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Abstract

BiolVled Central

A range of industrial H. polymorpha-based processes exist, most of them for the production of
pharmaceuticals. The established industrial processes lean on the use of promoters derived from
MOX and FMD, genes of the methanol metabolism pathway. In Hansenula polymorpha these
promoters are de-repressed upon depletion of a range of carbon sources like glucose and glycerol
instead of being induced by methanol as reported for other methylotrophs. Due to these
characteristics screening and fermentation modes have been defined for strains harbouring such
expression control elements that lean on a limited supplementation of glycerol or glucose to a
culture medium. For fermentation of H. polymorpha a synthetic minimal medium (SYN6) has been
developed. No industrial processes have been developed so far based on Arxula adeninivorans and
only a limited range of strong promoter elements exists, suitable for heterologous gene expression.
SYNG6 originally designed for H. polymorpha provided a suitable basis for the initial definition of
fermentation conditions for this dimorphic yeast. Characteristics like osmo- and thermotolerance
can be addressed for the definition of culture conditions.

Hansenula polymorpha and Arxula adeninivorans
and their competitive environment

In the last three decades a wide range of recombinant pro-
teins, especially pharmaceuticals, have been produced
based on heterologous gene expression in bacterial organ-
isms, mammalian cells and several yeasts and fungi [1-3].
Production processes had to be developed that employ
platforms which meet both, the demand for efficient mass

production and criteria of safety and authenticity of the
produced compounds. In this respect yeasts offer consid-
erable advantages over alternative microbial and mamma-
lian cell systems in providing low-cost screening and
production systems for authentically processed and mod-
ified proteins. The organisms meet safety prerequisites in
that they do not harbour pyrogens, pathogens or viral
inclusions [4,5]. Recent engineering of yeast hosts with
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the capability to add humanized N-glycans of the inter-
mediate mannose type [6] or even the complex type [7]
provides the option to produce biopharmaceuticals with
human protein modifications. The recognition of yeasts
as attractive expression platforms for biopharmaceuticals
is met by genome analysis of an increasing number of
yeast species, among others that of Saccharomyces cerevisiae
[8] and Hansenula polymorpha [9].

As a consequence some early examples of FDA-approved
biopharmaceuticals like insulin [2] and hepatitis B vac-
cines [10,11] have been produced in the baker's yeast S.
cerevisiae. However, certain limitations and drawbacks are
encountered when using this system: S. cerevisiae tends to
hyperglycosylate recombinant proteins; N-linked carbo-
hydrate chains are terminated by mannose attached to the
chain via an a1,3 bond, which is considered to be aller-
genic. The limited carbon source utilization imposes
restrictions on the design of fermentation processes; due
to the preferential use of episomal vectors instabilities of
recombinant strains and as a result batch inconsistencies
of production runs are of major concern [12].

Therefore an increasing number of alternative yeast sys-
tems have been defined that can potentially overcome the
described limitations of the traditional baker's yeast. The
availability of a wide-range yeast vector system (CoMed™)
enables the assessment of several yeasts in parallel for
their capability to produce a particular protein in desired
quality with a single vector to identify an optimal host at
the beginning of a product and process development. For
expression control the wide-range vector contains a con-
stitutive TEF1 promoter derived from various sources that
is active in all yeast species analyzed so far. If needed this
promoter element can easily be substituted during further
strain development by a promoter optimal for the defined
platform [[13], Additional file 1]. Out of the plethora of
addressable species we describe in this article methylo-
trophic H. polymorpha, a recognized producer of biophar-
maceuticals and other recombinant proteins, and
dimorphic Arxula adeninivorans, a novel platform that has
yet to establish itself for industrial applications. First
experiments indicate that screening and fermentation
conditions based on minimal SYN6 medium (SYN6) with
glucose supplementation as described in this article can
also be applied to yeast platforms others than H. polymor-
pha and A. adeninivorans.

H. polymorpha (Pichia angusta) belongs to a limited
number of yeast species that are able to utilize methanol
as a sole energy and carbon source. Two out of three basic
strains with unclear relationships, different features, and
independent origins are biotechnologically applied: strain
CBS4732 (CCY38-22-2, ATCC34438, NRRL-Y-5445) and
DL-1 (NRRL-Y-7560, ATCC26012) and auxotrophic
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derivatives thereof [14,15]. A micrograph of a H. polymor-
pha cell prepared from a chemostat with a methanol feed
is shown in Fig. 1a.

The range of biotechnologically applied methylotrophic
yeasts furthermore includes Candida boidinii, Pichia meth-
anolica, and Pichia pastoris [16]. In all instances most
examples of heterologous gene expression are linked to
strong and adjustable promoters derived from genes of
the methanol utilization pathway [12,17], most com-
monly the elements derived from the alcohol oxidase
genes, namely AOX1 from P. pastoris [16-18], MOX from
H. polymorpha [14,17]; AOD1 from C. boidinii [16,17,19]
and AUGI (now designated MOD1) from P. methanolica
[16,17,20]. In H. polymorpha the FMD (formate dehydro-
genase) promoter, derived from another methanol utiliza-
tion pathway gene of similar regulation, has found
preferential application to established industrial processes
[14,16].

