
BioMed Central

ss

Microbial Cell Factories
Open AcceReview
Sugar metabolism, redox balance and oxidative stress 
response in the respiratory yeast Kluyveromyces lactis
M Isabel González-Siso*, Ana García-Leiro, Nuria Tarrío and M 
Esperanza Cerdán

Address: Department of Molecular and Cell Biology, University of A Coruña, Campus da Zapateira s/n, 15071- A Coruña, Spain

Email: M Isabel González-Siso* - migs@udc.es; Ana García-Leiro - anagarcia@udc.es; Nuria Tarrío - nuriaty@gmail.com; M 
Esperanza Cerdán - bmanamrt@udc.es

* Corresponding author    

Abstract
A lot of studies have been carried out on Saccharomyces cerevisiae, an yeast with a predominant
fermentative metabolism under aerobic conditions, which allows exploring the complex response
induced by oxidative stress. S. cerevisiae is considered a eukaryote model for these studies. We
propose Kluyveromyces lactis as a good alternative model to analyse variants in the oxidative stress
response, since the respiratory metabolism in this yeast is predominant under aerobic conditions
and it shows other important differences with S. cerevisiae in catabolic repression and carbohydrate
utilization. The knowledge of oxidative stress response in K. lactis is still a developing field. In this
article, we summarize the state of the art derived from experimental approaches and we provide
a global vision on the characteristics of the putative K. lactis components of the oxidative stress
response pathway, inferred from their sequence homology with the S. cerevisiae counterparts. Since
K. lactis is also a well-established alternative host for industrial production of native enzymes and
heterologous proteins, relevant differences in the oxidative stress response pathway and their
potential in biotechnological uses of this yeast are also reviewed.

Review
The connections between sugar metabolism, redox 
balance and oxidative stress
A lot of studies have been carried out on Saccharomyces cer-
evisiae, an yeast with a predominant fermentative metab-
olism under aerobic conditions [1], which allows
exploring the complex response induced by oxidative
stress. Recent reviews of different aspects of the oxidative
stress response in S. cerevisiae have been published but the
information about these complex regulatory networks in
other yeasts is more limited [2-5]. Kluyveromyces lactis is a
good model to analyse alternative variants in the oxida-

tive stress response, since the respiratory metabolism in
this yeast is predominant under aerobic conditions [6].

A comparison of the transcriptomes of S. cerevisiae and K.
lactis, growing in complete medium with glucose, using
heterologous DNA arrays [7], revealed that the transcrip-
tion of functional groups of genes related to housekeeping
functions, such as mitosis, transcription or cell wall bio-
genesis, is highly correlated in both yeasts. However, large
differences between groups of genes related to carbohy-
drate metabolism, respiratory functions and oxidative
stress response have been found.
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Several connections between the alternative use of differ-
ent metabolic pathways and oxidative stress have also
been found. The way that sugar oxidation re-routing, car-
ried out by different metabolic pathways, may influence
the oxidative stress response is documented both in S. cer-
evisiae [8,9] and K. lactis [10]. The K. lactis rag2 strain, a
mutant lacking the glycolytic enzyme phosphoglucose
isomerase, grows in glucose, metabolising the sugar
through the Pentose Phosphate Pathway (PPP) but this
growth is avoided in the presence of Antimicyn A due to
blockade of the mitochondrial respiratory chain after ubi-
quinone [11]. In the rag2 mutant, the preponderance of
the use of PPP over glycolysis causes an increase in respi-
ration that restores NADP+ levels and allows the flow
through PPP to continue [10]. Growth of the rag2 strain
PM5-2D in fructose is possible through glycolysis and it is
not blocked by Antimicyn A [12]. A moderate increase in
mRNAs transcribed from several genes involved in the
defence against oxidative stress was observed [7] when
comparing the transcriptome of the rag2 mutant strain
growing in glucose (through PPP) vs. fructose (through
glycolysis). This confirms that the use of alternative meta-
bolic pathways in the catabolism of sugars influences the
oxidative stress response in K. lactis.

It is also possible to find counterpart connections between
oxidative stress and the alternative use of metabolic path-
ways. Hence, the onset of an oxidative stress response may
open previously-blocked metabolic pathways. In S. cerevi-
siae, a mutant lacking phosphoglucose isomerase, pgi1,
does not grow on glucose because the PPP is not fully
operative. Growth on glucose of the pgi1 mutant is
achieved by adding oxidizing agents such as hydrogen
peroxide (H2O2) or menadione, thereby causing oxidative
stress to yeast cells [13]. Since the oxidative stress response
of S. cerevisiae includes up-regulation of genes coding for
enzymes that use NADPH as a cofactor, in order to keep
reduced glutathione and thioredoxin levels [14], NADPH-
dependent stress mechanisms are a metabolic supply of
oxidized NADP+ [15]. In these conditions, the mutant
yeast cells adapt their metabolism to obtain the extra
NADPH needed during the stress response by redirecting
carbohydrate fluxes to the PPP to the detriment of glycol-
ysis [16]. A recent study [17] has shown that the ability to
redirect metabolic fluxes from glycolysis to the PPP in
response to oxidative stress in order to obtain reduced
coenzymes is conserved between yeasts and animals, out-
lining their importance in the adaptation to oxidative
stress.

Redox signalling might also control metabolic fluxes
through enzymatic regulation. Recently, it has been
hypothesized that KlAdhI (homotetrameric cytosolic alco-
hol dehydrogenase I) might represent an important target
in redox signalling in K. lactis cells. In vitro, there is a KlA-

dhI wild-type in two reversible forms: reduced (active)
and oxidized (inactive) with the Cys278 residues of each
tetramer linked by disulphide bonds. Oxidized glutath-
ione is one of the agents that inactivate the enzyme. The
redox state of KlAdhI could be a mechanism for modulat-
ing the enzyme activity directly and the glucose flux
through glycolysis or PPP indirectly [18].

In S. cerevisiae, it has been described that glucose limita-
tion (caloric restriction) promotes a decrease in reactive
oxygen species (ROS) formation and an increase in lon-
gevity that does not occur in K. lactis [19]. The authors
explain this difference by the fact that whereas S. cerevisiae
shows catabolic repression of respiration (alleviated by
low glucose levels), K lactis does not. These data reinforce
the idea of different interrelationships between glucose
metabolism and oxidative stress in respiratory or fermen-
tative yeasts.

