: DnaK/Dna) supplementation improves the periplasmic production of human
granulocyte-colony stimulating factor in Escherichia coli. Biochem Biophys Res Commun 1995, 210(2):524-529.

reductase enabling the cells to grow in the absence of DTT.
In such strains, exposed protein cysteines become readily
oxidized in a process that is catalyzed by thioredoxins, in
a reversal of their physiological function, resulting in the
formation of disulfide bonds. A number of heterologous
multidisulfide bonded proteins have been produced in
the cytoplasm of E. coli FA113 cells (trxB gor ahpC*) or
Origami™ at high yields [11]. Additionally, it was recently
shown that bacterial strains with different mutations in
the thioredoxin/thioredoxin reductase and glutaredoxin/
glutathione reductase genes and containing different sup-
pressor mutations in alleles of ahpC, display dramatic dif-
ferences in the kinetics of cysteine oxidation in the
cytoplasm and in the yield of correctly folded proteins
[12]. We compared the expression of soluble ST6 in a vari-
ety of E. coli strains with oxidizing cytoplasm (Table 2). A
large increase in the amount of soluble ST6 protein was
observed in the E. coli strains SMG96 (Agor AtrxB ahpC*),
FA113 (gor522.miniTn10 AtrxB::KanR ahpC*), MJF277.2
(AgshB::KanR AtrxB ahpC*), and DR611 (AtrxA AtrxC
trxB::KanR gor522:Tn10 ahpC T104P/G141C) relative to
the parental strain DHB4 (Figure 1). Among these, E. coli
DR611 cells were able to produce dramatically increased
amounts of soluble STG6.

Co-expression of molecular chaperones enhances the
production of soluble STé

Extensive studies have shown that the solubility of heter-
ologous proteins in bacteria can be increased greatly by
co-expression of molecular chaperones [13] or by fusion
to a highly soluble protein partner, such as MBP [14]. We
tested the effect of the chaperones/co-chaperones trigger
factor, DnaK/DnaJ, GroEL/GroES, a cytoplasmically
expressed variant of the periplasmic chaperone/peptidyl-
prolyl isomerase Skp which lacks its signaling sequence
(AssSkp), or similarly expressed disulfide oxidoreductase
DsbA (AssDsbA) or disulfide bond isomerase DsbC
(AssDsbC) (Table 1). Co-expression of trigger factor,
DnaK/DnaJ, GroEL/GroES, and AssSkp resulted in a sig-
nificant increase in the amount of soluble ST6 in Origami
2 cells (Figure 2A). However, chaperone co-expression did
not result in a further increase in the soluble yield of ST6
in DR611, which, as discussed above, already accumulates
high levels of soluble protein (data not shown).

Fusion of the ST6 enzyme to MBP also resulted in a
marked increase in the amount of soluble ST6 in Origami
2 cells (Figure 2B), as well as in the DR611 strain (data not
shown). The co-expression of molecular chaperones had

Table 2: Investigated E. coli Strains with Oxidizing Cytoplasmic Space

Strain Genotype Source
DHB4 (parental) A(ara-leu)7697 araD 139 AlacX74 galE galK rpsL phoR Boyd et al.!
A(phoA)Pvull AmalF3 thilF Alac-pro laclq
SMG9%6 Agor AtrxB ahpC* Ref. [12]
FAILI3 g0r522.miniTn10 (TetR) AtrxB:KanR ahpC* Ref. [I1]
Origami™2 gor522:miniTn 0 trxB::StrepR, TetR ahpC* Novagen
MJF256.10 AgshA::KanRAtrxB::CmR ahpC V164G Ref. [12]
MJF277.2 AgshB::KanRAtrxB ahpC* Ref. [12]
MJF313.5 AgshA AtrxB:CmR ahpC E171 stop Ref. [12]
DRé1 | AtrxA AtrxC trxB:KanR gor522:Tn10 ahpC T104P/G141C J. Beckwith

|. Boyd D, Manoil C, Beckwith J: Determinants of membrane protein topology. Proc Natl Acad Sci USA 1987, 84(23):8525-8529.
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MJF 277.2
MJF 313.5

DR611

Comparison of the production of soluble ST6 in wild-type (DHB4) and E. coli strains with oxidizing cytoplasm
by Western blotting. Proteins were probed with an anti-polyHis antibody. Lanes contain equal volumes of bacterial culture.

