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Abstract

Background: Considerable interest in the bioconversion of lignocellulosic biomass into ethanol
has led to metabolic engineering of Saccharomyces cerevisiae for fermentation of xylose. In the
present study, the transcriptome and proteome of recombinant, xylose-utilising S. cerevisiae grown
in aerobic batch cultures on xylose were compared with those of glucose-grown cells both in
glucose repressed and derepressed states. The aim was to study at the genome-wide level how
signalling and carbon catabolite repression differ in cells grown on either glucose or xylose. The
more detailed knowledge whether xylose is sensed as a fermentable carbon source, capable of
catabolite repression like glucose, or is rather recognised as a non-fermentable carbon source is
important for further engineering this yeast for more efficient anaerobic fermentation of xylose.

Results: Genes encoding respiratory proteins, proteins of the tricarboxylic acid and glyoxylate
cycles, and gluconeogenesis were only partially repressed by xylose, similar to the genes encoding
their transcriptional regulators HAP4, CAT8 and SIPI-2 and 4. Several genes that are repressed via
the Snflp/Miglp-pathway during growth on glucose had higher expression in the cells grown on
xylose than in the glucose repressed cells but lower than in the glucose derepressed cells. The
observed expression profiles of the transcription repressor RGT/ and its target genes HXT2-3,
encoding hexose transporters suggested that extracellular xylose was sensed by the glucose
sensors Rgt2p and Snf3p. Proteome analyses revealed distinct patterns in phosphorylation of
hexokinase 2, glucokinase and enolase isoenzymes in the xylose- and glucose-grown cells.

Conclusion: The results indicate that the metabolism of yeast growing on xylose corresponds
neither to that of fully glucose repressed cells nor that of derepressed cells. This may be one of the
major reasons for the suboptimal fermentation of xylose by recombinant S. cerevisiae strains.
Phosphorylation of different isoforms of glycolytic enzymes suggests that regulation of glycolysis
also occurred at a post-translational level, supporting prior findings.
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Introduction

On hexose sugars, the yeast Saccharomyces cerevisiae has an
exceptional capacity for rapid anaerobic growth and fer-
mentation of sugar to carbon dioxide and ethanol. How-
ever, S. cerevisiae exhibits only negligible metabolism of
xylose even under aerobic conditions [1,2]. The interest in
production of fuel ethanol from renewable plant material,
often rich in pentose sugars such as xylose, has encour-
aged extensive metabolic engineering of S. cerevisiae for
xylose metabolism [3,4].

Recombinant xylose-utilising S. cerevisiae strains have
been constructed by introducing xylose reductase (XR;
preferring NADPH over NADH) and xylitol dehydroge-
nase (XDH; strictly NAD+ specific) encoding genes from
the xylose-fermenting yeast Pichia stipitis, and additionally
overexpressing the endogenous xylulokinase encoding
gene (XKS1) [5-8]. This oxidoreductive xylose pathway
has enabled xylose fermentation by S. cerevisiae [7,8] but
with significantly lower rates compared with glucose fer-
mentation. The different cofactor specificities of XR and
XDH disturb the cellular redox cofactor balance during
xylose metabolism, particularly under anaerobic condi-
tions. Recently, an evolutionarily engineered strain with
xylose isomerase from the anaerobic fungus Piromyces sp.
E2 was shown to have improved anaerobic growth and
fermentation on xylose compared with S. cerevisiae strains
expressing the oxidoreductive pathway [9-11]. However,
even this strain utilised glucose and xylose sequentially,
with preference for glucose, and the anaerobic specific
growth rate remained lower on xylose than on glucose
[11]. It thus seems that the rate of xylose metabolism in
engineered S. cerevisiae is not solely restricted by problems
in the balance of redox cofactors. Uptake of xylose [12]
and the low capacity of the pentose phosphate pathway
(PPP) in S. cerevisiae have been identified as plausible lim-
itations of xylose metabolism in this yeast [5,13].

The overall metabolism and changes generated by muta-
genesis in xylose-metabolising recombinant S. cerevisiae
strains have been analysed by transcriptional, proteome
and metabolic flux analyses [14-20]. A moderate increase
in transcript levels of some of the genes encoding enzymes
of the PPP, as well as in the flux through the pathway was
observed in cells metabolising xylose [14,16,18]. Addi-
tionally, expression of several genes encoding redox-
related enzymes was enhanced [18,21]. Starvation-related
but not general stress-related responses were activated
during growth on xylose, and furthermore, metabolism
on xylose seemed neither fully fermentative nor fully res-
piratory [21]. Importantly, anaerobic growth on xylose
was suggested to be limited by the rate of ATP production
[18].Jin et al. compared the transcription of xylose-metab-
olising S. cerevisiae growing on xylose alone or on glucose
alone in shake flask batch cultures under aerobic and oxy-
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gen-limited conditions [17]. They observed up-regulation
of genes encoding activities of the tricarboxylic acid (TCA)
cycle and gluconeogenesis, and of respiratory genes under
oxygen limitation in cells grown on xylose compared with
glucose repressed cells.

