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Abstract

Background: ATP binding cassette (ABC) transporter secretes the protein through inner and
outer membranes simultaneously in gram negative bacteria. Thermostable lipase (TIiA) of
Pseudomonas fluorescens SIK W1 is secreted through the ABC transporter. TIiA has four glycine-
rich repeats (GGXGXD) in its C-terminus, which appear in many ABC transporter-secreted
proteins. From a homology model of TIiA derived from the structure of P. aeruginosa alkaline
protease (AprA), lipase ABC transporter domains (LARDs) were designed for the secretion of
fusion proteins.

Results: The LARDs included four glycine-rich repeats comprising a B-roll structure, and were
added to the C-terminus of test proteins. Either Pro-Gly linker or Factor Xa site was added
between fusion proteins and LARDs. We attached different length of LARDs such as LARDO,
LARDI or whole TIliA (the longest LARD) to three types of proteins; green fluorescent protein
(GFP), epidermal growth factor (EGF) and cytoplasmic transduction peptide (CTP). These fusion
proteins were expressed in Escherichia coli together with ABC transporter of either P. fluorescens
or Erwinia chrysanthemi. Export of fusion proteins with the whole TIliA through the ABC transporter
was evident on the basis of lipase enzymatic activity. Upon supplementation of E. coli with ABC
transporter, GFP-LARDs and EGF-LARDs were excreted into the culture supernatant.

Conclusion: The LARDs or whole TIiA were attached to C-termini of model proteins and enabled
the export of the model proteins such as GFP and EGF in E. coli supplemented with ABC
transporter. These results open the possibility for the extracellular production of recombinant
proteins in Pseudomonas using LARDs or TIliA as a C-terminal signal sequence.

Page 1 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19178697
http://www.microbialcellfactories.com/content/8/1/11
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Microbial Cell Factories 2009, 8:11

Background

Type 1 secretion system (T1SS) works in a continuous
secretion process across both the inner and the outer
membrane of Gram-negative bacteria [1,2]. The proteins
involved in Type I secretion form a channel that exports
proteins from the cytoplasm to the extracellular environ-
ment. An ATP binding cassette (ABC) protein recognizes
the C-terminal signal sequence of the target protein,
which is not cleaved during secretion and which hydro-
lyzes ATP for protein translocation [3,4]. Hence T1SSs are
also known as ABC transporters. Membrane fusion pro-
tein (MFP) is exposed mainly to the periplasm and has
one transmembrane segment anchored in the inner mem-
brane [5]. MFP connects the ABC protein and outer mem-
brane protein (OMP) during formation of the transport
complex [6,7]. OMP is an outer membrane porin protein
that forms a tunnel across the periplasm and the outer
membrane [8]. The secreted protein contains a C-terminal
targeting signal containing several repeats of the consen-
sus sequence GGXGXD [9,10] and an extreme C-terminus
motif [11].

In Pseudomonas fluorescens, the thermostable lipase (TliA)
and protease genes are located upstream and downstream
of ABC transporter operon [12]. Previously, the ABC
transporter gene tliDEF was cloned and found to secrete
the lipase in E. coli with concomitant expression of the
lipase gene tliA [12]. The tliDEF was different in gene
organization and amino acid sequence homology (~50%)
with aprDEF of P. aeruginosa. Homologous expression of
tliDEF and tliA in P. fluorescens by plasmid-mediated sup-
plementation of these genes enhances the lipase content
over 1000 times than the original P. fluorescens and 100
times more than E. coli harboring tliDEFA [13].

We have been curious about whether the C-terminal tar-
geting signal sequence enables the secretion of other pro-
teins. To assess this, we individually constructed some
recombinant proteins including, green fluorescence pro-
tein (GFP; 238 amino acids), human epidermal growth
factor (EGF; 53 aa), and cytoplasmic transduction peptide
(CTP; 11 aa) as a fusion protein with lipase or the C-ter-
minus of lipase. GFP was used as a model protein because
it has a stable can-like shape consisting of a B-barrel
[14,15] and has been used to visualize fusion proteins
[7,15-17]. EGF is a growth factor that plays a role in the
regulation of cell proliferation and differentiation [18].
CTP is a recently designed short peptide that is derived
from protein transduction domain (PTD) of the human
immunodeficiency virus [19,20], and which is used for
the delivery of fused proteins into the cytoplasm of
eukaryotic cells [21]. We assessed whether the aforemen-
tioned recombinant proteins were secreted in E. coli to
elucidate the validity of the lipase C-terminal signal
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sequence, namely the lipase ABC transporter domain
(LARD).