A. adeninivorans (Blastobotrys adeninivorans) is a yeast with
unusual characteristics. It is a dimorphic species and can
utilize adenine, xanthine, uric acid, putrescine and n-
alkylamines as carbon, nitrogen or energy sources in addi-
tion to glucose. Like H. polymorpha it is a nitrate-assimilat-
ing, thermo- and osmotolerant organism. A distinctive
feature is a temperature-dependent dimorphism with
myecelial structures formed at temperatures above 42°C
[5,12] [Fig. 1b, c]. For Fe(Il)-oxidase Afet3p, O-glycosyla-
tion was observed to be restricted to the budding cell sta-
tus [21]. It remains to be shown whether this differential
O-glycosylation pattern in correlation to the morphologi-
cal status is also present in recombinant and other host
proteins. Again, several strains have been identified after
its first description as Trichosporon adeninovorans [22].
Most of the research and the biotechnological applica-
tions have been performed with strain LS3 (PAR-4), iso-
lated in Sibiria by Kapultsevich, and a range of
auxotrophic mutants have been generated [5,12]. Strain
135 is a mutant that forms mycelial structures at 30°C
[23]. Recently auxotrophic host strains for heterologous
gene expression have been generated based on strains
CBS7350 and CBS1738 (see Tab. 1). So far, no industrial
A. adeninivorans-based process exists. For expression and
fermentation studies on a laboratory scale heterologous
genes were mostly expressed under control of TEF1, a con-
stitutive A. adeninivorans-derived promoter of appropriate
strength [5].

For description we selected established H. polymorpha-
based processes with strains expressing a heterologous
gene under control of the adjustable FMD and MOX pro-
moters and A. adeninivorans-based lab scale processes with
strains expressing a heterologous gene under control of
the constitutive A. adeninivorans-derived TEF1 promoter,
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Figure |

Microscopy analysis of Hansenula polymorpha and
Arxula adeninivorans cells. a H. polymorpha cell grown in a
methanol-supplemented chemostat (courtesy by M. Veen-
huis, Groningen). Under these growth conditions prolifera-
tion of peroxisomes is induced. b A. adeninivorans cells grown
at 37°C. c A. adeninivorans cells grown at 42°C. Dimorphic A.
adeninivorans grows in filamentous forms above 42°C.
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with culturing conditions that can possibly be applied to
the assessment of other yeasts with constitutive heterolo-
gous gene expression. Micrographs of the two selected
platforms are shown in Fig. 1.

H. polymorpha-based processes under control of
MOX and FMD promoters — a re-assessment
MOX and FMD are genes encoding enzymes of the meth-
anol utilization pathway that is shared by all methylo-
trophic yeasts. The enzyme components of this pathway
and their control have been reviewed extensively in the
recent past [4,17,19]. The genes of this pathway are
described to be tightly regulated; they are highly repressed
in the presence of non-limiting concentrations of glucose
and strongly induced if methanol is used as a carbon
source [17]. Methylotrophic growth is furthermore
accompanied by a massive proliferation of peroxisomes in
which several methanol-metabolizing enzymes are com-
partmentalized [19,24]. However, it soon became evident
that activation of methanol pathway promoters did not
depend on the presence of methanol in H. polymorpha in
contrast to the situation in the other methylotrophs [16].
For all other methylotrophic yeast species an inductive
activation of such promoters has been stated that is strictly
dependent on the presence of methanol [17]. As a conse-
quence several H. polymorpha-based industrial fermenta-
tion processes have been defined that lean on glucose or
glycerol supplementation in suitable concentrations to a
culture broth without any methanol additions [1,25,26].

The distinct feature of the H. polymorpha-derived metha-
nol pathway promoters was elucidated, when new tools of
genomics and postgenomic analysis became available.
After sequencing the entire genome of strain CBS4732 [9]
a cDNA microarray was constructed that allowed compre-
hensive gene expression profiling [27,28]. When analyz-
ing the transcriptome of H. polymorpha strains of glucose-
supplemented growth and after transition to methanol-
supplemented growth it became evident that the metha-
nol dissimilation genes including MOX and FMD are acti-
vated by de-repression upon carbon source limitation and
depletion and not upon induction by methanol. In con-
trast genes of peroxisome biogenesis and proliferation are
induced by methanol [14,15].

With respect to these findings, recombinant H. polymorpha
strains expressing a GFP reporter gene under control of the
FMD promoter were screened applying glucose- or glyc-
erol-supplemented media to strain culturing.

High throughput screening experiments are usually per-
formed in a batch-mode [29]. Jeude et al. described a sys-
tem for the slow release of glucose from a silicone
elastomere matrix in shake flask [30]. They showed the
advantage of using fed-batch cultivations in contrast to
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batch cultivations in small scale, where up to 420-fold
increased GFP production was reached [30]. The slow-
release technique was transferred to a deep-well-plate for-
mat. In these plates the glucose-containing silicone matrix
is fixed at the bottom of each well. Hence, 96 parallel fed-
batch-cultivations can be performed. A comparative
screening with different H. polymorpha pC10-FMD (Ppyp-
GFP) strains (strains of a CBS4732 background) [31] was
performed in batch mode with glycerol and glucose sup-
plementation and in fed-batch mode with glucose supple-
mentation [Fig. 2a]. The comparison attests that clones
with an FMD promoter-controlled gene expression can be
screened in small volumes of media supplemented with
glycerol or glucose. This supports that methanol pathway
promoters are activated upon glycerol and glucose deple-
tion as suggested by the transcriptome analysis. Interest-
ingly some clones of maximal productivity identified
under conditions of glucose starvation (fed-batch condi-
tions) are not identical to those identified under condi-
tion of glycerol starvation (batch conditions). The reasons
for this phenomenon remain obscure. MOX promoter-
driven GFP expression under glucose starvation condi-
tions was corroborated for recombinant strains of a DL-1
background cultured in a different medium and on a
larger scale as shown by fluorescence analysis in Fig. 2b.