Most studies of xylose metabolism in the recombinant S.
cerevisiae have focused on assessing the reasons behind its
inability to grow on or to ferment efficiently this pentose
sugar under anaerobic conditions. However, the effect of
xylose on the dominant regulatory circuit of carbon
metabolism, i.e. glucose repression, has so far been largely
overlooked. Unravelling how xylose affects regulation of
metabolism, i.e. is xylose sensed as a fermentable carbon
source and capable of catabolite repression like glucose,
or is it rather sensed as a non-fermentable carbon source,
is highly important in achieving understanding for engi-
neering this yeast for efficient anaerobic fermentation of
xylose. Thus, our aim was to determine how signalling
and carbon catabolite repression differ in cells growing on
either glucose or xylose. We carried out batch fermenta-
tions on these sugars under fully aerobic conditions to
avoid the effect of oxygen limitation on the redox balance
in cells grown on xylose. In previous transcriptome and
proteome studies the metabolism on xylose was com-
pared only with either glucose repressed [17] or dere-
pressed cells [21], whereas comparison of xylose-grown
cells with both glucose repressed and derepressed cells in
the present study enabled responses solely due to the
absence of glucose repression to be distinguished from
those directly linked to the metabolism of xylose. The data
reveal novel information on transcript and protein levels
of xylose-metabolising cells indicating that they have both
fermentative and respirative features. Importantly,
although xylose was able to repress many of the glucose-
repressible genes, repression was only partial compared
with the glucose-grown and fully repressed cells. Addi-
tionally, signalling in the Snfl1p/Miglp glucose repression
and Snf3p/Rgt2p-Rgtlp glucose induction pathways
appeared different from that in the glucose-grown cells.

Materials and methods

Strains

Genetically modified S. cerevisiae strain VIT-C-99318
(CEN.PK2-1D ura3::XYL1 XYL2 his3:XKS1 kanMX) [22]
was derived from CEN.PK2-1D (MAT¢, leu2-3/112, ura3-
52, trp1-289, his341, MAL2-8¢, SUC2) [23] and contains
the genes XYL1 and XYL2 of P. stipitis encoding xylose
reductase and xylitol dehydrogenase, respectively, inte-
grated into the URA3 locus. XYL1 is expressed under a
PGK1 promoter and XYL2 under a modified ADH1 pro-
moter [24]. In addition, the strain contains an additional
copy of the endogenous xylulokinase encoding gene of S.
cerevisiae with the modified ADH1 promoter [24] and
integrated into the HIS3 locus. The integration of XYL1
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and XYL2 was described by Toivari et al., and that of XKS1
by Richard et al. [8,25].

Aerobic batch fermentations

VTT-C-99318 was grown at 30°C in 1.8-litre bioreactors
(Chemap CMF Bioreactor, Chemap AG, Volketswil, Swit-
zerland) with a working volume of 1.5 litres. The pH was
kept at 5.5 by automatic addition of 2 M KOH, and the
stirrer speed at 500 rpm. Mass flow controllers
(Bronkhorst High-Tech B.V, Ruurlo, Netherlands) regu-
lated the total gas flow at 0.5 standard litres per minute
(SLPM). The composition of the fermentor off-gas was
analysed using a QMG 421C quadrupole mass spectrom-
eter (Balzers Pfeiffer Scandinavia AB, Sweden) as
described previously [14]. The medium was synthetic
complete (SC) (modified from Sherman, 1983) [26]) sup-
plemented with 0.5 ml silicone antifoam I-! (AnalaR BDH,
UK) and 50 g I'! xylose or 50 g l-1glucose. Triplicate cul-
tures (FO, F1, and F2) were carried out on both carbon
sources. Cultures were started with an initial ODg,, 0f 1 to
1.5 from pre-cultures grown for 20 h at 30°C on SC with
30 g/L glucose.

The 25 ml samples for transcriptome and proteome anal-
yses were harvested by centrifugation (2 min, 5000 g)
after 5 h and 24 h growth for glucose cultures and after 72
h growth for xylose cultures and frozen in liquid nitrogen.
Cell growth was measured as OD, and cell dry mass as
described previously [14]. Extracellular concentrations of
glucose, xylose, xylitol, ethanol, acetate and glycerol were
analysed by high-performance liquid chromatography as
described previously [14].