In the present investigation, we used two different ABC
transporters, PrtDEF of Erwinia chrysanthemi and TIiDEF of
P. fluorescens. Since E. chrysanthemi is closely related to E.
coli, we selected it as an efficient transporter for several
recombinant proteins expressed in E. coli. We designed
two different types of lipase C-terminal region, LARDO
and LARD], in addition to the whole lipase (the biggest
LARD). We constructed several combinations of recom-
binant proteins by fusing model proteins including GFP,
EGF and CTP to translocation motifs including lipase
itself, LARDO or LARD1. These recombinant proteins were
expressed with ABC transporters and checked for their
secreting ability.

Results

LARD design

The thermostable lipase (TliA) of P. fluorescens SIK W1 is
comprised of 476 amino acids and has the characteristic
C-terminal signal sequence recognized by the ABC trans-
porter [12]. There are two distinctive features in the TliA
C-terminal signal region: a glycine-rich consensus
sequence, GGXGXD which is repeated four times, and an
extreme C-terminus motif, EGVLIS, which consists of sev-
eral hydrophobic residues preceded by an acidic residue,
Glu [22]. The C-terminal signal sequence was designed as
a tag for the fusion protein to be exported by ABC trans-
porter. TliA could be divided into two different domains,
N-catalytic domain and putative C-secretion/chaperon
domain. The structural organization of TliA was assumed
from the structures of three proteases in P. aeruginosa [23],
Serratia marcescens [24] and E. chrysanthemi [25]. Although
N-catalytic domain of TliA has no sequence homology
with these proteases, the C-secretion/chaperon domain
displays homology with the C-terminal region of these
proteases. A comparative structural modeling was done,
based on P. aeruginosa AprA, which has the highest
homology with TliA at its C-secretion/chaperon domain.
From structural modeling and sequence alignment of TliA
and AprA, we positioned hinge region (residues 269-278
of TliA) bridging activity domain (residues 1-268) and
secretion/chaperon domain (residues 279-476) (Figure
1A). Two different types of LARDs were designed to have
the characteristic B-roll and additional loop region (Figure
1B). LARDO was designed to incorporate residues 269-
476 of TliA and was fused with the C-terminus of GFP
(Figure 1C). A repetitive Pro-Gly linker was added to sep-
arate the domain of the fusion proteins from LARDO,
which allows the fusion proteins to fold independently
[26-28]. In case of LARD1, linkers were engineered to
have a Factor Xa cleavage site. LARD1 also contained resi-
dues 303-476 of TliA.
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26 9—SLGVHDKAHESTTDN IVSENDHY
AS TLWNVLPFIANLS TWVSHLPSAYGD
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NDLIQGGKGADF IEGGKGNDT IRDNSGH
NTFLESGHFGQDRIIGYQPTDRLVEQGA
DGSTDLRDHAKAVGADTVLSFGADSVTL
VGVGLGGLWSEGVLIS-476
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Prospective structure of LARDs. A. TliA C-terminal sequence. The first amino acids of LARDO and LARD| are indicated
by boxes, a prospective hinge region is shaded, four glycine rich consensus sequences are italicized and in bold, and the
extreme C-terminus motif is in bold. B. Schematic structural model of LARD. The probable structure of LARDs was deter-
mined using a homology modeling program. Two different LARDs were designed from the homology structure, making LARDO
(residues 269—476) and LARD (residues 303—476). C. Fusion protein of GFP and LARDO. A poly(Pro-Gly) linker and addi-
tional amino acids links between structural model of GFP and homology model of LARDO. Additional amino acids of N-termi-

nus are added from the sequence of the plasmid.
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Identification of GFP-fusion protein