MW: molecular weight

similar enhancing effects on the production of soluble
MBP-ST6 as in the case of MBP-free ST6 (data not shown).

It must be mentioned that in all the cases where ST6 pro-
duction was tested (different strains, molecular chaper-
ones, fusion partners) by Western blotting, the presence of
lower molecular weight bands was observed. These bands
indicate protein degradation, presumably due to the low
stability of the ST6 enzyme or due to proteolytic degrada-
tion. Degradation, however, appears to be limited as can
be deduced by comparing the intensity of the band corre-
sponding to full-length enzyme relative to the putative
lower-molecular-weight proteolytic products and should
not interfere significantly with the production of the ST6
enzyme in the described strains.

Sialyltransferase activity

In order to evaluate the activity of the produced ST6
enzyme in our engineered E. coli strains, we developed a
non-radioactive high-throughput assay for sialyltrans-
ferase activity. The assay utilizes a sialic acid donor (CMP-
Neu5Ac or CMP-SA), which is tagged with a short polyeth-
ylene glycol (PEG,) spacer and biotin (CMP-SA-PEG,-
biotin) for detection (Figure 3A). First, an appropriate

acceptor protein, such as bovine submaxillary mucin lack-
ing its terminal sialic acid moieties, is coated on a micro-
titer plate (Figure 3B). The acceptor is then incubated with
the CMP-SA-PEG,-biotin sugar donor and the tested
enzyme. Biotinylated mucin can be readily detected with
europium-labeled streptavidin using time-resolved fluo-
rescence (Figure 3B). ST6 produced in Sf9 insect cells was
used to calibrate sialyltransferase activity (Figure 3C). The
lower detection limit was determined to be 2 uU/mL (Fig-
ure 3D). The assay can be performed in 96- and 384-well
microtiter plate format and at reaction volumes as low as
10 pL (data not shown).

We found that even though Origami 2 cells produce
appreciable amounts of soluble MBP-ST6, only a very low
level of mucin sialylation activity could be detected (Fig-
ure 4). However, the co-expression of the molecular chap-
erones/co-chaperones trigger factor, DnaK/DnaJ, GroEL/
GroES and AssSkp resulted in a significant increase in the
yield of active ST6 (Figure 4). Importantly, the expression
of MBP-ST6 in DR611 cells resulted in markedly
enhanced levels of sialyltransferase activity (Figure 4),
resulting in lysate activity of approximately 0.7 U/L of bac-
terial shake flask culture.
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Figure 2

(A). Comparison of the production of soluble ST6 in Origami™2 cells in the presence of different over-
expressed molecular chaperones by Western blotting. (B). Comparison of the production of ST6é (expected molecular
weight (MW) ~ 65 KDa) and MBP-ST6 (expected MW ~ 104 KDa) in different fractions of Origami™?2 cells by Western blot-
ting. All lanes show similar ST6é band intensities because of signal saturation. Without fusion to MBP, a band corresponding to
ST6 could not be detected at the tested short exposure times. Lanes contain equal volumes of bacterial culture. Proteins were
probed with an anti-polyHis antibody.

Page 5 of 11

(page number not for citation purposes)



Microbial Cell Factories 2009, 8:50 http://www.microbialcellfactories.com/content/8/1/50

NHs
A .
0 |
HO OH P—O0— N e}
0 & A O ONa ¥ O':’
. NH o] HO, L
] 5 ; 5 I ) 5 - -
BN P O gy r».wHN Hg'\/ CC:Na o e
8 H 3 H o
Biotin — PEG, — Sialic acid — CMP
B Time-resolved fluorescence

N

L

i

o L Sk

e on FLa . o N YO
e & Ttha ¥
Her \of

T TR
e
s

o, &

Hl T e Y
- v i b

Biotin - PEG, - SA- CMP

=+ —

ST6GalNAc1
Enzyme

T |

Plate 7722222222227

Sialic acid

@

D

*
300000 - o 100—§ 5
b —4 3
- o ]
S 250000 - _;
(4] B *
— R?=0.9828 c
8 200000 - 3 104 e
3 *
= e ]
] g‘, b
3 150000 - i} ]
o s ]
3 100000 - = 1 E
L o= E
= ]
E 50000 - 0 ]
0 . g e 01 T T T T T T T
% P 9 © @ ) o
0 100 200 300 400 ¥ QS@ o N ™ D
o
Enzyme concentration (MU/mL) STeGalNAc | concentration (uU/mL)
Figure 3 (see legend on next page)
Page 6 of 11