Taking into account the above-described interconnections
between metabolic fluxes and oxidative stress (Figure 1),
it is possible to envisage the K. lactis model as a very fruit-
ful system to study regulatory mechanisms affecting the
oxidative stress response of a respiratory yeast and to com-
pare them to the previously reported features for the fer-
mentative yeast S. cerevisiae. Although data are still limited
in K. lactis, we review similarities and differences already
reported, or deduced from genomic comparative analysis
and affecting important aspects of the oxidative stress
response in yeasts. We consider the production of ROS,
enzymatic reactions producing ROS detoxification, repair
of oxidative damage caused in proteins and lipids and the
implications of transcriptional regulators in these proc-
esses. Finally, we review related biotechnological applica-
tions, which can be exploited in a near future using K.
lactis systems.

Alternative dehydrogenases, respiratory chain and 
generation of ROS in K. lactis cells
ROS are a group of molecules derived from molecular
oxygen, such as peroxides, including H2O2, alkylhy-
droperoxides, the hydroxyl radical and the superoxide
anion. ROS have toxic effects but also regulatory func-
tions. Oxidation and reduction of thiol proteins are
thought to be the major mechanisms by which ROS inte-
grate into cellular signal transduction pathways [20]. An
excess of ROS results in oxidative stress and may eventu-
ally cause cell death. The sources of ROS are either exoge-
nous (heavy metal ions, γ-radiation, UV light) or
endogenous. The leakage of electrons from the mitochon-
drial respiratory chain has been described as the major
source of endogenous ROS under physiological condi-
tions, and the components of the initial and middle seg-
ments of the chain are the most active producers in this
regard [21].
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The respiratory chains of the yeasts S. cerevisiae and K. lac-
tis are characterized by the lack of complex I and the pres-
ence of three alternative NADH dehydrogenases located at
the mitochondrial inner membrane. These are rotenone-
insensitive and single-polypeptide enzymes that transfer
the electrons to ubiquinone without proton pumping.
The NADH generated in the mitochondrial matrix is oxi-
dised by the internal alternative dehydrogenase Ndi1,
while the external enzymes, Nde1 and Nde2, oxidise
cytosolic NADH directly [22]. Unlike S. cerevisiae, the
external alternative dehydrogenases of K. lactis also oxi-
dises cytosolic NADPH [23,24].

In S. cerevisiae, ROS production by the electron transport
chain was initially associated to complex III and to exter-
nal alternative dehydrogenase [25,26]. Later, it was also

associated to the internal alternative dehydrogenase [27].
Li et al. [27] described that the disruption of Ndi1 and
Nde1 in S. cerevisiae decreases ROS production and pro-
longs life span. However, in K. lactis, the null mutants
either in the external [24] or internal alternative dehydro-
genases do not show decreased levels of ROS when com-
pared to the wild-type strain (our unpublished data).
Although experimental data confirm a similar organiza-
tion of the dehydrogenases, which allows cytosolic
NAD(P)H or mitochondrial NADH reoxidation by the
respiratory chain in S. cerevisiae and K. lactis, ROS produc-
tion in the two yeasts differs in mutant defective from the
homologous dehydrogenases.

To understand this difference between structural and
functional data, it is interesting to note that ROS produc-

Interrelationship between the oxidative stress response, sugar metabolism and redox balance in Kluyveromyces lactisFigure 1
Interrelationship between the oxidative stress response, sugar metabolism and redox balance in Kluyveromyces 
lactis.
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tion is not only determined by the organization of the
components of the respiratory chain, but also by the rela-
tive flow of NAD(P)H re-oxidation that is achieved
through the mitochondrial chain or by other systems. Sev-
eral examples of these mechanisms which produce differ-
ences in relative metabolic fluxes are found. The rag2
mutant from K. lactis is more resistant to oxidative stress
and produces more ROS than the wild-type strain in aero-
bic cultures with glucose as carbon source [28]. Transcrip-
tion levels of KlSOD1, KlCTA1 and KlCTT1, necessary for
ROS detoxification, are higher in the K. lactis rag2 mutant
than in the wild-type strain, when they are growing in glu-
cose, even in the absence of an exogenously induced oxi-
dative stress [29]. The K. lactis mutant rag2 has to re-route
all the glucose from glycolysis through the oxidative
branch of the PPP and therefore, the increase in ROS pro-
duction could be attributed to the higher activity of the
mitochondrial external alternative dehydrogenases to oxi-
dise the surplus of NADPH [10,30]. The double null
mutant in phosphoglucose isomerase and Nde1, the most
important of the two external enzymes for NADPH oxida-
tion, does not grow on glucose [28] and then a putative
decrease in ROS levels in such a double mutant cannot be
experimentally verified. In the rag2 mutant grown in glu-
cose, the transcription of KlNDE1 decreases by the addi-
tion of 0.4 mM H2O2 to the medium [23], when NADPH-
consuming mechanisms of defence to oxidative stress are
increased [31]. This transcriptional regulation also affects
KlNDE2, the gene of the second K. lactis external alterna-
tive dehydrogenase using NADPH [24], and other genes
related to active respiration, as revealed by the data
obtained through the use of DNA arrays [29]. In sum-
mary, NADPH reoxidation through the respiratory chain
decreases when the NADPH-dependent oxidative stress
defence reactions are up-regulated.

As explained above, the blockade of electron flow by dis-
ruption of alternative dehydrogenases in K. lactis and S.
cerevisiae has different consequences on ROS production.
However, when the electron flow is disrupted down-
stream in the electron chain by the inhibitor of the cyto-
chrome bc1 complex antimycin A, similar results are
obtained in the two yeasts. In S. cerevisiae, an increase in
mitochondrial H2O2 production is observed [25].
Although there are no direct data available on the influ-
ence of antimycin A in ROS production in K. lactis, we
have observed (unpublished data) that antimycin A
increases tolerance to peroxide-mediated oxidative stress
both in S. cerevisiae and K. lactis. This might result from
the up-regulation of antioxidant defences pointed out by
increased ROS levels.

Eukaryotic cells have developed several defence systems
against ROS. We summarize below the information avail-
able at present on some of these systems in K. lactis.

Genes encoding enzymes for ROS detoxification and 
glutathione synthesis are conserved in K. lactis and S. 
cerevisiae
The analysis of the complete sequence of the K. lactis
genome, available through Génolevures [32], allows find-
ing putative orthologs to S. cerevisiae genes which are
related to ROS detoxification and glutathione synthesis.
These include genes coding for supexoxide dismutases
and their chaperones, catalases and peroxidases, glutath-
ione and thioredoxin systems. The results summarized in
Figure 2 (see Additional File 1) reveal that, in general,
these genes are well-conserved in the two yeasts. Specific
comments and other experimental information on partic-
ular K. lactis genes are detailed in the following sections.
The systematic Génolevures nomenclature is used
throughout the paper for the K. lactis sequences, syno-
nyms are given in brackets.