Before the secretion of GFP fusion protein was analyzed,
we needed to check the expression of GFP-fusion proteins
such as GFP-LARDO, GFP-LARD1, and GFP-TliA (GFP
fused to entire TliA). These proteins were expressed in E.
coli and their expected sizes were confirmed by Western
blotting (data not shown). In addition, the fluorescence
of GFP was demonstrated. Representative colonies of E.
coli expressing these proteins were viewed under ultravio-
let (UV) light (Figure 2A). The fluorescence of control GFP
was strong in E. coli grown at 37 °C, whereas fluorescences
of GFP-LARDO, GFP-LARD1 and GFP-TIliA were compara-
tively somewhat weak in E. coli grown at the same temper-
ature but more evident in E. coli grown at 25°C. E. coli
populations harboring the fusion proteins were observed
under fluorescent microscope. All GFP-fusion proteins
were evident upon fluorescence microscopy. However,
not every E. coli cells in the population showed green flu-
orescence, as exemplified by cells harboring GFP-LARD1
fusion, and the intensity of fluorescence was variable (Fig-
ure 2B). Therefore, the fluorescence apparent to the
unaided eye represented the total of the different fluores-
cence intensities. We anticipated that fluorescence would
be evident around E. coli colonies if bacteria were able to
secrete the GFP-fusion proteins via the ABC transporter.
To assess this, individual E. coli colonies, with or without
an ABC transporter, were UV-irradiated to identify the
expression of GFP-fusion proteins (Figure 2C). E. coli har-
boring pGFP-TliA, pGFP-LARDO, or pGFP-LARD1 radi-
ated visible fluorescence under UV irradiation in the
presence of TIiDEF or PrtDEF transporter, and in the
absence of transporter. However, contrary to our expecta-
tion, fluorescence surrounding E. coli ABC transporter
positive colonies expressing GFP fusion proteins was not
evident. All E. coli colonies displayed green fluorescence
after a prolonged storage (about a week) at refrigerator
temperature. The presence of the ABC transporter did not
affect the activation of GFP in GFP-fusion proteins. E. coli
harboring pGFP-LARD1 showed a more intense fluores-
cence than E. coli harboring pGFP-TliA or pGFP-LARDO.

Fusion of whole TIliA to make fusion proteins

Independent of LARDs, we fused lipase (TliA) itself to
recombinant proteins such as GFP, EGF, and CTP to check
whether whole TliA could enable secretion of the recom-
binant proteins. The secretory phenotype could be traced
via lipase activity. E. coli was cultivated on tributylin agar
to detect the secretion of TliA-fusion proteins (Figure 3).
E. coli harboring ABC transporter made a large halo,
whereas bacteria lacking the transporter displayed only a
small halo (due to leakage of lipase fusion protein from
the cells). Fusion proteins with TliA at the C-terminus of
GFP, EGF, and CTP were secreted, validating whole TliA as
a secretory domain. CTP fused with TIiA at the N-terminus
did not show the secretory phenotype indicating that the
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C-terminus of TliA must be free for recognition by ABC
transporter. The GFP-TliA fusion protein showed higher
lipase activity than the CTP-TliA or EGF-TIiA fusion pro-
teins. These observations indicated that GFP might help
maintain lipase structure more than EGF and CTP. Con-
sistent with the idea, bacteria harboring the CTP-GFP-TIliA
fusion protein produced markedly bigger halos than cells
containing the CTP-TliA fusion protein. In another exper-
iment, E. coli was grown in liquid medium and lipase
activity was measured. A similar result to that evident fol-
lowing growth on agar was obtained, with detection of the
secretory phenotype of GFP-TIiA, EGF-TIiA, CTP-TliA, and
CTP-GFP-TliA by ABC transporter (Figure 4). Culture
supernatant from bacteria harboring CTP-GFP-TliA
showed higher lipase activity in liquid medium than the
supernatant from bacteria harboring CTP-TIiA, reinforc-
ing the role of GFP as a stabilizer. Once again, TliA-CTP
was not secreted into the liquid medium because its C-ter-
minus was not free. It was excluded that TliA-CTP had no
enzymatic activity because TIliA fused at C-terminus were
purified as inclusion bodies and refolded to have a lipase
activity (data not shown). The results are consistent with
the view that the fusion with TliA at the C-terminus of
GFP, EGF, and CTP maintained the enzymatic activity of
lipase and enabled secretion of fusion proteins.