The commercial success of a recombinant product does
not depend only on the characteristics of the microbial
host but also to a large extent on the definition of efficient
fermentation processes. In case of H. polymorpha, a
defined minimal mineral medium has been developed
designated SYNG [25,32]. It is composed of salts, vitamins
and trace elements to support growth to high cell densities
and it has to be adjusted to appropriate pH conditions
and has to be supplemented with suitable carbon sources
(for details of components see [32]). The fermentation
strategy in previous established process developments
with FMD or MOX promoter-driven production relied on
growth using either glucose or glycerol in the beginning of
fermentation, followed by carbon source limitations in a
second phase. The respective fermentation parameters for
the supplementation of glucose or glycerol have been
defined prior to the elucidation of the transcriptome pro-
file described before. In a single process example the fer-
mentation broth was supplemented in a late phase with
methanol. The three different fermentation modes are
schematically depicted in Fig. 3a-c.

An early example for a glycerol starvation process is the
production process for hirudin [33-35] [Fig. 3a]. As in all
other described processes expression vectors were con-
structed to transform the uracil-auxotrophic strain RB11,
like strain MedHp1 (Tab. 1) a derivative of strain LR9 [36-
38]. The vectors contain an expression cassette with a
hirudin sequence under control of the MOX promoter.
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For secretion it was fused to a secretion leader, derived
from the pheromone precursor MFalp [33]. Fermenta-
tion on a 35 liter scale was carried out at 30°C in SYNG at
pH 5. It was started with 30 g/L of glycerol. After con-
sumption of the carbon source after 35 hours a feed was
initiated that added glycerol by a pO,-controlled feeding
device. Hirudin production started after some 20 hours
when the MOX-promoter was activated by de-repression
under glycerol limitation. The subsequent feeding condi-
tions supported the de-repressed status of the promoter by
maintaining glycerol concentrations between 0.5 and 3.0
g/L. These feeding conditions resulted in an increasing
accumulation of the product in the medium [33,34,39]
[Fig. 3a].

Similar fermentation conditions were applied to culturing
of production strains for the anticoagulant saratin [35,39]
or for aprotinin [37], now applying the FMD promoter to
expression control. This fermentation design was modi-
fied when developing a production process for the
cytokine IFNalpha-2a [40,41]. IFNalpha-2a forms a
disulfide bond between amino acids Cys1l and Cys98.
Bond formation of the first amino acid Cys1 of the mature
sequence provides a steric hindrance for correct matura-
tion when processed from an MFa1/IFNalpha-2a precur-
sor. Accordingly a large share of secreted recombinant
hirudin consisted of incorrectly processed molecules with
N-terminal extensions. This could be overcome by co-pro-
duction of the processing enzyme Kex2p, however at the
expense of a more pronounced proteolytic degradation.
To minimize this degradation pH was lowered from pH 5
(as applied to standard fermentations) to pH 2-3. The
glycerol starvation conditions for FMD promoter de-
repression remained unchanged.

For the production of phytase an extremely efficient pro-
duction process has been developed. In this process all
steps and components of the process followed a rationale
of efficiency and cost-effectiveness. This rationale pro-
voked an assessment of glucose as sole carbon source for
fermentation [42]. In a fermentation of a phytase produc-
tion strain with FMD-controlled expression on 2000 L
scale glucose was supplemented as 20 g/L. Upon deple-
tion, a glucose-limiting feed was initiated that added the
carbon source with a stepwise increasing feeding rate in
correlation to the cell mass. In this glucose starvation
process a final yield of 13.5 g/L phytase was observed
[42,43] [Fig. 3b].

The only established industrial fermentation process with
methanol supplementation is that for the production of
the hepatitis B surface antigen HBsAg, the first biophar-
maceutical produced in H. polymorpha. Several processes
for this vaccine have been described that are based on
both, MOX or FMD-controlled expression [11]. In Fig. 3¢
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Figure 2

Methanol pathway promoter-controlled GFP production
in recombinant H. polymorpha strains. A. Screening of
CBS4732-derived transformants producing GFP under control of
the FMD promoter. Screening of 44 different H. polymorpha
pC10-FMD (Pgmp-GFP) clones cultured under different cultivation
modes; screening experiments were performed in deep-well-
plates for batch and in FeedBead96-plates for fed-batch cultiva-
tion. Gas permeable sealings were used as sterile closures. To
reduce the evaporation during the cultivation, water-saturated air
was used for gassing. To compare the results from the different
cultivation modes an identical carbon source concentration of
16.63 g/ were applied to each fermentation (batch with glycerol,
batch with glucose, fed-batch with glucose). The batch cultivations
were stopped when the stationary growth phase (glycerol 21 h,
glucose 16 h) was reached and the fed-batch cultivations were
stopped when 16.63 g/L glucose were released from the
FeadBeat96-plate (16 h). Dry cell weight (DCW) was calculated
from optical density measurements in a PowerVWave %340 micro
titer plate reader. Green Fluorescent Protein (GFP) was meas-
ured at 485 nm excitation and 520 nm emission wavelengths. Cul-
tivation conditions: shaking frequency 400 rpm, shaking diameter
50 mm, temperature 37°C, filling volumes 300 pL per well; media:
SYN6-MES with 16.63 g/L of different carbon sources. Carbon
sources: batch mode with glycerol (black line), batch mode with
glucose (grey bars), fed-batch mode with glucose (black bars);
inocula ratio 1:30. B. GFP production in a DL-1-derived trans-
formant under control of the MOX promoter. H. polymorpha
transformants producing GFP under control of MOX promoter
were cultured for 12 h on YP medium containing 10 g/L methanol
(YP+19%M) or 0.5 g/L glucose (YP+0.05%D) and then analyzed by
confocal microscopy.
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a typical fermentation process is schematically shown.
The batch phase and a first fed-batch phase is similar to
the examples of glycerol starvation described before [Fig.
3a]. In contrast a mixture of glycerol and methanol is fed
during the last hours of fermentation. Obviously this
results in an inductive increase of HBsAg production.
However, in view of the transcriptome profiling it seems
that methanol supplementation does not induce the
FMD-controlled expression of the heterologous antigen
gene, but it induces membrane proliferation. As the
HBsAg is produced as particles with the recombinant anti-
gen inserted into host-derived membranes, methanol is
considered to provide a balanced co-production of both
particle components in high titers [10,11].