Superoxide dismutases
Superoxide dismutases (SODs) catalyze the breakdown of
the superoxide radical to an oxygen molecule (O2) and
H2O2. Two SODs are present in S. cerevisiae and other
yeasts, a Cu-Zn containing form in the cytosol (Sod1) and
an Mn-containing form in the mitochondrion (Sod2)
[33]. The active form of Sod1 is a homodimer in S. cerevi-
siae. Two conserved Cys of each monomer are joined
together in a disulphide bond and this bond is critical for
the enzymatic activity. The specific copper chaperone
Ccs1 delivers the copper ion to Sod1 and also facilitates
the formation of intramolecular disulphide bond [34].
Sod2 is a homotetramer in S. cerevisiae. The specific man-
ganese chaperone Mtm1 delivers the metal ion to Sod2, in
the mitochondrial matrix [35].

The proteins Sod1, Sod2 and their chaperones have
orthologs in K. lactis: KLLA0E05567g (KLLA0E05522g) is
highly similar to S. cerevisiae Sod1, KLLA0E03609g
(KLLA0E03509g) is highly similar to S. cerevisiae Sod2;
KLLA0F26917g is similar to S. cerevisiae Ccs1 and
KLLA0A09383g is similar to S. cerevisiae Mtm1. The align-
ment between orthologs shows that the residues impor-
tant for the activity and interaction with metallic cofactors
are conserved between the corresponding proteins of the
two yeasts. The sub-cellular localization predicted by
WoLF PSORT [36] is mainly cytosolic for KlSod1 and
mitochondrial for KlSod2 (Figure 2 and Additional File
1), as reported for their S. cerevisiae orthologs.

In spite of the pairwise similarity in the proteins of this
group, several differences between these enzymes in K.
lactis and S. cerevisiae have been reported. Thus, KlCCS1
overexpression has not increased KlSod1 activity and a
different mechanism for cation handling in KlSod1 has
been proposed, also considering the absence of two Pro
residues near the C-terminus [37]. Other reported differ-
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ences are related to transcriptional regulation. In S. cerevi-
siae mRNA levels of several genes of the stress response
increase during hypoxia [38-40]. The response to hypoxia
in this group of genes in K. lactis is low [29]. S. cerevisiae
SOD1 shows a decreased expression after a shift to anaer-
obiosis for up to 4 h, and then it increases to levels higher
than those in normoxia [40]. On the contrary, KlSOD1
does not show increased expression after 6 h of a shift
from aerobiosis to hypoxia [29].

Catalases
Catalase breaks down H2O2 into O2 and H2O molecules
using the redox properties of a protein-heme complex. In
S. cerevisiae, catalase is coded by two genes, CTA1 and
CTT1, corresponding to two isoforms with different sub-
cellular locations, peroxisomal-mitochondrial matrices
and cytosol, respectively [38,41]. S. cerevisiae Cta1 is a
homotetramer with a heme group and a NADP(H) one,
cofactor binding sites per subunit [42]. K. lactis orthologs

Putative oxidative stress response Kluyveromyces lactis sequences and their Saccharomyces cerevisiae counterpartsFigure 2
Putative oxidative stress response Kluyveromyces lactis sequences and their Saccharomyces cerevisiae counter-
parts. Similarity of the proteins (*** = highly similar ** = similar * = weakly similar). For K. lactis proteins, the cellular location 
indicated corresponds to the highest probability estimated by WoLF PSORT [36], and for S. cerevisiae proteins to the first loca-
tion mentioned in SGD (Saccharomyces Genome Database); N = reference for cloning/expression of the K. lactis gene: 1 [37], 2 

[31], 3 [28]. See also Additional File 1.
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are KLLA0D11660g, highly similar to S. cerevisiae Cta1,
and KLLA0D14685g, similar to S. cerevisiae Ctt1 (Figure 2
and Additional File 1). Both K. lactis catalases show the
typical heme-ligand signature as determined by the Motif
Scan programme [43].

In S. cerevisiae, the transcription of CTA1 and CTT1 is
induced under aerobic conditions and CTT1 is also
induced under several stresses [44,45]. This transcrip-
tional regulation is not observed in K. lactis [29].
Although catalase activity is increased by addition of per-
oxides and after an aerobiosis-hypoxia shift, this increase
might be attributed to post-transcriptional mechanisms
[28].

In S. cerevisiae, the effects of catalase and glutathione in
defence against H2O2 overlap. Thus, the absence of cata-
lases enhances the hypersensibility to oxidants of a strain
unable to synthesize glutathione [46] and mutants in cat-
alase show decreased resistance to oxidative stress [47,48].
A similar interdependence of both systems is also detected
in the rag2 mutant of K. lactis which has increased resist-
ance to oxidative stress compared to the wild type. When
catalase is inhibited by 3-aminotriazole, the tolerance to
peroxide-mediated oxidative stress is reduced, and this
effect is more evident when the gene encoding glutathione
reductase is also deleted [28].

Although H2O2 is a strong oxidizing agent, most of its
reactions have high activation energy and are slow; H2O2
reacts directly with a few chemical groups including thiols
[20]. In catalase deficient cells, if the redox buffering
capacity of glutathione is also decreased, high sensitivity
to peroxides will be produced, mainly because they react
with thiols from proteins, therefore altering their func-
tions.

Peroxidases
Peroxidases reduce inorganic and organic peroxides into
the corresponding alcohols using active site cysteine thi-
ols. Two classes of peroxidases are distinguished accord-
ing to the electron donor for the thiols, glutathione
peroxidases (GPXs) and thioredoxin peroxidases or perox-
iredoxins (TPXs); although GPXs use sometimes thiore-
doxin and TPXs use glutathione as electron donors
[49,50]. GPXs are classified as soluble and membrane-
associated, these latter are also called Phospholipid
hydroperoxide GPXs, and they reduce soluble hydroper-
oxides and also/or phospholipid hydroperoxides from
membranes, respectively.