Identification of secretion for LARD fusion proteins

While the secretory phenotype of fusion proteins with
TliA was evident based on lipase activity, secretion of
fusion proteins with LARDs could be detected by Western
blotting. Fusion proteins were traced in the culture super-
natant using antibody against LARDs. E. coli carrying
recombinant plasmids containing GFP-LARD and EGF-
LARD was cultivated. To precisely identify protein secre-
tion, pEcPrtDEF-184, pABC-ACYC, or pACYC-184 that
possessed the PrtDEF transporter, the TIiDEF transporter,
or which lacked a transporter, respectively, were intro-
duced into E. coli, and protein secretion was detected by
Western blotting (Figure 5). Although no fusion proteins
were secreted in the absence of ABC transporter, GFP-TIiA,
GFP-LARDO, and GFP-LARD1 fusion proteins were
secreted when ABC transporter was present. E. coli harbor-
ing the PrtDEF of E. chrysanthemi secreted more fusion
proteins than E. coli harboring the TIiDEF of P. fluorescens.
It is likely that the PrtDEF transporter worked better than
TIiDEF because PrtDEF functioned well at 37 °C, the opti-
mum growth temperature for E. coli, while TIiDEF must be
expressed at 25°C for its proper function [12]. In addi-
tion, E. chrysanthemi ABC transporter PrtDEF might func-
tion well in the phylogenetically-neighboring genus E.
coli, compared to P. fluorescens ABC transporter TIiDEF. E.
coli harboring EcPrtDEF secreted fusion proteins includ-
ing EGF-LARD1 or EGF-TIiA. EGF fusion proteins were
secreted to the medium, albeit in a reduced amount than
GFP fusion proteins. The detected secreted proteins
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Figure 2

Green fluorescence of GFP-fusion proteins. A. Green fluorescence of GFP-fusion proteins without ABC transporter. E.
coli harboring pGFPuv, pGFP-TIiA, pGFP-LARDO, pGFP-LARD | and pGFP-SXold (intermediate plasmid making the fusion pro-
teins of GFP and a few additional amino acids) was streaked on LB containing ampicillin and grown at 37°C or 25°C. B. Green
fluorescence under fluorescence microscope. E. coli harboring pGFP-LARDO was viewed with a fluorescence microscope and
photographs were obtained under light and excitation filter conditions with 1,000 magnification. C. Green fluorescence of
GFP-fusion proteins with ABC transporters. E. coli harboring the GFP-fusion plasmids pGFP-TIiA (TliA), pGFP-LARDO
(LARDO), or pGFP-LARD1 (LARDI) was viewed under UV illumination with or without ABC transporters. pACYC- 184,
pABC-ACYC, and pEcPrtDEF-184 lacked transporter genes, or had the genes of TIiDEF or EcPrtDEF as the ABC transporter,
respectively.
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without ABC transporter
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with ABC transporter

Figure 3

Lipase activity of transformants harboring tliA-fusion gene. Semi-quantitative estimation of the extracellular secretion
of target protein containing lipase (TliA) was performed by comparing the sizes of lipolytic clear halos. E. coli transformants
harboring tliA-fusion gene were prepared in two sets; with P. fluorescens ABC transporter (PABC-ACYC) and without ABC
transporter (PACYC-184). After E. coli cells were incubated on the LAT plate at 25°C for 48 h, halos were observed; |, E. coli
(pTIiA); 2, E. coli (pGFP-TIiA); 3, E. coli (PEGF-TIiA); 4, E. coli (pCTP-TIiA); 5, E. coli (pTIIA-CTP); 6, E. coli (pCTP-GFP-TIiA).

showed the expected molecular weight on Western blot-
ting. There were no detected bands corresponding TliA
(49.9 kD), LARDO (22.2 kD), LARD1 (18.4 kD) or their
degraded products in the supernatant of the secreted
fusion proteins. When GFP fusion proteins were also
detected with antibody against GFP, the same bands
detected by the antibody against LARD were detected in
the cell and supernatant (data not shown). These results
indicated that fusion proteins were contained in the cell
and secreted as an intact form of fused proteins. The
secreted lipase activities of fusion proteins (Figure 3 and
Figure 4) were also confirmed to be derived from the
activities of fusion proteins.

Discussion

There are two distinctive features in the C-terminal signal
of proteins secreted by ABC transporter. One is a glycine-
rich consensus sequence, GGXGXD, which is repeated
many times in the C-terminus. They were firstly found in
toxins like HlyA, giving rise to the group name of RTX pro-
teins (repeat in toxins) [29,30]. These repeats constitute
high-affinity calcium ion binding sites [23,31]. The
secreted proteins can also be distinguished by an extreme
C-terminus motif of 4 or 5 residues [32]. The RTX toxins
such as HIyA have a preference for hydroxylated residues
(Ser and Thr) followed by Ala as a terminal residue [33].
On the other hand, proteases like AprA contain three
hydrophobic residues preceded by Asp at the C-terminus
[22]. The thermostable lipase, TliA, from which we
designed LARD, has four GGXGXD consensus sequences

and EGVLIS as its final six C-terminal residues, showing
similar organization of several hydrophobic residues pre-
ceded by an acidic residue, Glu.