Samples from the F2 cultivations on each carbon source
were hybridised three times on Affymetrix Yeast Genome
S98 arrays (hybridisations denoted as H2.1, H2.2 and
H2.3; see [Additional files 1 and 2]) and the samples from
the cultivations FO and F1 once (hybridisations denoted
as HO and H1, respectively; see [Additional files 1 and 2]).
Proteome analyses were carried out with samples taken at
the same time points as the samples for the transcriptome
analyses.

Affymetrix hybridisations, data acquisition and analysis

Aftymetrix hybridisations and analyses were carried out
according to the protocols provided by Affymetrix, Inc.
Double-stranded cDNA was synthesised from 5 pg total
RNA. An in vitro transcription (IVT) reaction was then car-
ried out to produce biotin-labelled cRNA from the cDNA.
The cRNA was fragmented and hybridised to a Test3 array
for quality control and then to the Yeast Genome S98
array for 16 h at 45°C. The arrays were washed and
stained with streptavidin-phycoerythrin in an Affymetrix
Fluidics Station 400 and scanned (Agilent G2500A Gene-
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Array Scanner). The data were extracted with Affymetrix
MicroArray Suite 5.0 software.

Array data were pre-processed using the Robust Multichip
Average (RMA) [27,28] implemented in the Bioconductor
(version 1.5.0) [29] extension to the R software environ-
ment for statistical computing and graphics (version
2.0.1). The RMA-method computes log, scale expression
values from cell intensity files using the RMA model of
probe-specific correction of perfect match (PM) probes
and quantile normalisation [28]. A visual inspection of
the scatter plots of the RMA pre-processed expression val-
ues, and the Pearson correlations between the replicate
arrays did not indicate outlying arrays [Additional files 3,
4, 5].

After the pre-processing, TIGR MultiExperiment Viewer
(version 3.1) was used to analyse the expression values
[30]. The replicate values were averaged and genes which
were differentially expressed between the glucose
repressed and derepressed samples and the xylose samples
were detected using one-way ANOVA at a p-value 0.01
based on 1000 permutation tests [31]. The expression val-
ues of significantly expressed genes (1439) were then
mean centred, the biological replicate arrays were aver-
aged and the values clustered using K-means with Eucli-
dean distance [32]. Clustering was performed several
times with varying parameters and the most optimal
result was obtained with 13 clusters. Since the 13 clusters
had 8 distinct expression profiles, and furthermore, as
combining the clusters with similar expression profiles
lowered the p-values of best gene ontology (GO) classes
[33], the clusters were manually reorganised into 8 clus-
ters.

Two-dimensional gel electrophoresis of the proteome

5-10 mg dry mass of cells was suspended in 150 pl of
10% (v/v) trichloroacetic acid (TCA, Merck, USA) ina 1.5
ml microcentrifuge tube. 500 pl glass beads (0.5 mm
diameter; Biospec Products, USA) were added and the
tubes shaken in a MiniBeadbeater 8 (Biospec Products) at
homogenisation speed three times for 30 seconds. The
tubes were cooled on ice between each homogenisation
step. The supernatants were collected and proteins were
precipitated by adding 600 pl of -20°C acetone and incu-
bating 30 min on ice. Precipitated proteins were collected
by centrifugation for 30 min, 13 000 rpm, at 4°C, rinsed
once with 600 pl of -20°C acetone, and re-suspended in
450 pl of 7 M urea (Promega, USA), 2 M thiourea (Fluka,
USA), 4% (w/v) CHAPS (Fluka), 1% (w/v) Pharmalytes
3-10 (Pharmacia, Sweden) and 1% (w/v) DTT (Sigma) by
gently shaking for 20 min at room temperature. Superna-
tants were collected by centrifugation for 5 min, 13 000
rpm. The protein concentration of the supernatants was
determined by the Non-Interfering Protein Assay (Geno
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Technology, Inc., USA) and the samples were stored at -
70° C prior to isoelectric focusing.