The selected process examples demonstrate the possibility
to develop efficient screening and fermentation processes
for strains with MOX- or FMD-driven heterologous gene
expression without methanol supplementation to a
medium.

Culturing of Arxula adeninivorans strains

For A. adeninivorans industrial process parameters have
not been defined yet and mainly cultivations on a shake
flask scale have been carried out so far. Most of the current
expression studies are based on wild type strain LS3 [44]
or its leucine-auxotrophic derivative G1211. Additional
strains and leucine-auxotrophic mutants thereof have
been established more recently (see Tab. 1).

Acid phosphatase production was characterized in fer-
mentations of both strain LS3 and a recombinant strain
expressing the APHO1 gene under control of the strong
TEF1 promoter [45]. Using the Plackett-Burman design
three variables (pH, sucrose concentrations, and peptone
concentration) were optimized for medium composition,
a roughly four times enhancement was observed in media
containing 39 g/L sucrose and 16 g/L peptone at pH 3.8
[46].

Shake flask cultures of A. adeninivorans strains were ana-
lyzed using a device for online measurement of the respi-
ration rates (RAMOS, respiratory activity monitoring
system) [47,48]. This device had previously been applied
to the analysis of H. polymorpha cultures and to alternative
platforms [49-52].

In a first series yeast minimal medium (YMM) was
assessed. Prior to any practical experiment, YMM ammo-
nium concentration of the standard medium was raised
from 2.2 mmol N/g glucose to 4.6 mmol N/g glucose
since theoretical material balancing revealed a severe lack
of nitrogen with regard to the average nitrogen content of
yeast. The culture broth was additionally supplemented
with calcium and iron in higher concentrations as well as
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Figure 3

A, B, C: Schematic depiction of H. polymorpha-based fermentation processes. The figures are modified versions of
figures from previous publications. For further details see text. a fermentation of a hirudin-producing strain (MOX promoter-
controlled expression, glycerol starvation), b fermentation of a phytase-producing strain (FMD promoter-controlled gene
expression, glucose starvation), ¢ fermentation of a HBsAg-producing strain (FMD promoter-controlled expression, glycerol
starvation, followed by a glycerol/methanol feed). dotted line: dry cell weight, solid line: glycerol (a, c) or glucose (b), chain dot-
ted line: glucose feeding rate (b) or methanol (c), dashed line: product of a, b and c respectively.
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respiration rate [mmol/(L*h)]

Figure 4

Assessment of minimal media for Arxula adeninivo-
rans LS3 by measuring respiration rates in shake flask
cultures (for operating conditions and media formu-
lation see [25]). Original YMM (black circles), containing
poor concentrations of calcium (0.338 mg/L) and iron (0.041
mg/L), led to poor culture respiration rates below 10 mmol/
(L*h). Modified YMM* (grey circles) is pH-buffered with MES
and contains higher concentrations of calcium (272.8 mg/L)
and iron (2.1 mg/L), thus leading to a more vital cultivation as
shown by the higher respiration rate of up to 25 mmol/(L*h)
and a condensed cultivation time of 24 hours (see drop of
respiration, signalling the depletion of the carbon source glu-
cose). SYN6-MES (open circles), containing exceeding nutri-
ent quantities, provided non-limited growth of the culture as
shown by the distinct exponential increase of respiration to
45 mmol/(L*h) and an early cease of respiration after only 15
hours, again signalling the depletion of carbon source.

with MES (2-[N-morpholino]ethanesulfonic acid) for
buffering to result in YMM* [25]. Despite nitrogen addi-
tion to YMM, the respective cultures remained limited as
shown representatively for A. adeninivorans LS3 in Fig. 4,
black circles. Initially, culture respiration increased expo-
nentially, but was then limited to 9 mmol/(L*h) after 13
hours, and continued to decline over fermentation time.
Finally only ca. 6.6 g dry cell weight (DCW)/L was
obtained.

In fermentations of strain LS3 in MES-buffered YMM* the
respiration rate exponentially increased followed by a lin-
ear increase presumably indicating a nutrient deficiency.
After 24 hours, respiration rate dropped upon glucose
depletion. [Fig. 4, grey circles].