Although C-terminal secretion signals can be identified by
the two aforementioned characteristics, precisely how
these characteristics participate in secretion is unclear. To
understand the interaction between these characteristics
and ABC protein, co-crystallization of the C-terminal rec-
ognition domain and ABC protein will be required [34].
It is not clear whether primary or secondary/tertiary struc-
tures are essential in the recognition of a secretion signal.
The RTX secretion signal has been proposed to be largely
unstructured [34] based on circular dichroism and nuclear
magnetic resonance analyses of isolated RTX secretion sig-
nal peptides [35-37]. In addition, it has been suggested
there is no common primary or secondary structure except
RTXs and the extreme C-terminal motif [34], implying
that there is no need of secondary structure for the bind-
ing to ABC transporter. However, three proteases secreted
by ABC transporter, of which structures are elucidated, in
P. aeruginosa [23], Serratia marcescens [24] and E. chrysan-
themi [25] have a B-roll C-terminal structure. Studies on
isolated B-roll domain from RTX toxins were performed in
Bordetella pertussis adenylate cyclase toxin [38] and E. coli
hemolysin [39]. RTX with eight GGXGXDXLXs that was
chemically synthesized was shown to form p-roll structure
[40]. From these previous reports, we thought that the
whole C-terminal B-roll domain was needed for secretion
and chaperon/folding. We designed two LARDs on the
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Lipase activity of TliA-fusion protein secreted by E. coli. The lipase activities were represented as percentages of the
activity secreted by E. coli harboring pTliA and pABC-ACYC. Each set of graph bar contains lipase activities with P. fluorescens
ABC transporter (pPABC-ACYC) or without ABC transporter (pACYC-184). Column I, pTliA; Column 2, pGFP-TIiA; Column
3, pEGF-TIiA; Column 4, pCTP-TIiA; Column 5, pTliA-CTP; Column 6, pCTP-GFP-TIiA.

basis of the predicted C-terminal structure of lipase, which
is derived from the structure of P. aeruginosa alkaline pro-
tease, because the structure of P. fluorescens SIK W1 lipase
had remained unresolved. Recently, two similar lipase
structures were resolved and shown to have the same (-
roll structure in their C-terminal region [41,42]. They are
somewhat different from TIiA in that they have 13 copies
of glycine-rich consensus sequence and a pair of B-rolls
(B-roll sandwich) in contrast to the four glycine-rich con-
sensus sequences and one B-rolls that is in TliA.

Presently, we could assess the importance of the extreme
C-terminus motif in the secretion of CTP fusion proteins.
The CTP peptide (11 aa) was originally designed not for
the secretion of itself, but for further application in intro-
duction of fused proteins into eukaryotic cytoplasm. It
was too short to assess the secretion of LARDs and the ten-
dency to be produced as inclusion body in E. coli [21]

made it unqualified for a secreted model protein. The CTP
was fused with whole lipase and the secretory phenotype
of CTP fusion was observed on the solid medium (Figure
3). CTP-lipase showed the secretory phenotype by supple-
menting the ABC transporter but lipase-CTP did not, con-
sistent with a previous report in which the necessity for
COOH terminal exposure of the extreme C-terminus
motif was demonstrated; addition of even one amino acid
impairs the secretion [32]. In another study, the elimina-
tion of Glu in ELLAA in the extreme C-terminus of S. marc-
escens LipB and re-positioning in all the possible positions
in the downstream sequence had no detectable effect
upon the secretion of the lipase, implying that the extreme
C-terminal motif is not essential for the secretion [43].
The latter authors proposed that a new region near
extreme C-terminal motif is necessary for recognition by
the ABC transporter. These observations highlight the
ongoing uncertainty as to which part of C-terminal signal
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Figure 5