The isoelectric focusing and the second dimension on
11% (w/v) SDS-PAGE were carried out as described earlier
[15]. After electrophoresis the gels were fixed for 1.5 h in
30% (v/v) ethanol and 0.5% (v/v) acetic acid, and stained
either only with Sypro Ruby (Molecular Probes, USA) or
with phosphoprotein-specific Pro-Q Diamond (Molecu-
lar Probes) followed by Sypro Ruby, according to instruc-
tions of the manufacturer. The stained gels were scanned
with a resolution of 100 microns on a Typhoon instru-
ment (GE Healthcare, USA). The gel images were analysed
using the PDQuest software (Bio-Rad, USA). The gel pat-
terns from different gels were automatically matched with
some additional manual editing, and the quantities of
matching spots in different gels were compared. For each
condition, average spot quantities were calculated from
two to four gels of each sample taken from each of the
triplicate glucose and xylose cultivations. The quantifica-
tion of the resolved proteins was normalised to the total
optical density in each gel image. The data from 2-DE
(two-dimensional electrophoresis) gels were analysed
using the TIGR MultiExperiment Viewer (version 3.1)
[30]. Proteins which had different abundance in glucose
compared with xylose cultures were identified using the
one-way ANOVA at a p-value of 0.01 [31]. The 220 pro-
tein-spot intensity values obtained were mean centred, the
spots from replicate gels averaged, and the signal intensity
values for identified protein spots (in total 70) were clus-
tered using hierarchical clustering with Euclidean distance
and average linkage [34].

The degree of phosphorylation was calculated by dividing
the Pro-Q Diamond signal of a protein spot with the total
protein amount of the spot determined by the Sypro Ruby
signal. The averages and standard errors of the mean
(SEM) were calculated from six replicate gels (2 replicate
gels per sample from each of the three fermentations).

Protein identification by mass spectrometry and proteome
data analysis

Excised gel spots were destained in a freshly prepared
solution of 30 mM potassium ferricyanide and 100 mM
sodium thiosulfate (1:1) and then dehydrated in ace-
tonitrile (ACN). For protein alkylation, the dried gel
pieces were incubated in 5 mM tris (2-carboxyethyl) phos-
phine and 55 mM iodoacetamide (Sigma, USA) in dark at
room temperature for 1 h, followed by washing with 100
mM ammonium hydrogen carbonate (NH,HCO;) and
dehydration with ACN. The gel pieces were rehydrated in
10to 15 ul 10 mM NH,HCO;, 10% (v/v) ACN containing
0.01 pg/pl sequencing grade trypsin (Promega, USA), and
digested overnight at 37°C. To elute the tryptic peptides
from the gel, the pieces were incubated twice in 150 pl
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66% ACN (v/v) and 0.1% (v/v) trifluoroacetic acid (TFA;
Fluka) for 30 min at 37 °C. The peptide eluents were dried
to a minimal amount of liquid in a SpeedVac, and sus-
pended in 5 pl of 0.1% (v/v) TFA.

For co-crystallisation of peptides with the matrix, an aliq-
uot of the peptide solution was mixed with a saturated
matrix solution in a ratio of 1:10, and 1 to 2 ul was dis-
pensed on a MALDI target and let to dry at room temper-
ature. The matrix solution used was prepared by
dissolving 17 mg a-cyano-4-hydroxycinnamic acid
(Sigma) in 1 ml of 33% (v/v) ACN and 0.1% (v/v) TFA.

MALDI-TOF analyses were carried out with Autoflex
(Bruker Daltonics, Bremen, Germany), equipped with a
nitrogen pulsed laser (337 nm), operated in positive
mode. Typically, mass spectra were acquired by accumu-
lating spectra of 400 laser shots. External calibration was
performed for molecular assignments using a peptide cal-
ibration standard (Bruker Daltonik GmbH, Leipzig, Ger-
many).

Protein identifications were performed by searching the
peptide masses against the National Center for Biotech-
nology Information (NCBI) non-redundant database
using Prowl's ProFound - Peptide Mapping (Rockefeller
University) [35], Protein Prospector ms-fit (University of
California, San Francisco) [36] and Matrix Science's Mas-
cot — Peptide Mass Fingerprint (Matrix Science Ltd, UK)
[37]. Protein identifications by peptide mass fingerprint-
ing were further evaluated by comparing the calculated
and observed molecular masses and pl-values, as well as
the number of peptides matched and the percentage of
sequence coverage.

Results

Experimental design and data analysis of the
transcriptome and proteome

Three aerobic batch fermentations were carried out both
on 50 g I'! glucose and on 50 g 1! xylose to compare the
yeast transcriptome and proteome of cells growing on
xylose with that of glucose repressed and glucose dere-
pressed cells. Samples of the xylose-grown cells were har-
vested at 72 h from the start of the xylose cultures with 32
+ 1 gI'! of residual xylose present. Samples of the glucose
repressed cells were harvested at 5 h from the start of the
glucose cultures with 37 + 2 g I'! of residual glucose
present. Samples of the glucose derepressed cells were har-
vested at 24 h from the start of the glucose cultures con-
taining no glucose but 13 + 1 gI-! of accumulated ethanol.