Glutathione peroxidases
The three GPXs described in S. cerevisiae, Gpx1, Gpx2 and
Gpx3 (Hyr1), are phospholipid hydroperoxide GPXs
[51].S. cerevisiae Gpx1 and Gpx2 are induced by glucose

starvation and Gpx3 senses intracellular hydroperoxide
levels to transduce a redox signal to the transcription fac-
tor Yap1p. The cellular locations of Gpx1 and Gpx3 are
unknown, Gpx2 is found in cytosol and nucleus [51-54].
In Génolevures the K. lactis protein showing the highest
identity with S. cerevisiae GPXs is KLLA0F06732g that
shows 80% identities with Gpx3 (Hyr1), and also 75%
identities with Gpx2 and 59% identities with Gpx1. The
sequence KLLA0D03905g, annotated for Gpx2, shows
57% identities with S. cerevisiae Gpx2 and with Gpx3
(Hyr1) and 46% with Gpx1 (Figure 2 and Additional File
1).

Besides the structural similarities between the K. lactis and
S. cerevisiae genes, the transcription of orthologs is
induced by oxidative stress in both yeasts. The transcrip-
tion of S. cerevisiae GPX2 [55] and the two K. lactis
sequences showing similarity, mainly KLLA0F06732g, are
strongly induced by H2O2 [29].

Thioredoxin peroxidases
There are five different TPXs in S. cerevisiae, found at dif-
ferent cellular compartments: Tsa1, Tsa2 and Ahp1 are
cytosolic, Prx1 is mitochondrial and Dot5 is nuclear [56].
The K. lactis sequences annotated for the corresponding
genes in the genome database are as follows:
KLLA0B01628g for Tsa1 (this protein shows also high
similarity to S. cerevisiae Tsa2, 83% identities),
KLLA0A07271g and KLLA0F20009g for Ahp1,
KLLA0E20285g (KLLA0E20383g) and KLLA0A02651g for
Prx1, KLLA0D14333g for Dot5 (Figure 2 and Additional
File 1). TSA1 transcription is strongly induced by H2O2 in
K. lactis [29]. It is remarkable that, although gene redun-
dancy is generally lower in K. lactis than in S. cerevisiae
[32], the opposite is true for this particular group of genes.
The cellular locations predicted with the highest probabil-
ity for the K. lactis proteins by WoLF PSORT [36] coincide
with the locations of the S. cerevisiae counterparts (Figure
2 and Additional File 1).

This group of enzymes are proposed to be moonlighting
proteins, at least in S. cerevisiae [2]. That is, they show sev-
eral functions and are able to participate in unrelated bio-
logical processes [57]. For example, besides their
peroxidase activity, Tsa1 shows chaperone activity and
Dot5 takes part in the disruption of telomeric silencing
[58,59]. It has been shown that moonlighting activities are
not necessarily conserved among yeast species [57] and, to
our knowledge, there are no functional studies on these
proteins that allow assigning or discarding alternative
functions for these proteins in K. lactis.

Glutathione biosynthesis
The two K. lactis sequences annotated as genes for the bio-
synthesis of glutathione are KLLA0F14058g (KlGSH1),
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encoding a putative Gamma glutamylcysteine synthetase
that catalyzes the first step in glutathione biosynthesis and
KLLA0F07557g (KlGSH2), encoding a putative Glutath-
ione synthetase that catalyzes the ATP-dependent synthe-
sis of glutathione from gamma-glutamylcysteine and
glycine (Figure 2 and Additional File 1).

In S. cerevisiae, GSH1 and GSH2 expression is induced by
oxidants, such as H2O2, and by heat shock, both types of
regulation mediated by the Yap1 transcription factor [60-
63]. In the yeast Pichia pastoris, the genes of glutathione
synthesis are also regulated by the PpYap1 transcription
factor [64]. The expression of the K. lactis orthologs, on
the contrary, is not induced by H2O2, although KlGSH1 is
one of the few oxidative stress response genes whose tran-
scription is induced after a shift to hypoxia [29]. In this
regard,K. lactis appears different to S. cerevisiae and also to
other non-Saccharomyces yeasts.

Similarities and differences between glutathione and 
thioredoxin systems from S. cerevisiae and K. lactis
The arrangement of genes from the thioredoxin and glu-
taredoxin systems, responsible for the repair of oxidative
protein damage, shows several differences in K. lactis and
S. cerevisiae as described here below.

The thioredoxin system
The thioredoxin system is made up of thioredoxin (TRX),
thioredoxin reductase (TRR) and NADPH. TRR uses a
dithiol-disulphide active-site to transfer, via the cofactor
FAD, reducing equivalents from NADPH to TRXs, which
are thiol oxidoreductases with two cysteines at the active
site. This system, by reducing disulphide bonds, partici-
pates in the regulation of the activity of enzymes such as
ribonucleotide reductase but also in protein folding and
in redox signalling, this latter including transcriptional
regulation of gene expression. Thus, Yap1, the transcrip-
tional regulator of the yeast response to peroxides, is acti-
vated through oxidation mediated by peroxides and
deactivated through reduction mediated by thioredoxin.S.
cerevisiae contains two separate thioredoxin systems. The
cytosolic system is made up of two TRXs (Trx1, Trx2) and
one TRR (Trr1) and the mitochondrial one consists of one
TRX (Trx3) and one TRR (Trr2) [65,66].

In the K. lactis genome database, there is one sequence
annotated as a putative gene for TRX1, KLLA0E16347g
(KLLA0E16401g), and another for TRX3, KLLA0F10351g,
but there is no ortholog for TRX2 (Figure 2 and Additional
File 1). The thioredoxin-active site-related signature
(APWCGHCK or APWCGYCQ) was also found in the K.
lactis protein disulphide isomerases KlPdi1 and KlMpd1
[67].

Two sequences in Génolevures are annotated as TRR1
genes KLLA0E21605g (KLLA0E21692g) and
KLLA0F15037g. The first is highly similar to S. cerevisiae
Trr1 and the second is only weakly similar.
KLLA0E21605g is also highly similar to S. cerevisiae Trr2
(78% identities) and there is no other K. lactis sequence
annotated as a putative gene for TRR2 (Figure 2 and Addi-
tional File 1). Between KLLA0E21605g and
KLLA0F15037g, no significant alignment of proteins is
produced. There are only 23% identities and the overlap
includes 180 residues although the lengths of the proteins
involve 350 and 298 residues respectively. The protein
encoded by KLLA0E21605g shows a mitochondrial export
signal of 29 residues, as predicted by MitoProt II [68] with
a probability of 0.99; KLLA0F15037g is predicted to be
cytosolic with WoLF PSORT [36].