(page number not for citation purposes)



Microbial Cell Factories 2009, 8:50

http://www.microbialcellfactories.com/content/8/1/50

Figure 3 (see previous page)

(A). Chemical structure of the synthetic sugar donor substrate CMP-sialic acid-PEG-biotin utilized in our
high-throughput assay for sialyltransferase activity. (B). Schematic of the developed assay for sialyltransferase activity.
96- or 384-well plates are coated initially with asialo bovine submaxillary mucin (aBSM). aBSM carries exposed terminal Gal-
NAc moieties. Active ST6GalNAcI catalyzes the transfer of sialic acid- PEG,-biotin from the sugar donor substrate CMP-sialic
acid-PEG-biotin onto aBSM and immobilizes biotin on the plate. Biotinylation can be subsequently detected with europium
(Eu)-labeled streptavidin and time-resolved fluorescence. (C). Time-resolved (TR) fluorescence counts plotted against differ-
ent concentrations of chicken STé expressed in Sf9 insect cells (positive control enzyme). (D). Detection limit of the sialyl-
transferase assay. Calculated signal-to-background (no enzyme control) ratios for different concentrations of chicken ST6
expressed in Sf9 insect cells. Asterisks indicate enzyme concentrations that exhibited enzymic activity which was statistically
different from the no enzyme control (Dunnett's MCT, p < 0.01). Experiments were carried out in triplicate and the error bars
correspond to one standard deviation from the mean values. a.u.: arbitrary units; U: unit of sialyltransferase activity.

Discussion

We found that similar to most other glycosyltransferases
expressed in bacteria [6], expression of the human sialyl-
transferase ST6 in wild-type E. coli cells results in very low
levels of soluble protein with essentially no catalytic activ-
ity. All human sialyltransferases contain an essential
disulfide bond whose formation is strongly disfavored
within the reducing cytoplasm of wild-type bacterial cells
[10]. However, significant amounts of soluble human ST6
could be produced in E. coli strains having an oxidizing
cytoplasmic space and, additionally, by either co-express-
ing molecular chaperones or using MBP fusions. Using a
novel assay for sialyltransferase activity, we found that the
ST6 enzyme produced in these engineered strains is cata-
lytically active in the transfer of sialic acid onto a donor
glycoprotein.

We showed that the overexpression of trigger factor,
DnaK/DnaJ, GroEL/GroES, and AssSkp but not of
enzymes involved in disulfide bond formation (AssDsbA
and AssDsbC) markedly increased solubility in Origami 2
cells. Co-expression of trigger factor, DnaK/DnaJ, and
GroEL/GroES has been found to be effective in enhancing
the bacterial production of recombinant proteins in a
number of previous studies [15]. The enhancement of ST6
production accompanying the co-expression of the nor-
mally periplasmic chaperone/peptidyl-prolyl isomerase
Skp, however, is particularly interesting. Although Skp co-
expression has been previously found to enhance the pro-
duction of certain antibody fragments in E. coli [16,17]
and to prevent aggregation of lysozyme [18], this protein
is primarily a molecular chaperone for bacterial outer
membrane proteins [19]. Our results in combination with
previous studies [16-18], may indicate a more general
substrate specificity for Skp. Indeed, very recent proteom-
ics studies have shown that Skp does not only interact
with bacterial outer membrane proteins, but also with a
variety of periplasmic soluble proteins in E. coli [20].

The E. coli strain DR611, which we found to be the most
effective for the production of soluble and catalytically