Subsequently glucose-supplemented SYNG6 was assessed
for applicability to shake flask cultures of A. adeninivorans.
The high nutrient concentrations of standard SYNG6
remained unchanged. Again, the pH of SYN6 had to be
buffered with MES (SYN6-MES, see [25] for detailed
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description) for pH stabilization between 6.4 and 5.3. Fig.
4, open circles shows the respiration rate of a shake flask
culture with strain LS3 in SYN6-MES. The described cul-
ture course adverts to the non-limited growth of A. aden-
inivorans in the respective shake flask culture. Thus,
favourable non-limiting growth conditions for A. adenini-
vorans in shake flasks were proven to be developed.

Additionally suitable fed-batch conditions for high cell
density fermentations (HCDF) in SYNG6 were found. These
conditions were assessed for culturing a recombinant A.
adeninivorans strain producing phytase under control of
the TEF1 promoter [5,53]. During the feeding under glu-
cose-limitation phytase was secreted to maximal titres of
ca. 900 FTU/mL (one FTU equates to the phytase amount
liberating 1 pmol of inorganic phosphate per minute at
pH 5.5 and 37°C) [25]. Thus, the growth conditions
defined for shake flask cultures and HCDF of A. adeninivo-
rans wild type strain LS3, proved to be applicable for the
phytase-producing recombinant A. adeninivorans strain.
Finally the phytase-producing strain was cultured under
pressurized conditions in a 50 L STR, again using a SYN6-
derived medium for culturing. During the fed-batch phase
the reactor pressure was increased stepwise up to 5 bar.
After 42 h cells had grown up to 224 g/L. Phytase amount

f1(-) origin ‘,vNodule 1

Module 2

Amp(r)

pCoMed™
basic vector

Sall... TT—,
\ ﬂ

| . Module 3
"%dule 4
Figure 5

CoMed™ vector system. The basic vectors are derived
from standard vectors with an engineered multiple cloning
site (MCS) for the uptake of various modules. In its basic
form all modules are functional in all yeasts tested so far.
Module |: ARS/CEN sequences from various sources
(optional); Module 2: rDNA targeting sequences (NTS2-ETS-
18SrDNA-ITS| from various sources); Module 3: selection
markers (i.e. kanMX, hph, leu2, ura3 and combinations
thereof); Module 4: expression cassettes consisting of a TEF/
promoter from various sources — cloning site — terminator.
The wide-range TEF| promoter can easily be replaced by
alternative strong species-specific promoters like MOX or
FMD. For further details see text.

ColE1 ori
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increased up to 10 x 10°¢ FTU. Fermentations under pres-
surized conditions may result in increased product yields
and shorter fermentation time [54].

The conditions of culturing can potentially be applied to
screening and culturing of other yeasts expressing a for-
eign gene under control of a constitutive TEF1 promoter —
a key element of the CoMed™ system described in the fol-
lowing section.

The CoMed™ system

While all established expression systems are distinguished
by certain favorable characteristics, it is evident that no
single system is optimal for all proteins. An initial selec-
tion can result in costly time- and resource-consuming
failures. It is thus advisable to assess several platform can-
didates in parallel for criteria such as productivity, appro-
priate processing and modification. Production of
interleukin IL-6 in various yeast platforms has recently
been described as a striking example for the necessity of a
comparative evaluation of several yeasts. Correct process-
ing from an MFa.1/IL-6 precursor was observed in A. aden-
inivorans whereas N-terminally truncated molecules were
secreted from S. cerevisiae and H. polymorpha hosts [55]. A
novel yeast/vector system provides a versatile tool to
address simultaneously with a single vector a range of
yeasts like the two described before, namely Hansenula
polymorpha and Arxula adeninivorans, and others like Sac-
charomyces cerevisiae, Pichia pastoris, Kluyveromyces lactis. In
its basic form the vector is composed of genetic modules
that are functional in all yeasts, namely an rDNA targeting
sequence, an appropriate selection marker and an expres-
sion cassette under control of a TEF1 promoter from vari-
ous sources. The CoMed™ system has recently been
described and some application examples have been pro-
vided [13,55-57]. The basic design of the vector and a
selection of addressable yeast species are shown in Fig. 5
and Additional file 1.

It is desirable that the range of yeasts addressed in parallel
can be also assessed in parallel for optimal performance in
a given case. First experiments indicate that SYN6 and
derivatives thereof are suitable minimal media for yeasts
others than A. adeninivorans and H. polymorpha. The gen-
eral use of the constitutive TEF1 promoter is expected to
ensure screening and fermentation conditions similar to
those described for H. polymorpha and A. adeninivorans.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

CS, MS, BD, DK and JB contributed to the reviewed and
new data on screening under glucose limitations and on
the fermentation design for Arxula adeninivorans cultures,

http://www.microbialcellfactories.com/content/8/1/22

HK is the principal scientist for the Hansenula polymorpha
microarray and she contributed the data on GFP-produc-
tion in DL-1 under glucose fermentation. AM, GH, GM
and GG performed the work on the CoMed system. GG
was a project partner in the microarray work and partici-
pated in the projects and the publications on Hansenula
polymorpha reviewed in this manuscript. All authors read
and approved the manuscript.

Additional material

Additional file 1

Table 1 Components of the CoMed™ system. The table contains a selec-
tion of genetic components and yeast strains of the CoMed strain/vector
system.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2859-8-22-S1.doc]

Acknowledgements

HA Kang was supported by a grant from the Korean Ministry of Science and
Technology (Microbial Genomics and Applications Research and Develop-
ment Program).