Among the genes of the K. lactis thioredoxin system, only
KLLA0E21605g has been studied and its TRR activity has
been proven [31,69]. TRR enzymatic activity has been
detected both in the cytosolic and mitochondrial fractions
of K. lactis cells (our unpublished data). However, since
the function of KLLA0F15037g remains to be proven hith-
erto, it is not possible to state whether mitochondrial and
cytosolic TRRs in K. lactis are encoded by a single gene
(KLLA0E21605g) or by two genes. TRRs occur in two
forms, a high molecular weight enzyme such as those of
mammals, the malaria parasite Plasmodium falciparum and
some worms, and a low molecular weight form that is
present in bacteria, fungi, plants and some protozoan par-
asites [70]. The protein encoded by KlTRR1 belongs to the
group of low molecular weight TRRs (homodimers, about
35 kDa/subunit) and shows their characteristic features
[31]. Mammalian TRRs have an additional C-terminal
domain containing a selenocysteine residue at the penul-
timate position [71], which is absent in KlTrr1p [31].
Recently, the S. cerevisiae TRR structure has been solved
and it shares a very similar overall structure to Escherichia
coli TRR. However, fine comparisons indicate differences
at the TRX recognition sites [72]. The predicted 3D struc-
ture of KlTrr1 is similar to the S. cerevisiae homologue
(Figure 3).

The S. cerevisiae genes TRR1/TRR2 are Yap-1 targets
induced by H2O2 [73] and the same is true for KlTRR1.
The addition of peroxides (H2O2 and tBOOH) increases
transcription of KlTRR1 and also TRR enzymatic activity
[28,29,31]. Besides, a consensus for Yap1p binding
(ATGAATCAG at position -231 to -223) is functional in
the KlTRR1 promoter, as demonstrated by the technique
of promoter-lacZ fusions and beta-galactosidase activity
measurements [31].
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The glutathione/glutaredoxin system
Besides glutathione and glutaredoxins (GRXs), this sys-
tem is made up of glutathione reductase (GLR) and
NADPH. GRXs are small heat-stable thiol oxidoreductases
using the tripeptide glutathione (gamma-glutamil-cystei-
nyl-glycine) as hydrogen donor. Reduced glutathione
(GSH) is regenerated from glutathione disulphide (GSSG)
by GLR that uses NADPH as a reducing source and FAD as
a coenzyme.

The S. cerevisiae genome includes eight GRXs identified
hitherto, three dithiol GRXs (Grx1, Grx2 and Grx8) with
the CPY/FC motif at the active site, and five monothiol
GRXs (Grx3, Grx4, Grx5, Grx6 and Grx7) with the CGFS
motif at the active site. Grx1 and Grx2 are located at the
cytosol, a fraction of Grx2 is also present at the mitochon-
dria, Grx3 location is at the cytosol-nucleus, Grx4 is at the
nucleus and Grx5 localizes at the mitochondrial matrix.
Grx1 protects cells against hydroperoxides and superox-
ide-radicals, Grx2 also exhibits a glutathione peroxidase
activity, Grx3 and Grx4 sense the iron status of the yeast
cells and regulate the nuclear localization of the Aft1 tran-
scription factor, and Grx5 participates in the late stages of
the biosynthesis of Fe/S clusters. Grx6 and Grx7 are
located at the cis-Golgi and associated with the early secre-
tory pathway. Finally, Grx8, which is localized at the
cytosol, has several novel structural and mechanistic fea-
tures [74-80]. GLR in S. cerevisiae is coded by a single gene,
GLR1, which gives rise to a protein with a double location
(cytosol and mitochondria) due to the alternative use of
two translation initiation sites [81].

In the K. lactis genome database, only four sequences are
annotated as genes for GRXs: KLLA0C17842g for GRX3,
KLLA0B09636g for GRX5, KLLA0E17733g for GRX6 and
KLLA0B07975g for GRX8. The sequence KLLA0E24069g is
annotated for GLR1. The predicted subcellular location of
these proteins with WoLF PSORT [36] is at the cytosol-
nucleus for KlGrx3, mitochondria for KlGrx5 and KlGlr1,
extracellular for KlGlr6 and cytosol for KlGlr8 (Figure 2
and Additional File 1).

KlGLR1 (KLLA0E24069g) [69] is the only gene experi-
mentally studied from this system in K. lactis so far. Over-
expression of the KlGLR1 gene in a multicopy plasmid,
under the control of its own promoter, causes an 8-fold
increase in GLR activity when compared to wild-type lev-
els [31]. Moreover, a null mutant in the KlGLR1 gene
shows no glutathione reductase activity [28]. Although
this result confirms that KlGLR1 is the only gene that
encodes a functional glutathione reductase in K. lactis,
GLR activity is present both in mitochondria and cytosol
(our unpublished data) suggesting a possible mechanism
of sorting to mitochondria.

S. cerevisiae Glr1 is a dimeric flavo-oxidoreductase whose
structure has been solved [82]. The overall structure and
the active site are conserved in the E. coli and human
homologues but differences are found at the interface of
the monomers, mainly in the region of the N-terminal
domain that contributes to the formation and stabiliza-
tion of homodimers. The protein encoded by KlGLR1
exhibits a similar predicted 3D structure and distribution

3D-model of Kluyveromyces lactis thioredoxin reductase performed with PyMOL Molecular Viewer http://pymol.source-forge.net/ (A) Domains are marked in coloursFigure 3
3D-model of Kluyveromyces lactis thioredoxin reductase performed with PyMOL Molecular Viewer http://
pymol.sourceforge.net/ (A) Domains are marked in colours. Green: FAD binding domain (residues 32-156 and 281-
349). Blue: NADPH binding domain. The two Cys that make up the active site are marked in red. (B) Residues different from S. 
cerevisiae cytosolic thioredoxin reductase are marked in blue, these differences do not affect significantly the overall structure 
of the protein.
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by binding domains (Figure 4). The N-terminal FAD-
binding domain contains a glycine-rich motif GXGXXG/A
involved in the binding of the coenzyme and a redox-
active disulphide, necessary for electron flow between
NADPH and oxidized glutathione via FAD. The central
NADPH-binding domain also contains a glycine-rich
GXGXXG/A motif but with residues, distinctive for spe-
cific interaction with NADP(H). The C-terminal domain
makes up the interface between subunits in the dimeric
proteins [31].

In K. lactis, Glr1 regulation does not respond to peroxide
treatment, neither by changes in mRNA transcription of
the KlGLR1 gene nor by enzymatic activity modulation
[28,29,31], whereas S. cerevisiae Glr1 is an oxidative stress-
defence inducible enzyme and its gene is a Yap1p-target
[83,84]. In spite of the lack of induction of KlGLR1 by per-
oxides, the influence of KlGlr1 in oxidative stress resist-
ance is inferred from the fact that the tolerance to H2O2 of
the rag2 mutant decreases when the KlGLR1 gene is
deleted and also because overexpression of KlGLR1
increases tolerance to H2O2 [28].