Immunoblot analysis of recombinant proteins in cul-
ture supernatants. E. coli harboring two plasmids was
grown for 48 h and 16 pl of the culture supernatant was sub-
jected to SDS-PAGE and analyzed by immunoblot analysis
using anti-TliC antibody. E, E. chrysanthemi PrtDEF (E. coli
harboring pEcPrtDEF-184 grown at 37°C); B, P. fluorescens
TIiDEF (E. coli harboring pABC-ACYC grown at 25°C); N, no
ABC transporter (pPACYC-184). I, pTliA; 2, pGFP-TIA; 3,
pGFP-LARDI; 4, pGFP-LARDO; 5, pEGF-TIiA; 6, pEGF-
LARDI.

is recognized by the ABC transporter. It is unclear whether
the rigid B-roll structure is required or not for secretion
through the ABC transporter, despite the popularity of the
theory that C-terminal signals are unstructured during a

http://www.microbialcellfactories.com/content/8/1/11

process of secretion but needed for chaperon/folding is
prevailing [34,38,40]. Research is ongoing to check the
possibility of shorter LARDs, through decreased LARD
sizes from LARD1 (residues 303-476 of TliA) to LARD5
(residues 443-476).

Previously, Palacios et al. attached 181-residue C-terminal
signal sequence to eukaryotic proteins such as endochiti-
nase, GFP, hEPO (human erythropoetin) and tGH (trout
growth hormone) [44]. The endochitinase and GFP were
exported by E. chrysanthemi PrtDEF but hEPO and tGH
were not. They reasoned that the failure of exporting
hEPO and tGH was derived from the disulfide bond for-
mation inside the cell. We used GFP and EGF as model
proteins in the export experiments. Although GFP has no
disulfide bridge, EGF has three disulfide bridges. In our
experiment, EGF was exported in E. coli, showing the pos-
sibility that the protein having disulfide bonds can be
exported. More thorough experiments are needed to elu-
cidate the relationship between disulfide bond bridge and
protein export.

Conclusion

We designed LARDs based on comparative modeling of P.
fluorescens lipase and attached them genetically to GFP
and EGF. Two different LARDs (LARDO and LARD1) con-
tained B-roll structure and either Pro-Gly linker or Factor
Xa site between fusion proteins and LARDs. We also
attached the whole lipase (TliA) genetically to GFP, EGF
and CTP. The fused proteins with the whole lipase were
secreted in E. coli with the ABC transporter and showed
lipase activity as an intact fused form in the supernatnat.
The GFP and EGF fused with LARDs or TliA were exported
into the extracellular medium in E. coli containing ABC
transporter of P. fluorescens and E. chrysanthemi. In this
report, only E. coli was explored as an expression host for
the possibility of ABC transporter for recombinant protein
production. The secretory expression of fusion proteins in
E. coli will extend to those in P. fluorescens in which the
ABC transporter TIiDEF are better expressed [13]. P. fluo-
rescens supplemented with TIiDEF produced extracellular
lipase up to about 15% total proteins [13]. An efficient
protein manufacturing factory is expected to be con-
structed using Pseudomonas as a host.

Methods

Bacterial strains, plasmids and DNA manipulation

E. coli XL1-Blue was used as a host strain for DNA manip-
ulation and gene expression. Plasmids pCIP [21],
pKK223-3 (Amersham Pharmacia, Piscataway, NJ), and
pBluescript-SK(+) (Stratagene, San Diego, CA) were used
as vectors. All DNA manipulations including restriction
endonuclease digestion, ligation, transformation, and
agarose gel electrophoresis were carried out by standard
procedures [45]. All restriction enzymes, DNA-modifying

Page 8 of 12

(page number not for citation purposes)



Microbial Cell Factories 2009, 8:11

enzymes, and related reagents used for DNA manipula-
tion were purchased from Takara Shuzo (Shiga, Japan),
Solgent (Daejeon, Korea) or Sigma-Aldrich (St. Louis,
MO).

Plasmid construction

Table 1 shows plasmids used in this study and Table 2
shows polymerase chain reaction (PCR) products used in
plasmid construction. Two or three different PCR-ampli-
fied DNAs were inserted into multicloning site of plas-
mids in frame to make a continuous fusion protein (Table
1). GFP coding sequence without stop codon was
obtained by PCR amplification using pGFPuv (Clontech,
Mountain View, CA) as a template (Table 2). TliA, LARDO
and LARD1 were also PCR-amplified using pTOTAL [12]
as a template and primers containing different enzyme
sites. A repetitive Pro-Gly linker was added at the N-termi-
nus of LARDO using the PCR primer used for the amplifi-
cation of LARDO. Factor Xa site was also added at N-
terminus of LARD1 using the PCR primer. EGF was PCR-
amplified using EGF-containing plasmid pGEMT-hEGF
and EGF-fusion proteins were constructed similarly as
GFP-fusion proteins. The CTP fusion was constructed by
inserting TliA or LARDs into pCTP [21].