active ST6, lacks all three components of the thioredoxin/
thioredoxin reductase pathway (trxA, trxB and trxC), the
first component of the glutathione/glutaredoxin pathway
(gor), and carries a pair of suppressor mutations in ahpC.
Unlike other oxidizing strains where the catalysis of
disulfide bond formation in the cytoplasm is mediated by
the thioredoxins, in this strain protein oxidation obvi-
ously occurs via a different mechanism. It is possible that
the two substitutions allow AhpC to function as a reduct-
ase for glutathionylated glutaredoxins and supply reduced
glutathione to the cell, in a fashion similar to the other
identified ahpC suppressor mutations in AtrxB Agor strains
[21]. The presence of reduced glutathione together with
oxidized glutathione that might accumulate as a conse-
quence of aerobic growth in the absence of gor and trxB,
could mediate the formation of a redox buffer that pro-
vides favorable kinetics for the formation of the disulfide
bond in ST6, resulting in turn in greater solubility.
Another possible reason for the ability of DR611 to pro-
duce markedly enhanced amounts of ST6 is that in a AtrxA
background, certain components of the protein quality
control/degradation machinery of the E. coli cell may be
activated or inactivated. Proteomic analysis has revealed
that thioredoxin interacts with at least 80 different pro-
teins in E. coli, a number of which are molecular chaper-
ones, co-chaperones, chaperone-regulating proteins, and
proteases [22].

Irrespective of the mechanism, the production of soluble
and catalytically active ST6 in E. coli strains opens up new
possibilities for large-scale production of sialyltrans-
ferases and possibly of other glycosyltransferases as well.
Although the ST6 activity yield in bacteria was found to be
considerably lower than in higher cells (0.7 U/L in this
work vs. 40 U/L of chicken ST6 produced in insect cells
[our unpublished results]), the combination of expression
and screening systems described here can be used for the
directed evolution of enzyme variants displaying either
better expression characteristics or altered substrate specif-
icity. Also, oxidizing strains and chaperone co-expression
could be useful for the bacterial production of other mam-
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Origami 2 (Tig)
Origami 2 (Skp)
DR611

Origami 2 (pBAD33)
Origami 2 (DnaK-J)

Origami 2 (GroEL-ES)

Time-resolved (TR) fluorescence counts of different concentrations of chicken STé expressed in Sf9 insect
cells (0, 5, 20 and 50 pU/mL reaction) and of clarified lysates of bacterial cells expressing MBP-ST6. The bacterial
strains used were DRé61 | and Origami 2 cells, without (PBAD33) or with co-expression of the molecular chaperones/co-chap-
erones trigger factor (Tig), DnaK/DnaJ (DnaK-J), GroEL/GroES (GroEL-ES), and AssSkp (Skp). Each sample of bacterial cell
lysate contained equal number of cells. Experiments were carried out in replica triplicates and the error bars correspond to
one standard deviation from the mean values. a.u.: arbitrary units; U: unit of sialyltransferase activity.

malian sialyltransferases and other disulfide-bonded glyc-
osyltransferases as well. Lastly, our results provide further
support that engineered E. coli cells with different types of
oxidative cytoplasmic spaces can have a profound effect
on the amount of properly folded disulfide-bonded pro-
teins which can be produced in the bacterial cytoplasm
[12].

Conclusion

We have expressed the human sialyltransferase
ST6GalINACI in E. coli cells and found that wild-type bac-
terial cells are able to produce only very small amounts of
soluble ST6 enzyme, which is catalytically inactive. We
have found, however, that engineered bacterial strains
which possess certain types of oxidative cytoplasmic
spaces or which co-express the molecular chaperones/co-
chaperones trigger factor, DnaK/DnaJ, GroEL/GroES, and
Skp, can produce greatly increased quantities of soluble
ST6. By utilizing a novel high-throughput assay for the
detection of sialyltransferase activity, we showed that our

engineered bacterial strains produce human ST6 in an
active form, which was able to transfer sialic acid onto a
desialylated O-glycoprotein, bovine submaxillary mucin.
To our knowledge, this is the first example of an active
human sialytransferase produced in bacteria.

Methods

Strains

E. coli MC4100A cells [23] were used for plasmid con-
structions. Origami™?2 cells were purchased from Nova-
gen. The strains DHB4, SMGY96, FA113, MJF256.10,
MJF277.2, MJF313.5, and DR611 were a kind gift from
Jon Beckwith.