The role of TRR1 and GLR1 from K. lactis in NADPH reoxidation
In addition to their participation in oxidative stress
defence, TRR and GLR activities also contribute to the
reoxidation of the surplus of cytosolic NADPH produced

in the PPP in K. lactis, although to a lesser extent than
other mechanisms recently reviewed [10]. This could be
regarded as a functional difference between these enzymes
in K. lactis and S. cerevisiae.

As explained above, the K. lactis rag2 mutant growing in
glucose (re-routing this sugar through PPP) or fructose
(glycolysis) produces different NADPH cytosolic levels.
When the K. lactis rag2 mutant grows in glucose, there is a
transcriptional gene induction of the external alternative
dehydrogenases if compared with mRNA levels obtained
for the rag2 mutant growing in fructose or the wild-type
strain growing in glucose. This induction is necessary for
rapid NADPH reoxidation by these enzymes and it is low-
ered after treatment with H2O2, i.e. after induction of the
NADPH-consuming defence mechanisms against oxida-
tive stress, and specifically TRR [23,29]. The comparison
of GLR activity in the K. lactis rag2 mutant growing on glu-
cose vs. fructose and vs. the wild-type strain shows a small
but significant increase [10,28] that is not shown at a tran-
scriptional level [29,31].

To test the relative importance of these enzymatic activi-
ties, external mitochondrial dehydrogenases vs. TRR or
GLR, for NADPH reoxidation, it was also assayed whether
the impaired growth on glucose of the rag2 mutant when
the respiratory chain was blocked, either by Antimycin A

3D-model of Kluyveromyces lactis glutathione reductase performed with PyMOL Molecular Viewer http://pymol.source-forge.net/ (A) Domains are marked in coloursFigure 4
3D-model of Kluyveromyces lactis glutathione reductase performed with PyMOL Molecular Viewer http://
pymol.sourceforge.net/ (A) Domains are marked in colours. Blue: dimerization domain. Yellow: NADPH binding 
domain. Red: FAD binding domain. The arrow points out the disulphide bridge that makes up the catalytic domain (B) Residues 
different from S. cerevisiae glutathione reductase are marked in blue, these differences do not affect significantly the overall 
structure of the protein.
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or by hypoxia, could be restored by means of increasing
TRR or GLR activity. The result was negative in both assays
[28]. The rag2 mutant does not grow under hypoxia in
spite of the hypoxic increase in KlTRR1 expression and
enzymatic activity in the rag2 mutant, compared to the
wild-type strain [29] and it does not grow on glucose with
Antimycin A even if KlTRR1 expression is induced by per-
oxide treatment [28]. In a similar way, KlGLR1 overexpres-
sion does not restore growth on glucose of the rag2
mutant when the mitochondrial reoxidation of cytosolic
NADPH is blocked by Antimycin A [28].

The role of GLR activity in cytosolic NADPH reoxidation
is supported by the remark that the expression of the
KlGLR1 gene, under its own promoter in an episomal
plasmid, completely restores the growth on glucose of the
S. cerevisiae pgi1 mutant [10]. In S. cerevisiae and other
organisms, GLR has been reported to regulate the activity
of glucose-6-P dehydrogenase by controlling the NADP+/
NADPH ratio through redox interconversion of glutath-
ione [85]. In fact, the increase of GLR activity in the K. lac-
tis rag2 mutant is positively correlated with the glucose-6-
phosphate dehydrogenase (G6PDH) activity that pro-
duces NADPH and it is also positively regulated by an
active respiratory chain [28].

Moreover, to support further the role of GLR in cytosolic
NADPH reoxidation in K. lactis, the growth on glucose of
the double null mutant ΔKlglr1Δrag2 is improved in com-
parison with the rag2 strain. This was attributed to the
deviation of NADPH from GLR to the mitochondrial
dehydrogenases. Thus, more energy is obtained, since the
reoxidation of the NADPH from the PPP by mitochon-
drial external dehydrogenases yields ATP but the reoxida-
tion by GLR does not [28].

Glutathione transferases in K. lactis
The glutathione transferases (GSTs) function as detoxifi-
ers of electrophilic compounds such as xenobiotics, anti-
cancer drugs, heavy metals or products of oxidative stress
by conjugating them to GSH and excreting the GSH-con-
jugated molecules with improved solubility. Structurally,
GSTs belong to the thioredoxin-fold group. In S. cerevisiae
there are two standard GSTs (Gtt1 and Gtt2), which over-
lap functionally with Grx1 and Grx2. Gtt1 is associated to
the endoplasmic reticulum and Gtt2 is mitochondrial
[86,87]. Also, S. cerevisiae contains three omega-class GSTs
(Gto1, Gto2 and Gto3), which are not active against
standard GSTs substrates but are active as thiol oxidore-
ductases (GRXs). They make up a mixed disulphide
between GSH and a N-terminal Cys of the GST molecule.
Gto1 is peroxisomal, Gto2 and Gto3 are cytosolic [52,88].

The K. lactis genome database contains two sequences
annotated for GSTs: KLLA0A00264g is highly similar to S.

cerevisiae Gtt1 and KLLA0F12056g is similar to S. cerevisiae
Gto2. KLLA0F12056g also shows 55% identities with S.
cerevisiae Gto3. The sub-cellular localization predicted by
WoLF PSORT [36] is mainly mitochondrial for KlGtt1 and
nuclear for KlGto2 (Figure 2 and Additional File 1). Since
no further information is available on these genes in K.
lactis, the comparison with the situation in S. cerevisiae is
waiting for future experimental data reports.

Transcriptional regulators of the response to oxidative 
stress in K. lactis
Comparison of the Yap family of b-ZIP proteins in S. cerevisiae and 
K. lactis
In S. cerevisiae the Yap1 transcriptional factor (for yeast
AP-1 factor) is the major regulator of the oxidative stress
response. It was initially observed that the Δyap1 deletion
mutant is hypersensitive to peroxides, H2O2 and t-BOOH,
and also to chemicals which generate superoxide anions.
These latter include menadione, plumbagine and methyl-
viologen. Δyap1 is also hypersensitive to cadmium, meth-
ylglyoxal and cycloheximide. Yap1 is therefore central to
the adaptive response to oxidative stress, regulating not
only the response to H2O2-induced stress, but also that to
chemical oxidants (redox cycling chemicals, thiol oxi-
dants and alkylating agents), cadmium and drug stress
[89-91].