The content of this review has been presented at the conference
Biotech2008: Biopharmaceuticals: Why yeasts? Wadenswil, Switzerland.
May 23 2008.

References

I. Gellissen G: Production of recombinant proteins: Novel microbial and
eukaryotic expression systems Weinheim: Wiley-VCH; 2005.

2.  Melmer G: Biopharmaceuticals and the industrial environ-
ment. In Production of recombinant proteins: novel microbial and eukary-
otic expression systems Edited by: Gellissen G. Weinheim: Wiley-VCH;
2005:361-383.

3. Yin), Li G, Reu X, Herler G: Select what you need: a compara-
tive evaluation of the advantages and limitations of fre-
quently used expression systems for foreign genes. | Biotechnol
2007, 127:335-347.

4. Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M,
Klei | van der: New yeast expression platforms based on meth-
ylotrophic Hansenula polymorpha and Pichia pastoris and
dimorphic Arxula adeninivorans and Yarrowia lipolytica — a
comparison. FEMS Yeast Res 2005, 5:1079-1096.

5. Boer E, Gellissen G, Kunze G: Arxula adeninivorans. In Production
of recombinant proteins: novel microbial and eukaryotic expression systems
Edited by: Gellissen G. Weinheim: Wiley-VCH; 2005:89-110.

6.  Kim MW, Kim EJ, Kim ]Y, Park JS, Oh DB, Shimma ]I, Chiba Y, Jigami
Y, Rhee SK, Kang HA: Functional characterization of the
Hansenula polymorpha HOCI, OCHI, and OCRI genes as
members of the yeast OCHI mannosyltransferase family
involved in protein glycosylation. | Biol Chem 2006,
281:6261-6272.

7. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S,
Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski
H, Roser J, Mitchell T, Strawbridge RR, Hoopes |, Wildt S, Gerngross
TU: Humanization of yeast to produce complex terminally
sialylated glycoproteins. Science 2006, 313:1441-1443.

8.  Goffeau A, Barrell RG, Busey H, Davis RW, Dujon B, Feldmann H,
Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW,
Murakami Y, Philippsen P, Tettelin H, Oliver SG: Life with 6000
genes. Science 1996, 274:563-567.

9. Ramezani-Rad M, Hollenberg CP, Lauber ), Wedler H, Griess E, Wag-
ner C, Albermann K, Hani J, Piontek M, Dahlems U, Gellissen G: The

Page 8 of 10

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1475-2859-8-22-S1.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16959350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16959350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16959350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16144775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16144775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16407250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16407250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16960007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16960007

Microbial Cell Factories 2009, 8:22

20.

21.

22.

23.

24.

25.

26.

27.

28.

Hansenula polymorpha (strain CBS4732) genome — sequenc-
ing and analysis. FEMS Yeast Res 2003, 4:207-215.

Brocke P, Schaefer S, Melber K, Jenzelewski V, Mueller F, Dahlems U,
Bartelsen O, Park KN, Janowicz ZA, Gellissen G: Hepatitis B vac-
cines — disease characterization and vaccine production. In
Production of recombinant proteins: novel microbial and eukaryotic expres-
sion systems Edited by: Gellissen G. Weinheim: Wiley-VCH;
2005:319-60.

Melmer G, Kunze G, Gellissen G: Recombinant vaccine produc-
tion in yeast. Biopharm Intern January Suppl 2008:8-13.

Boer E, Steinborn G, Gellissen G, Kunze G: Production of inter-
leukin-6 in Arxula adeninivorans, Hansenula polymorpha and
Saccharomyces cerevisiae by applying a wide-range yeast vec-
tor (CoMed™) system to simultaneous comparative assess-
ment. FEMS Yeast Res 2007, 7:1181-1187.

Steinborn G, Boer E, Scholz A, Tag K, Kunze G, Gellissen G: Appli-
cation of a wide-range yeast vector (CoMed™) system to
recombinant protein production in dimorphic Arxula adenin-
ivorans, methylotrophic Hansenula polymorpha and other
yeasts. Microbial Cell Factories 2006, 5:33.

Kang HA, Gellissen G: Hansenula polymorpha. In Production of
recombinant proteins: novel microbial and eukaryotic expression systems
Edited by: Gellissen G. Weinheim: Wiley-VCH; 2005:1 | I-142.
Kunze G, Kang HA, Gellissen G: Hansenula polymorpha - biology
and applications. In Yeast Biotechnology: Diversity and applications
Edited by: Satyaranayana T, Kunze G. Berlin: Springer in press.
Gellissen G: Heterologous protein production in methylo-
trophic yeasts. Appl Microbiol Biotechnol 2000, 54:741-750.
Hartner FS, Glieder A: Regulation of methanol utilisation path-
way genes in yeasts. Microbial Cell Factories 2006, 5:39.

Tschopp JF, Brust TF, Cregg JM, Stillman CA, Gingeras TR: Expres-
sion of the lacZ gene from two methanol-regulated promot-
ers in Pichia pastoris. Nucleic Acids Res 1987, 15:3859-3876.
Yurimoto H, Sakai Y, Kato N: Methanol metabolism. In Hansenula
polymorpha — biology and applications Edited by: Gellissen G. Wein-
heim: Wiley-VCH; 2002:61-75.

Nakagawa T, Inagaki A, Ito T, Fujimura S, Mijaji T, Yurimoto H, Kato
N, Sakai Y, Tomizuka N: Regulation of two distinct alcohol oxi-
dase promoters in the methylotrophic yeast Pichia methano-
lica. Yeast 2006, 23:15-22.