The volumetric consumption and production profiles of
xylose, glucose, biomass, xylitol and ethanol (g 1!) of the
cultures are shown in Figure 1. In addition, some acetate
and glycerol (less than 2 g I'! each) were produced in the
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Recombinant xylose-metabolising S. cerevisiae in aerobic batch cultures on xylose (A) and glucose (B) showing
concentrations (g I'!) of A) xylose (H), cellular dry weight; DW (A), ethanol ((J) and xylitol (O) and B) glucose
(M), cellular dry weight; DW (A), and ethanol ((J). Cultures were maintained at pH 5.5, 30°C, 500 rpm, 0.33 volume air
[volume culture]! min-!'. Data represent the average and standard deviation of three separate batch cultures on each carbon
source. The arrows indicate times at which samples were taken for transcriptome and proteome analyses.

glucose cultures, and less than 4 gl-lacetate, 3 g1-1 glycerol
and 2 g 1! ethanol were measured in the xylose cultures.
The doubling time of the cells in the xylose cultures was
28 + 2 h (during 5 to 72 h), and in the glucose cultures 1.8
+0.1 h (during 2 to 5 h) and 73 + 3 h (during 24 to 53 h).

The 1439 genes, which were expressed differently (based
on ANOVA at a p-value 0.01) between the glucose
repressed (Glc5h), glucose derepressed (Glc24h) and
xylose (Xyl72h) samples were organised into eight sepa-
rate clusters with distinct expression profiles shown in Fig-
ure 2. The top three gene ontology classes of each cluster
and the number of genes found in each class are listed in
Table 1. All genes in each cluster of Figure 2 are shown in
additional files [Additional files 6, 7, 8, 9, 10, 11, 12, 13].

70 out of 547 protein spots separated on the 2-DE gels
had different abundances between the glucose repressed
(Glc5h), glucose derepressed (Glc24h) and xylose
(Xyl72h) samples and were identified by MALDI-TOF
peptide mass mapping. They represented 55 different pro-
teins, with 12 proteins present as multiple protein spots
on the gels (Table 2) [Additional files 14 and 15]. 73% of
the responses at the protein level correlated qualitatively
with the microarray data (Table 2).

Carbon source sensing and signalling in cells metabolising
xylose

One of the first responses of S. cerevisiae to glucose is the
induction of genes encoding hexose transporters (Hxt)
that are also used for xylose uptake [38,39]. The signal for
the presence of glucose is mediated via the glucose sensor
proteins Snf3p and Rgt2p, responding to low and high
glucose concentrations, respectively [40,41]. The expres-
sion of SNF3 is repressed at high concentrations of glu-
cose via Miglp (|42] and references therein). In the
xylose-grown cells, the transcript levels of SNF3 were
higher than in the glucose repressed cells, but lower than
in the glucose derepressed cells (Fig. 2, cluster 2), while
RGT2 had its highest expression in the xylose-grown cells
(Fig. 2, cluster 4). The expression of RGT2 is reported to be
independent of glucose concentration [43], but in the
present study derepression was observed (Fig. 2, cluster
4).

RGT1, encoding a transcription factor of HXT genes had,
like SNF3, higher transcript levels in the xylose-grown
cells than in the glucose repressed cells, but lower than in
the glucose derepressed cells (Fig. 2, cluster 2). The expres-
sion of RGT1 is reported not to be regulated in response
to glucose ([42] and references therein), but the expres-
sion profile in cluster 2 suggests that its expression was
derepressed in the absence of glucose, and to a lesser
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The eight distinct clusters of the 1439 differentially expressed genes determined by K-means with Euclidean
distance. The y-axis corresponds to the difference of a gene relative to the mean expression of the gene in all samples on a
log,-scale (values above zero-level represent up-regulation and below it down-regulation). The red lines represent the average
expression pattern of each cluster. The x-axes are the 5 h and 24 h glucose and 72 h xylose samples (Glc5h, Glc24h and
Xyl72h, respectively). The total number of genes in each cluster was: 484, 514, 127, 182, 22, 22, 34 and 54 for clusters | to 8,

respectively.