In S. cerevisiae, the Yap family of b-ZIP proteins comprises
eight members (Yap1-Yap8) with a significant sequence
similarity to the yeast factor Gcn4 at the DNA-binding
domain [89]. The Yap family is involved in a variety of
stress-related programmes, including the response to
DNA damage and oxidative, osmotic, and toxic metal
stresses. The members of the Yap family carry out overlap-
ping but distinct biological functions.

YAP2 overexpression confers resistance to cadmium, ceru-
lenin and 1,10-phenanthroline, among others [90] and
the yap2 null shows decreased resistance to oxidative
stress and 5-fluoruracil http://www.yeastgenome.org/cgi-
bin/locus.fpl?locus=YAP2. Yap4 and Yap6 are the Yap
family members which share the greatest similarity at the
protein level, showing almost 33% identity between them
[91]. YAP4 is induced under hyperosmotic stress and reg-
ulated by Msn2 in a Hog1-dependent way via the STRE
element present in the upstream promoter region [92].

In S. cerevisiae, resistance to arsenic is achieved through
the activation of the arsenic compounds-resistance (ACR)
cluster [93], which is made up of the positive regulator
Acr1 (Yap8), the arsenate-reductase Acr2 and the plasma
membrane arsenite efflux protein Acr3 [94]. The YCF1
(yeast cadmium factor) gene encodes an independent
detoxification system that also sequesters arsenic into the
vacuole [95,96]. Induction of the expression of ACR2,
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ACR3 and also YCF1 by the transcription factor Yap8 is
essential to arsenic stress response [97]. Besides, Yap1, 2,
4, 5, and 6 have been related to the cellular response to
methylmethanesulfonate (MMS), a DNA alkylating agent
[98-104].

To sum up, functionally, Yap1 is the major regulator of
oxidative stress, Yap2 of cadmium stress, Yap4 and Yap6
of osmotic stress and Yap8 of arsenic stress [89] in S. cere-
visiae. There is also evidence of cross-talk between Yap
members. For instance, the yap1yap2 double mutant is
more sensitive to oxidative stress than either single
mutant alone, as the yap1yap8 double mutant is to arsenic
stress [90].

After sequencing the K. lactis genome, the ORF
KLLA0A01760g has been proposed as the YAP1 ortholog
and KLLA0D14399g as the YAP5/YAP7 ortholog [105].
We have carried out an extensive study of the K. lactis
genome looking for Yap homologues. Additional File 2
shows the identities found between the S. cerevisiae Yap
family and several K. lactis ORFs using Bl2seq alignment
http://blast.ncbi.nlm.nih.gov/Blast.cgi between related
proteins from K. lactis and S. cerevisiae. The Skn7 transcrip-
tional factor, related to oxidative stress response [106-
108] has also a homologue in K. lactis, KLLA0A10219g.

S. cerevisiae Yap1 and Yap2 are closely related to
KLLA0A01760g and might be derived from a common
ancestor. In this regard, experimental data have shown
that the KlYAP1 gene (KLLA0A01760g) is able to comple-
ment in S. cerevisiae both yap1 and yap2 mutations [109].
Besides, gene disruption experiments in K. lactis indicate
that the KlYAP1 gene is involved in both the oxidative and
cadmium response pathways [109].

Data from Additional File 2 show that KLLA0B13695g is
more closely related to Yap3, KLLA0E16875 to Yap4 and
Yap6, KLLA0D14399g to Yap5 and Yap7 and
KLLA0E00265g to Yap8. Using the alignments of the bZip
domains, the cladogram (Figure 5) shows also the same
relationship between S. cerevisiae and K. lactis genes. This
suggests that, after genomic duplication [110,111]Saccha-
romyces-yeasts evolved by increasing the number of the
Yap family of b-ZIP proteins. Figure 6 shows the conserva-
tion of the basic region and Leu zipper in the bZip domain
of the KlYAP genes as well as positional coincidence of the
domain in the topology of orthologs from K. lactis and S.
cerevisiae. Experimental data on the function of these
genes in K. lactis are necessary to clarify whether there is
some functional specialization of these transcriptional
factors related to specific forms of stress as previously
reported in S. cerevisiae.

Yap1 and their partners in redox-sensing
In S. cerevisiae, Yap1 is activated upon exposure to oxi-
dants by a mechanism which acts on its subcellular pro-
tein localization. In non-stressed cells, rapid nuclear
export of Yap1 prevents its nuclear regulatory function.
The Yap1 nuclear export signal (NES) is embedded in a
Cys-rich domain located at the C-terminal part of the pro-
tein (C-CRD). There is another Cys-rich domain in Yap1,
located at its N-terminus (N-CRD). Transitional redox
conformation is converted into Yap1 due to the intramo-
lecular reorganization of Cys disulphide bonds which
cause NES or hidden exposition. Activation by increased
levels of ROS requires both the C-CRD and N-CDR cen-
tres, while response to thiol reactive chemicals requires
only C-CRD [50,112-118]. In KlYap1 there is a good con-
servation of Cys residues and the NES signal embedded in
the C-CRD and two Cys from the N-CRD are also con-

Cladogram showing the phylogenetic relationships between the Yap factors from S. cerevisiae and K. lactis orthologsFigure 5
Cladogram showing the phylogenetic relationships between the Yap factors from S. cerevisiae and K. lactis 
orthologs. Distances are indicated after the protein or ORF names.
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served (Figure 6). Therefore, the existence of mechanisms
for redox-regulation of KlYap1 cellular location by ROS
and thiol reactive chemicals is predictable. We have
explored the K. lactis genome looking for orthologs of the
necessary partners of Yap1 for this regulation, Orp1/
Gpx3, Crm1 and Ybp1. Orp1 is a thiol peroxidase (Gpx3)
that functions as a hydroperoxide receptor to sense intra-
cellular hydroperoxide levels and transduces a redox sig-
nal to the Yap1 transcription factor [53]. Ycb1 is a protein
required for oxidation of specific Cys residues of the tran-
scription factor Yap1, resulting in the nuclear localization
of Yap1 in response to stress [119]. Ybp2 has a significant
role in resistance to oxidative stress and has a sequence
similarity to Ybp1. KLLA0F06732g has 80% identity to
Gpx3. KLLA0E16061g has 86% homology to Crm1.
KLLA0C05698g has 50% homology to Ybp1 and 50%
homology to Ybp2 but only one gene is present in K. lactis.