LARD design

P. aeruginosa alkaline protease (AprA) has a N-terminal
activity domain and C-terminal B-roll (or B-sandwich)
structure (PDB code: 1kap). The C-terminal part of AprA
has a low similarity with TliA (20% identity). This B-roll
structure is thought to be the secretion signal for the ABC
transporter system. We built the C-terminal structure of
TliA using the SWISS-MODEL program http://swiss
model.expasy.org/[46] and the structure of alkaline pro-
tease, and the similar pB-roll structure was built by homol-
ogy modeling. The LARD was designed in two ways.

Table I: Characteristics of plasmids used in this study.

http://www.microbialcellfactories.com/content/8/1/11

Amino acid residues 269 to 476 (SSLG-VLIS) and 303 to
476 (SIAN-VLIS) of TliA were defined as LARDO and
LARD]1, respectively.

Growth conditions

Luria-Bertani (LB) medium supplemented with ampicil-
lin (50 pg/ml) and chloramphenicol (34 pg/ml) was used
for cultivating recombinant E. coli XL1-Blue. Each E. coli
cultures was generated in a 12 ml culturing tube contain-
ing 2 ml of LB medium in a shaking incubator at 180 rpm,
reaching ODg,, 2 to 2.5. The culture temperature was
selected as 25°C for cultures harboring pABC-ACYC
(tliDEF) and 37°C for cultures harboring pEcPrtDEF-184
(prtDEF) because each ABC transporter system functions
optimally at those temperatures. Cultures harboring
PACYC-184 (no ABC transporter) was grown at 37°C
because E. coli grows best at this temperature. Each culture
was induced with 0.05 mM isopropyl-beta-D-thiogalacto-
pyranoside (IPTG), where the secretion efficiency of TliA
with the TliDEF transporter system is highest in E. coli.

Antibodies

Polyclonal antibodies against the C-terminal signal
sequence (TliC) were produced with a synthetic peptide
(YQPTDRLVFQGADGST, residues 421-436 of TliA). The
peptide was coupled to the immunogenic carrier protein
keyhole limpet hemocyanin (KLH) via an additional N-
terminal cysteine of each peptide by N-y-maleimidobu-
tyryloxylsuccinimide (GMBS) conjugation [47]. Immuni-
zation of each peptide and sampling of anti-serum from
rabbits were performed by a commercial facility (Peptron,
Daejeon, Korea). Antibody was purified by the peptide-
linked affinity resin, which was prepared by linking pep-
tide to the activated affinity resin. Crude serum was
applied to the affinity column, and anti-TliC immu-
noglobulin G (IgG) was eluted with 100 mM glycine (pH

Plasmids Properties/inserts Vector/Source
pGFPuv Cycle 3 variant of GFP pUC/Clontech
pGFP-TIiA GFP insert |, TliA insertl pKK223-3 [48]
pGFP-SXold intermediate to pGFP-LARDO pBluescript-SK(+)
pGFP-LARDO GFP insert |, LARDO insert pBluescript-SK(+)
pGFP-LARDI GFP insert 2, LARDI insert pKK223-3
pEGF-TIiA EGF insert, TliA insertl pKK?223-3
pEGF-LARD| EGF insert, LARDI insert pKK?223-3
pCTP-TIiA TIiA insert 2 pCTP [21]
pTIA-CTP TIiA insert 3 pCTP
pCTP-GFP-TIiA* GFP-TIiA insert pCTP
pCTP-GFP-LARDO GFP-LARDO insert pCTP
pCTP-GFP-LARDI GFP-LARD | insert pCTP
pABC-ACYC tiDEF from P. fluorescens [12]
pEcPrtDEF-184 prtDEF from E. chrysanthemi pRUW4 [49]

The name of plasmids indicates the order of different genes. For example, pCTP-GFP-TIiA* denotes a fusion protein consisting of CTP, GFP, and

TIiA in order.
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Table 2: Oligonucleotide primers used for DNA inserts in plasmid construction.