extent also on xylose (Fig. 2). Consistently, HXT2 and
HXT3, which are repressed by RGT1, had highest expres-
sion in the presence of glucose and lowest in the glucose
derepressed cells (Fig. 2, cluster 1). In addition to its func-
tion in repressing HXT genes in the absence of glucose
[44], Rgtlp is required for repression of HXK2 at low lev-
els of glucose together with the transcription cofactor
Med8p [45]. The expression of RGT1 and HXK2 was as
expected: while RGT1 was expressed at its highest level in
the glucose derepressed cells, HXK2 had its lowest expres-
sion in these cells (Fig. 2, cluster 1). MTH1 encoding a

corepressor of RGT1 had its highest expression in the
xylose-grown cells (Fig. 2, cluster 4). Mth1p is involved in
maintaining the repression of HXT genes when glucose is
not present [46]. Nevertheless, in the cells grown on
xylose, HXT2 and HXT3 had higher transcript levels com-
pared with the glucose derepressed cells (Fig. 2, cluster 1),
HXT6 compared with the glucose repressed cells (Fig. 2,
cluster 2), and HXT4 and HXT16 compared with both the
glucose repressed and derepressed cells (Fig. 2, clusters 7
and 4, respectively).
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Table I: The top three gene ontology (GO) classes in each of the eight clusters in Figure 1. n is the number of the genes with the
specified function, % is the percentage of the genes in the cluster with the specified function, and p-value is the binomial distribution
probability [33]. (Total number of genes in clusters | to 8: 484, 514, 127, 182, 22, 22, 34 and 54, respectively)

Cluster GO-class Annotation n % p-value
| GO:0009058 Biosynthesis 159 329 1.96E-23
GO:0044249 Cellular biosynthesis 148 30.6 1.95E-21
GO:0044238 Primary metabolism 286 59.1 5.51E-19
2 GO:0006091 Generation of precursor metabolites and energy 67 13.0 5.89E-25
GO:0015980 Energy derivation by oxidation of organic compounds 57 1.1 6.24E-21
GO:0006119 Oxidative phosphorylation 20 39 5.25E-11
3 GO:0006896 Golgi to vacuole transport 5 39 1.39E-05
GO:0006892 Post-Golgi transport 6 4.7 2.10E-04
GO:0042147 Retrograde transport, endosome to Golgi 3 24 6.40E-04
4 GO:0044242 Cellular lipid catabolism 2 1.1 4.99E-03
GO:0016042 Lipid catabolism 2 1.1 4.99E-03
GO:0006000 Fructose metabolism 2 1.1 4.99E-03
5 GO:0006790 Sulphur metabolism 6 27.3 8.16E-09
GO:0000096 Sulphur amino acid metabolism 4 18.2 1.71E-06
GO:0015837 Amine transport 4 18.2 8.44E-06
6 GO:0000017 Alpha-glucoside transport 2 9.1 1.00E-04
GO:0042946 Glucoside transport 2 9.1 1.00E-04
GO:0008643 Carbohydrate transport 2 9.1 4.21E-03
7 G0:0009082 Branched chain family amino acid biosynthesis 5 14.7 2.50E-09
GO:0009081 Branched chain family amino acid metabolism 5 14.7 7.00E-09
GO:0009098 Leucine biosynthesis 3 8.8 1.30E-06
8 G0:0000002 Mitochondrial genome maintenance 4 74 3.24E-05
GO:0051294 Establishment of spindle orientation 2 37 1.66E-03
GO:0051293 Establishment of spindle localization 2 37 1.66E-03

The metabolism of the recombinant S. cerevisiae on
xylose appears neither as fully glucose repressed nor as
fully derepressed

In xylose-grown cells, the genes encoding activities of the
TCA and glyoxylate cycles, respiration and gluconeogene-
sis were expressed more strongly than in glucose repressed
cells but less strongly than in derepressed cells (Fig. 2,
cluster 2). On glucose these genes are repressed via the
pathway involving Snf1p, Miglp and Hxk2p [47]. In more
detail, cluster 2 contained genes encoding enzymes of res-
piration (e.g. COX4, COX5a, COX7, COX14-15, CORI1,
QCR2, QCR7, QCR9, ATP3-5, ATP16), gluconeogenesis
(e.g. FBP1, PCK1), the TCA and glyoxylate cycles (e.g.
KGD1-2, SDH1-4, FUM1, MDH]1, CIT1-3, MLS1, ICL1),
alcohol catabolism (e.g. ADH2), and trehalose and glyco-
gen synthesis (e.g. TSL1, GLCI-3, GSY2) (Table 1). In
addition, genes encoding transcriptional regulators of the
aforementioned genes, such as ADR1, CAT8, HAP4, SIP1-
2 and 4, and REG2 [48] were present in cluster 2 (Fig. 2).
In the proteome analysis of the corresponding samples, a
similar trend was seen in the abundance of proteins with
respiratory functions, such as ATP synthases Atplp and
Atp2p, ubiquinol-cytochrome-c reductase (Corlp; two
isoforms detected), isocitrate dehydrogenase Idh2p
(expression of IDH2 was comparable in the glucose
repressed and xylose-grown cells; Fig. 2, cluster 8), and the

a-subunit of succinyl-CoA ligase Lsclp (Table 2) [Addi-
tional file 15].