Plasmids

All restriction enzymes and other DNA processing
enzymes were purchased from New England Biolabs. The
nucleotide sequence encoding human ST6GalNAcI start-
ing with Lys36 was obtained by PCR amplification of EST
clones (Invitrogen), and cloned between the BamHI and
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Xbal sites of pCWin2-MBP to generate the vector pCWin2-
MBP ST6GalNAcl [9]. pCWin2-MBP ST6GalNAcI
expresses a fusion of the soluble catalytic domain of
ST6GalNAcl with the E. coli maltose-binding protein
attached to its N-terminus, under the control of a dual tac
promoter. To improve bacterial expression, DNA from
between the BamHI and Stul sites was synthesized using
optimal codon selection (DNA2.0), and re-cloned into
the pCWin2-MBP ST6GalNAcl expression vector using
standard  techniques to generate pCWin2-MBP
coST6GalNAcl. In addition, coST6GalNAcI was PCR-
amplified from pCWin2-MBP coST6GalNAcI
(pCWin2MBP-ST6) along with an N-terminal FLAG, an
optimized ribosome-binding site, and a C-terminal octa-
histidine tag and inserted between the EcoRI and Xbal
sites of the plasmid pTrc99a (GE Healthcare) to generate
the vector pTrcST6. pTrcST6 expresses MBP-free ST6 under
the control of the tac promoter.

Protein Expression

E. coli cells freshly transformed with the appropriate
expression vector were used for all ST6 production exper-
iments. Single bacterial colonies were used to inoculate
liquid LB cultures containing 100 pg/mL ampicillin or 50
pg/mL kanamycin, depending on the utilized ST6 expres-
sion vector. These saturated cultures were used with a
1:100 dilution to inoculate fresh LB cultures which were
grown at 37 °C to an optical density at 600 nm (ODy ) of
0.5-0.7 with shaking. The temperature was then decreased
to 25°C and after a temperature equilibration period of 5-
10 min, protein expression was induced by the addition of
0.1 mM isopropyl-B-D-thiogalactopyranoside (IPTG) for
approximately 5 h. When ST6 was co-expressed with
molecular chaperones, cells were grown in a similar fash-
ion, but the growth medium contained additionally 40
pg/mL chloramphenicol and 0.1% L-arabinose.

Western Blotting
Western blotting was performed as described previously
[24].

Synthesis of CMP-SA-PEG4-biotin
Cytidine-5'-monophospho-N-glycylsialic acid disodium
salt (GSC; 2.2 g, 3.3 mmoles) was dissolved in a mixture
of water (30 mL) and anhydrous THF (50 mL) in a 500
mL single neck round bottom flask equipped with a mag-
netic stir bar. NHS-dPEG™ ,Biotin (Quanta Biodesign; 2.0
g 3.34 mmoles) was added and the resulting colorless
clear solution was stirred at room temperature for three
hours. The mixture was concentrated under reduced pres-
sure, diluted with 400 mL of water, and filtered through a
0.45 micron membrane filter to provide 600 mL of
diluted reaction mixture (conductivity of 1.08 mS/cm).

http://www.microbialcellfactories.com/content/8/1/50

A Q-Sepharose Big Beads chromatography column (GE
Healthcare; XK-26/60 column packed to a bed height of
29 cm, column volume of 690 mL) was converted to the
bicarbonate counterion form using 3 column volumes of
1 N NaHCO; and washed with 4 column volumes of
water. A portion of the filtered reaction mixture (300 mL)
was loaded on to the column. The column was then
washed with 4 column volumes of water using a flow rate
of 20 mL/min and with 2.5 column volumes of a solution
of 40 mM NaHCOj;. The product was then eluted using a
linear gradient from 40 mM NaHCO; to 80 mM NaHCO,
over two column volumes. The eluted product was pooled
(1181 mL) according to the UV profile (274 nm) and the
solution freeze dried providing a white solid. The solid
was dissolved in 200 mL of water and slowly loaded onto
a G25 column (GE Healthcare; XK50/100 packed to a bed
height of 44.5 cm; a column volume of 873 mL) at 20 mL/
min. The product eluted with 5 column volumes of water.
The product was collected, freeze-dried and to yield 0.81
g of a white solid. The second portion of filtered reaction
mixture was purified using both Q-sepharose and G25 as
described. The combined total yield was 1.28 grams of
white solid; 'H NMR (D,O, ppm) 7.98 (d, 1H), 6.12 (d,
1H), 5.98 (d, 1H), 4.73 (m, 1H), 4.34 (t, 1H), 4.31 (1,
1H), 4.23 (d, 3H), 4.18 (d, 1H), 4.12 (dt, 1H), 3.99 (m,
3H), 3.89 (t, 1H), 3.87 (d, 1H), 3.80 (t, 2H), 3.62 (m,
4H), 3.42 (d, 1H), 3.38 (t, 1H), 3.36 (m, 1H), 3.23 (dd,
1H), 2.62 (t, 2H), 2.48, (dd, 1H), 2.30 (d, 2H), 1.86 (m,
2H), 1.65 (m, 3H), 1.55 (m, 2H); MS (negative mode; Q-
star) 794.8, 1117.9, 1140.0.