Other transcriptional factors related to oxidative stress in K. lactis
Besides the Yap family of transcription factors and their
effectors discussed above, we have recently found that the
transcriptional factor KlHap1, which in S. cerevisiae con-
trols the activation of respiratory genes during aerobiosis
and has unknown functions during anaerobiosis [39], in
K. lactis it is involved in the oxidative stress response.
Transcriptional expression of KlHAP1 is dependent on
oxygen availability, increasing its expression in hypoxia.
Deletion of KlHAP1 increases the resistance to oxidative
stress or cadmium tolerance. Moreover, the induction of
KlYAP1 and KlTSA1 after the addition of 0.5 mM H2O2 is
repressed by KlHap1 [120]. This repressor effect of
KlHap1 might be physiologically important in the context
of a very active respiratory metabolism in K. lactis, prone
to producing oxidative damage. The negative effect of
KlHap1 on KlYAP1 and KlTSA1 expression would serve to
attenuate this response. It has been reported that the
KlHAP1 disruptant shows temperature-sensitive growth at
low glucose concentration and that KlHap1 represses the
expression of the major glucose transporter gene RAG1
[121]. The dual control of KlHap1 over the glucose trans-
port, conditioning the respiro-fermentative metabolism

of the cells, as well as over KlYAP1 and KlTSA1 is a new
clue about the close interrelationship between control of
metabolic fluxes and oxidative stress response.

Biotechnological applications of redox-control in yeasts
Differential production of ROS or response to oxidative
stress in yeast species or strains from the same species has
not only a scientific interest but also biotechnological
implications in several fields.

One of these fields is the use of yeasts as cell factories. K.
lactis is one of the most important non-Saccharomyces
yeasts used as a host for heterologous protein production
[122]. In K. lactis, an increased amount of ROS is present
in cells expressing high levels of heterologous proteins.
This fact plays an important role in the limitation of
recombinant protein production which has to be over-
come by using engineered strains with increased ROS
detoxification mechanisms, for example by overexpres-
sion of KlSOD1 [37].

K. lactis is able to metabolize the milk sugar lactose, for
this reason the whey obtained as a by-product of cheese
making is a suitable substrate for the culture of this yeast
and heterologous protein production. The K. lactis tran-
scriptome in synthetic and cheese whey media was com-
pared by DNA-array analysis and it was found that several
genes related to GSH metabolism and oxidative stress
response are over-expressed in cheese whey; these include
KlGLR1 (KLLA0E24112g), KlGRX3 (KLLA0C17842g),
KlCTA1 (KLLA0D11660g), KlSOD1 (KLLA0E05522g),
KlGRX5 (KLLA0B09636g), KlCTT1 (KLLA0D14685g) and
KlYHB1 (KLLA0B14476g) encoding a nitric oxide oxi-
doreductase, a flavohemoglobin involved in nitric oxide
detoxification that plays a role in oxidative and nitrosative
stress responses. Moreover, the groups of genes of protein
glycosilation and post-translational processing are also
differentially expressed in the two media. These data give
support to the reports on the benefits of using cheese
whey and K. lactis for heterologous protein secretion
[123].

Alignment of the N-CRD and C-CRD domains of S. cerevisiae Yap1, Yap2 and K. lactis Yap1Figure 6
Alignment of the N-CRD and C-CRD domains of S. cerevisiae Yap1, Yap2 and K. lactis Yap1.

                                   N-CRD      C-CRD 

                        
ScYap1 301   -------EFCSK--MN-QVCGTR--QCPI-   LRCSEIWDRITTHPKYSDIDVDGLCSELMAKAKCSERG- 633 
KlYap1 256   QFDESVSSFCSK--LS-MACGTK--SNPI-      LKCSEVWDRITAHPRYSDLDIDGLCLELRTKAKCSEKG- 566 
ScYap2 287   ---SQCNNICNRKCIGTKPCSNKEIKCDLI     ASCYHILEEISSLPKYSSLDIDDLCSELIIKAKCTDDCK 392 
     .:*.:  :.   *..:  .  :    * .: :.*:: *:**.:*:*.** **  ****:: 
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Some yeast strains are used to ferment sugars into fuel eth-
anol or beverages. It has been shown that hypoxic fermen-
tation in media containing high concentration of sugar
causes stress conditions, which results in the production
of ROS and triggers an antioxidant response, as well as in
the fact that the ROS scavenging ability is involved in the
maintenance of the fermentative ability of yeast strains
used in industrial processes [124].

Glutathione has several uses in pharmacology, cosmetics
and food industries, and companies are interested in pro-
ducing it. Some yeast strains, such as S. cerevisiae and Can-
dida utilis, are currently used for fermentative glutathione
production on an industrial scale. Improved yields have
been obtained by optimizing the culture media and con-
ditions, through mutagenesis and by overexpression of
the genes of glutathione biosynthesis, mainly GSH1 that
catalyzes the limiting step [125-129]. In K. lactis, it has
been described that GSH homeostasis is linked to the floc-
culation mechanism and a possible biochemical regula-
tion of lectin expression by GSH levels in cells has been
postulated [130]. This characteristic could be exploited in
biotechnological processes, for example, some disinfec-
tion procedures use oxidants that influence GSH homeos-
tasis and therefore the degree of microorganisms
aggregation which, in its turn, might be involved in partial
deficiency of such disinfection procedures [130].

Another field is the use of yeast mutants as models of
aging research [131-133] and in human pathologies
related to oxidative stress [134,135]. Although, once
more, most studies have been performed with S. cerevisiae,
the fermentative prototype, the differences found with K.
lactis suggest the applicability of this respiratory yeast as
an alternative model. For example, whereas in S. cerevisiae
caloric restriction causes an increase in longevity, this
does not occur in K. lactis [19]. Also, yeast cells that exclu-
sively respire have been proposed as more reliable models
of the highly oxidative neuronal metabolism [135].
Another example is the differential regulation of mito-
chondrial alternative dehydrogenases from the two yeasts
[22]. Since these enzymes are not present in mammals,
they are being used in the development of selective thera-
peutic drugs for pathogens [136]

Conclusion
Whereas S. cerevisiae is a fermentative yeast considered the
eukaryote model for studies on oxidative stress, K. lactis is
a respirative yeast that emerges as an alternative model.
The knowledge about the oxidative stress response path-
ways in K. lactis is hitherto little if compared with S. cere-
visiae but the full genome sequences of both yeasts are
available and studies based on sequence homology can be
performed. This approach suggests that the same path-
ways of the oxidative stress response are present in both

yeasts and that genes are generally conserved. However,
several functional differences have appeared and they
have been attributed to differences in their respiro-fer-
mentative metabolism. These differences constitute new
promising research fields and applied biotechnological
implications are also envisaged.
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