Distinct profiles in the abundance of transcripts and
enzyme levels of the glycolytic and ethanol pathways were
observed. HXK2 and PGI1 had lower expression in the
xylose-grown cells compared with the glucose repressed
cells (Fig. 2, cluster 1). On the other hand, the xylose-
grown cells had higher amounts of Pgklp, Gpm1p and
Adh1p, compared with the glucose repressed cells (Table
2) [Additional file 15]. In addition, Enolp and Adh2p
(whose encoding gene had higher transcript abundance
on xylose compared with the glucose repressed cells; Fig.
2, cluster 2) were most abundant in the xylose-grown cells
(Table 2) [Additional file 15]. The latter two proteins are
typically synthesised on non-fermentable carbon sources
[49,50].

Overlaying the comparison of gene expression in the glu-
cose repressed, derepressed and xylose-grown cells on the
main metabolic network (Fig. 3) further demonstrates
how the genes encoding activities of the TCA and glyoxy-
late cycles had higher expression profiles on xylose com-
pared to the glucose repressed cells, whereas the opposite
was observed with many genes of glycolysis and the PPP.
The differences indicated in the expression of all individ-
ual genes in Figure 3 were not statistically significant
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Table 2: Proteins which were differentially translated in the glucose repressed, glucose derepressed and xylose-grown cells, identified
from the 2-DE gels [Additional files 14 and 15].