Wartmann T, Stephan UW, Bube |, Béer E, Melzer M, Manteuffel R,
Stoltenburg R, Guengerich L, Gellissen G, Kunze G: Post-transla-
tional modifications of the AFET3 gene product — a compo-
nent of the iron transport system in budding cells and
mycelia of the yeast Arxula adeninivorans. Yeast 2002,
19:849-862.

Middelhoven W), Hoogkamer-Te Niet C, Kreger Van Rij NWJ: Tri-
chosporon adeninovorans sp. nov., a yeast species utilizing
adenine, xanthine, uric acid, putrescine and primary n-
alkylamines as sole source of carbon, nitrogen and energy.
Antonie van Leeuwenhoek 1984, 50:369-378.

Wartmann T, Erdmann |, Kunze |, Kunze G: Morphology-related
effects on gene expression and protein accumulation of the
yeast Arxula adeninivorans LS3. Arch  Microbiol 2000,
173:253-261.

Klei IJ van der, Veenhuis M: Hansenula polymorpha — a versatile
model in peroxisome research. In Hansenula polymorpha — biology
and applications Edited by: Gellissen G. Weinheim: Wiley-VCH;
2002:76-94.

Hellwig S, Stockmann C, Gellissen G, Biichs J: Comparative fer-
mentation. In Production of recombinant proteins: novel microbial and
eukaryotic expression systems Edited by: Gellissen G. Weinheim: Wiley-
VCH; 2005:287-317.

Gellissen G: Hansenula polymorpha — biology and applications Wein-
heim: Wiley-VCH; 2002.

Oh KS, Kwon O, Oh YW, Sohn M, Jung S, Kim YK, Kim MG, Rhee
SK, Gellissen G, Kang HA: Fabrication of a partial genome
microarray of the methylotrophic yeast Hansenula polymor-
pha: Optimization and evaluation for transcript profiling. |
Microbiol Biotechnol 2004, 14:1239-1248.

Park JN, Sohn MJ, Oh DB, Kwon O, Rhee SK, Hur CG, Lee SY, Gel-
lissen G, Kang HA: Identification of the cadmium-inducible
Hansenula polymorpha SEOI gene promoter by transcrip-
tome analysis and its application to whole-cell heavy-metal
detection systems. Appl Environm Microbiol 2007, 73:5990-6000.

29.

30.

31

32.

33.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

http://www.microbialcellfactories.com/content/8/1/22

Berrow NS, Biissow K, Coutard B, Diprose |, Ekberg M, Folkers GE,
Levy N, Lieu V, Owens R|, Peleg Y, Pinaglia C, Quevillon-Cheruel S,
Salim L, Scheich C, Vinventelli R, Busso D: Recombinant protein
expression and solubility screening in Escherichia coli: a com-
parative study. Acta Crystallogr D Biol Crystallogr 2006,
62:1218-1226.

Jeude M, Dittrich B, Niederschulte H, Anderlei T, Knocke C, Klee D,
Biichs J: Fed-batch mode in shake flasks by slow-release tech-
nique. Biotechnol Bioeng 2006, 95:433-445.

Amuel C, Gellissen G, Hollenberg CP, Suckow M: Analysis of heat
shock promoters in Hansenula polymorpha: the TPSI| pro-
moter, a novel element for heterologous gene expression.
Biotechnol Bioprocess Eng 2000, 5:247-252.

Jenzelewski V: Fermentation and primary product recovery. In
Hansenula polymorpha — biology and applications Edited by: Gellissen G.
Weinheim: Wiley-VCH; 2002:156-174.

Weydemann U, Keup P, Piontek M, Strasser AWM, Schweden |, Gel-
lissen G: High-level production of hirudin by Hansenula poly-
morpha - authentic processing of three different
preprohirudins. Appl Microbiol Biotechnol 1995, 44:377-385.
Avgerinos GC, Turner BG, Gorelick K], Papendieck A, Weydemann
U, Gellissen G: Production and preclinical analysis of H. poly-
morpha-derived PEG-hirudin. Sem Thromb Hemostas 2001,
27:357-371.

Barnes CS, Krafft B, Frech M, Hoffmann UR, Papendieck A, Dahlems
U, Gellissen G, Hoylarts MF: Production and characterization of
saratin, an inhibitor of von Willebrand factor-dependent
platelet adhesion to collagen.  Semin Thromb Hemost 2001,
27:337-347.

Roggenkamp R, Hansen H, Eckart M, Janowicz ZA, Hollenberg CP:
Transformation of the methylotrophic yeast Hansenula poly-
morpha by autonomous replication and integration vectors.
Mol Gen Genet 1988, 202:302-308.

Zurek C, Kubis E, Keup P, Horlein D, Beunink J, Thémmes |, Kula MR,
Hollenberg CP, Gellissen G: Production of two aprotinin vari-
ants in Hansenula polymorpha. Proc Biochem 1996, 31:679-689.
Suckow M, Gellissen G: The expression platform based on
Hansenula polymorpha RBI | - history, status and perspec-
tives. In Hansenula polymorpha — biology and applications Edited by:
Gellissen G. Weinheim: Wiley-VCH; 2002:105-123.

Bartelsen O, Barnes CS, Gellissen G: Production of anticoagu-
lants in Hansenula polymorpha. In Hansenula polymorpha — biology
and applications Edited by: Gellissen G. Weinheim: Wiley-VCH;
2002:211-228.