Mucin desialylation

Purified bovine submaxillary mucin (BSM) (Sigma) dis-
solved in 0.1 N H,SO, was heated to 100°C and the desi-
alylation reaction was monitored in order to avoid
precipitation. After approximately one hour, the reaction
mixture was cooled at room temperature and neutralized
by the addition of 0.1N NaOH. Tris was added to a final
concentration of 0.05 M. The solution was subsequently
filtered, dialyzed three times against water at 4°C, lyophi-
lized, and then resuspended in water (25 mg/mL) and
stored at -80°C.

Sialylation activity assays

Low-fluorescence yellow DELFIA 96-well plates (Perkin-
Elmer) were coated with 50 pL of a 20 ug/mL desialylated
BSM (aBSM) solution in coating buffer (50 mM
NaH,PO,, pH 7.2) at room temperature for 1-2 h with
shaking. Following aBSM aspiration, the wells were
blocked with 250 pL of a 0.05% gelatin solution in phos-
phate-buffered saline (PBS) for 1-2 h at room temperature
with shaking. The blocked wells were washed three times
with excess PBS containing 0.1% Tween-20 (PBST), and
25 pL of double-concentrated reaction buffer (50 mM Bis-
Tris pH 6.7, 5 mM MnCl,, 0.1% Tween-20, 0.04% NaN,
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25 uM CMP-SA-PEO 4-biotin) were subsequently added to
each well. The sialylation reaction was initiated by the
addition of 25 pL of the enzyme/sample dilutions to the
plate. Plates were then sealed and incubated overnight at
room temperature with gentle shaking.

The reaction was terminated by washing five times with
excess PBST. 50 pL of a 1 pg/mL solution of Europium-
labeled streptavidin (Perkin-Elmer) in PBST were then
added to each well and incubated for approximately 1 h at
room temperature with shaking. After washing five times
with excess PBST, 100 uL of Enhancement Solution (Per-
kin-Elmer) were added to each well and incubated for 10
min at room temperature with shaking. Sialylation was
detected by europium-based time-resolved fluorescence
on a Beckman-Coulter DTX-880 plate reader.

Positive control ST6GalNAcl enzyme (chicken ST6
expressed and purified from Sf9 insect cell culture as
described previously [25]) dilutions were prepared in
dilution buffer (20 mM BisTris, 0.02% Tween-20, pH
6.7).

E. coli cell lysate samples were prepared by harvesting the
cells corresponding to 1 mL of a culture with OD, ~ 2.0,
resuspending these cells in 1 mL of dilution buffer, and
pulse sonication on ice until cell lysis was achieved. The
soluble cell lysate fraction was then acquired by high-
speed centrifugation at 14,000 rpm for 20 min at 4°C and
collection of the supernatant. Since the presence of more
than 10% of cell lysate in the sialylation reaction mixture
was found to inhibit the sialylation reaction, E. coli lysates
were diluted 1:5 in dilution buffer prior to their addition
to the wells containing reaction mixture. Positive control
samples were corrected so as to include the same (10%)
amount of bacterial cell lysate. One unit of ST6 activity
was defined as the amount of enzyme that transferred 1
pmole of CMP-SA onto 1 mg of acceptor protein per
minute at 25°C.

List of Abbreviations

ST6: human sialyltransferase ST6GalNAcI; EPO: recom-
binant human erythropoietin; CMP-NeuAc or CMP-SA:
cytidine monophosphate-N-acetylneuraminic acid; MBP:
E. coli maltose-binding protein; Gal: B-D-galactopyrano-
syl; PEG: polyethylene glycol; IPTG: isopropyl-p-D-thi-
ogalactopyranoside; BSM: bovine submaxillary mucin;
aBSM: asialo (desialylated) BSM; PBS: phosphate-buff-
ered saline; PBST: PBS + 0.1% Tween-20.
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