http://www.microbialcellfactories.com/content/8/1/11

Insert Primer sequence Restriction sites/feature
GFP insert | GGG GAATTC ATGAGTAAAGGAGAAGAACTTT EcoRI
GGG TCTAGAGGCGGCGGC TTTGTAGAGCTCATCCATGCC Xbal, AAA
GFP insert 2 GCG CCGCGG TG ATGAGTAAAGGAGAAGAACTTT Sacll
GGG TCTAGA CC TGGACCACCACCTTTGTATAGTTCATCCATGCCA Xbal, GGGP
LARDO insert GCG ATCGAT A (CCAGGT) x 5 TCGTCCCTCGGCGTGCATG Clal, PGPGPGPGPG
GCG GGTACC TCAACTGATCAGCACACCCT Kpnl
LARD-I insert AC TCTAGAATTGAAGGACGA TCCATCGCCAACCTGTCG Xbal, F.Xa
GGG AAGCTT ATGAACCGCCGATAATCCGT Hindlll
TIiA insert | AC TCTAGAATTGAAGGACGA ATGGGTGTATTTGACTACAAGA Xbal, F.Xa
GGG AAGCTT ATGAACCGCCGATAATCCGT Hindlll
TIliA insert 2 GGG GGTACCGGAGGA ATGGTGATTTGACTACAAGA Kpnl, GG
GGG AAGCTT TCAACTGATCAGCACACCCT Hindlll
TIiA insert 3 GGG ATCGATGGA ATGGGTGTATTTGACTACAAGA Clal, G
GGG GGATCC TCCTCC ACTGATCAGCACACCCTCG BamHI
EGF insert GGG GAATTC ATGAATAGTGACTCTGAATGTCC EcoRl
GGG TCTAGA GCGCAGTTCCCACCACTTC Xbal
GFP-LARDO insert GCG GGTACCCCAGGTGGT ATGACCATGATTACGCCAAG Kpnl PGPG
TAATACGACTCACTATAGGG (Kpnl)
GFP-TIiA insert CG GGTACCCCAGGT ATGAGTAAAGGAGAAGAACTTT Kpnl, PG
GFP-LARD | insert ATCTTCTCTCATCCGCCAAA (Hindlll)

A: alanine, P: proline, G: glycine, F.Xa: Factor Xa site
Enzyme sites are underlined and feature sequences are italicized.
(enzyme) denotes an enzyme site upstream of reverse primer.

2.5), neutralized by 1 M Tris-HCI (pH 8.0), and dialyzed
in phosphate buffered saline (PBS).

Immunoblot analysis of secreted protein

For detection of the secretion of TliA or LARD fusion pro-
teins expressed by the cultivation of E. coli XL1-Blue har-
boring recombinant plasmids, 12 pl culture supernatants
of recombinant E. coli cells were subjected to sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and then were electro-transferred onto a polyvi-
nylidene fluoride (PVDF) membrane (Amersham). Pro-
teins were detected by immunoblotting with anti-TliC
serum, followed by binding of peroxidase-conjugated
anti-rabbit IgG, and signals were detected with the
enhanced chemiluminescence system (Amersham).

Lipase activity

To identify a secretion phenotype on solid medium, E. coli
was grown at 25°C for 48 h on LAT (LB medium, 1.5%
Bacto Agar, 0.5% tributylin). The phenotype was evident
by the development of a halo due to the secreted lipase
[12]. In addition, lipase activity was measured spectro-
photometrically using p-nitrophenyl palmitate (pNPP) as
a substrate [12]. Ten millimolar pNPP dissolved in ace-
tonitrile was mixed with ethanol and 50 mM Tris-HCI
(pH 8.5) to a final ratio of acetonitrile:ethanol:Tris-HCI of
1:4:95 (v/v/v). The reaction was started by adding 50 pl of
culture supernatant to 200 ul of reaction mixture at 42°C,
and absorbance at 420 nm was monitored with a Magel-
lan microplate reader (Tecan, Minnedorf, Switzerland)

for 20 min. The activity was measured by the increase of
optical density (OD).

Abbreviations

TliA: thermostable lipase A; ABC: ATP binding cassette;
LARD: lipase ABC transporter domains; GFP: green fluo-
rescent protein; EGF: epidermal growth factor; CTP: cyto-
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TIiDEF: ABC transporter for TliA; PrtDEF: ABC transporter
for PrtA; RTX: repeat in toxins.
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