Miiller F II, Tieke A, Waschk D, Miihle C, Miiller F |, Seigelchifer M,
Pesce A, Jenzelewski V, Gellissen G: Production of IFNa-2a in
Hansenula polymorpha. Proc Biochem 2002, 38:15-25.

Gellissen G, Miiller F, Sieber H, Tieke A, Jenzelewski V, Degelmann A,
Strasser AWM: Production of cytokines in Hansenula polymor-
pha. In Hansenula polymorpha — biology and applications Edited by: Gel-
lissen G. Weinheim: Wiley-VCH; 2002:229-254.

Mayer AF, Hellmuth K, Schlieker H, Lopez-Ulibarri R, Oertel S, Dahl-
ems U, Strasser AWM, van Loon APGM: An expression system
matures: a highly efficient and cost-effective process for
phytase production by recombinant strains of Hansenula pol-
ymorpha. Biotechnol Bioeng 1999, 63:373-381.

Papendieck A, Dahlems U, Gellissen G: Technical enzyme pro-
duction and whole-cell biocatalysis: application of Hansenula
polymorpha. In Hansenula polymorpha — biology and applications
Edited by: Gellissen G. Weinheim: Wiley-VCH; 2002:255-271.
Kunze G, Kunze |: Characterization of Arxula adeninivorans
from different habitats. Antonie van Leeuwenhoek 1994, 65:29-34.
Kaur P, Lingner A, Singh B, Boer E, Polajeva J, Steinborn G, Bode R,
Gellissen G, Satyanarayana T, Kunze G: APHOI from the yeast
Arxula adeninivorans encodes an acid phosphatase of broad
substrate specificity. A van Leeuwenhoek 2007, 91:45-55.
Minocha N, Kaur P, Satyanarayana T, Kunze G: Acid phosphatase
production by recombinant Arxula adeninivorans. Appl Micro-
biol Biotechnol 2007, 76:387-393.

Anderlei T, Biichs J: Device for sterile online measurement of
the oxygen transfer rate in shaking flasks. Biochem Eng | 2001,
7:157-162.

Anderlei T, Zang W, Papaspyrou M, Biichs J: Online respiration
activity measurement (OTR, CTR, RQ) in shake flasks. Bio-
chem Eng | 2004, 17:187-194.

Page 9 of 10

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14613885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14613885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17537181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17537181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17537181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17105649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17105649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11152064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11152064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17169150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17169150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3108861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16411161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12112239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6543110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6543110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10816043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17001098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17001098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16736531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16736531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8597538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8597538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11547356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11547356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11547356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10099617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8060121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8060121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17541580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11173305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11173305

Microbial Cell Factories 2009, 8:22

49.

50.

51.

52.

53.

54.

55.

56.

57.

Silberbach M, Maier B, Zimmermann M, Biichs J: Glucose oxidation
by Gluconobacter oxydans: characterization in shaking flasks,
scale-up and optimization of the pH profile. Appl Microbiol Bio-
technol 2003, 62:92-98.

Stéckmann C, Losen M, Dahlems U, Knocke C, Gellissen G, Biichs J:
Effect of oxygen supply on passaging, stabilisation and
screening of recombinant H. polymorpha production strains
in test tubes cultures. FEMS Yeast Res 2003, 4:195-205.
Stockmann C, Maier U, Anderlei T, Knocke C, Gellissen G, Biichs J:
The oxygen transfer rate as key parameter for the charac-
terization of Hansenula polymorpha screening cultures. | Ind
Microbiol Biotechnol 2003, 30:613-622.

Losen M, Froehlich B, Pohl M, Biichs J: Effect of oxygen limitation
and medium composition on Escherichia coli fermentation in
shake-flask cultures. Biotechnology Progress 2004, 20:1062-1068.
Résel H, Kunze G: Cloning and characterization of a TEFI gene
for elongation factor lo from the yeast Arxula adeninivorans.
Curr Genet 1995, 28:360-366.

Knoll A, Bartsch S, Husemann B, Engel P, Schroer K, Ribeiro B, Stéck-
mann C, Seletzky ], Biichs J: High cell density cultivation of
recombinant yeasts and bacteria under non-pressurized and
pressurized conditions in stirred tank reactors. | Biotechnol
2007, 132:167-179.

Béer E, Steinborn G, Matros A, Mock HP, Gellissen G, Kunze G: Pro-
duction of interleukin-6 in Arxula adeninivorans, Hansenula
polymorpha and Saccharomyces cerevisiae by applying the
wide-range yeast vector (CoMed™) system to simultaneous
comparative assessment. FEMS Yeast Res 2007, 5:1181-1187.
Boer E, Steinborn G, Kunze G, Gellissen G: Yeast expression plat-
forms. Appl Microbiol Biotechnol 2007, 77:13-523.

Steinborn G, Béer E, Kunze G, Gellissen G: Application of the
CoMed™ system. In Yeast Biotechnology: Diversity and applications
Edited by: Satyaranayana T, Kunze G. Berlin: Springer in press.

http://www.microbialcellfactories.com/content/8/1/22

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 10 of 10

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12835926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12835926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14613884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14613884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14586804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15296430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15296430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8590482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17681630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17681630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17681630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17704915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17704915
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Hansenula polymorpha and Arxula adeninivorans  and their competitive environment
	H. polymorpha-based processes under control of MOX and FMD promoters - a re-assessment
	Culturing of Arxula adeninivorans strains
	The CoMed™ system
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