log2 X72/G24  log2 X72/G5  log2 G24/G5

Swiss Prot Id Protein2 ORF Function 2D array 2D array 2D  array
P32316 Achlp YBLOISW  acetyl-CoA hydrolase 0.0 -1.0 34 2.7 34 37
P00330 Adhlp_a YOL086C  alcohol dehydrogenase 1.4 0.9 0.2 0.3 -1.2 -0.6
P00330 Adhlp_b YOL086C  alcohol dehydrogenase 2.1 0.9 0.5 0.3 -1.6 -0.6
P00331 Adh2p YMR303C  alcohol dehydrogenase 4.8 -2.6 57 1.4 0.9 4.0
P47143 Adolp_a YJRIO5W  adenosine kinase -1 04 -1.4 -1.3 -0.2 -1.7
P47143 Adolp_b YJRIO5W  adenosine kinase -1.4 0.4 -1.9 -1.3 -0.5 -1.7
P38013 Ahplp YLRIO9W  thioredoxin peroxidase -04 0.0 0.5 -0.2 1.0 -0.2
P54114 Ald3p YMRI69C  aldehyde dehydrogenase 0.4 0.8 1.8 1.8 1.4 1.0
P46367 Ald4p YOR374W  aldehyde dehydrogenase (NAD") 1.7 -0.2 36 1.0 1.9 1.1
P54115 Aldép_a YPLO6IW  aldehyde dehydrogenase (NADP*) -0.9 -2.6 0.2 -1.9 1.0 0.7
P54115 Aldép_b YPLO6IW  aldehyde dehydrogenase (NADP*) -2.0 -2.6 -2.8 -1.9 -0.8 0.7
P28777 Aro2p YGLI48W  chorismate synthase -0.7 0.4 -14 -14 -0.7 -1.8
P53090 Aro8p YGL202W  aromatic-amino-acid transaminase -1.7 1.5 -0.6 -1.0 1.1 -2.5
P38011 Asclp YMRI16C  molecular function unknown -0.6 1.8 -24 -1 -1.8 -3.0
P07251 Atplp YBLO99W  hydrogen-transporting ATP synthase 0.1 -0.2 1.8 0.7 1.7 0.9
P00830 Atp2p YJRI2IW  hydrogen-transporting ATP synthase 0.2 -0.4 1.6 0.9 1.4 1.2
P38891 Batlp YHR208W  branched-chain-amino-acid transaminase 1.9 3.9 0.4 0.7 -1.5 -32
P07256 Corlp_a YBLO45C  ubiquinol-cytochrome-c reductase 0.6 -0.2 1.3 1.0 0.8 1.2
P07256 Corlp_b YBLO45C  ubiquinol-cytochrome-c reductase 0.3 -0.2 1.3 1.0 1.0 1.2
P07256 Corlp_c YBL0O45C  ubiquinol-cytochrome-c reductase -0.1 -0.2 1.3 1.0 1.5 1.2
PO6115 Cttlp YGRO88W  catalase 1.4 1.8 34 24 2.0 0.6
P31373 Cys3p YALOI2W  cystathionine gamma-lyase -2.3 -0.6 -2.9 -3.1 -0.6 -2.4
P32582 Cys4p_a YGRI55W  cystathionine beta-synthase -2.5 -0.8 -0.2 -1 23 -0.3
P32582 Cys4p_b YGRI55W  cystathionine beta-synthase -0.9 -0.8 -1.7 -1 -0.9 -0.3
P06634 Dedlp YOR204W  RNA helicase 0.5 0.3 -2.2 0.5 -2.7 0.2
P14306 Dkalp YLRI78C  carboxypeptidase Y inhibitor -1.2 -0.6 1.7 0.8 29 1.4
P39976 Dld3p YELO7IW  D-lactate dehydrogenase (cytochrome) -2.0 -0.2 -24 -0.6 -0.3 -0.4
P00924 Enolp_a YGR254W  phosphopyruvate hydratase 1.5 0.6 5.2 0.5 37 -0.1
P00924 Enolp_b YGR254W  phosphopyruvate hydratase 35 0.6 5.7 0.5 22 -0.1
P00924 Enolp_c YGR254W  phosphopyruvate hydratase 1.2 0.6 2.6 0.5 1.3 -0.1
P14065 Geylp YORI20W  aldo-keto reductase 2.0 0.3 37 3.1 1.7 2.8
Q00055 Gpdlp YDL022W  glycerol-3-phosphate dehydrogenase 0.7 0.0 1.9 0.2 1.2 0.2
P00950 Gpmlp YKLI52C  phosphoglycerate mutase 1.7 0.5 1.6 -0.1 0.0 -0.7
P38625 Gualp YMR2I7W  GMP synthase -0.8 1.3 -1.8 -1.0 -1.0 -2.3
P15454 Guklp YDR454C  guanylate kinase -1.7 0.3 -1.4 -1.3 0.3 -1.6
P15992 Hsp26p_a YBRO72W  heat shock protein 0.1 -0.2 3.0 2.0 29 22
P15992 Hsp26p_b YBRO72W  heat shock protein -0.6 -0.2 22 2.0 2.8 2.2
P04807 Hxk2p_a YGL253W  hexokinase 2.6 29 107 -05 8.1 -3.4
P04807 Hxk2p_b YGL253W  hexokinase 0.7 2.9 -1.1 -0.5 -1.8 -3.4
P28241 Idh2p YORI36W isocitrate dehydrogenase (NAD+) -0.9 -0.5 0.7 0.2 1.7 0.7
P00817 Ipplp YBROIIC inorganic diphosphatase -1.7 -0.5 -1.5 -0.9 0.3 -0.5
P53598 Lsclp YORI42W  succinate-CoA ligase (ADP-forming) -0.5 -0.4 0.6 0.1 1.1 0.4
P36060 Mcrlp YKLI50W  cytochrome-b5 reductase 1.8 0.1 33 1.5 1.4 1.4
P05694 Met6p YERO9IC  methionine synthase -2.5 -1.3 -2.9 -1.0 -0.4 0.3
P04147 Pablp YERI65W  poly(A) binding protein 0.4 0.2 -1.1 -0.3 -1.6 -0.5
P06169 Pdclp_ab YLR044C  pyruvate decarboxylase -1.7 2.0 -1.8 -0.2 0.0 -2.2
P06169 Pdclp_b® YLR044C  pyruvate decarboxylase -2.1 2.0 -1.2 -0.2 0.9 -2.2
P17967 Pdilp YCL043C  protein disulfide isomerase -0.7 -0.1 -2.6 -0.5 -1.9 -04
P00560 Pgklp_a YCROI2W  phosphoglycerate kinase I.1 0.6 1.8 0.1 0.7 -0.5
P00560 Pgklp_b YCROI2W  phosphoglycerate kinase 1.9 0.6 2.6 0.1 0.7 -0.5
P34227 PrxIp YBLO64C  thioredoxin peroxidase -0.2 -0.9 1.7 0.7 1.9 1.6
Q12335 Pst2p YDR032C  molecular function unknown -0.6 -0.1 0.8 -0.4 1.5 -0.3
P07703 Rpc5p YPRI10C  DNA-directed RNA polymerase -0.3 0.5 -1.5 -1.3 -1.2 -1.8
P26783 Rps5p YJRI23W  structural constituent of ribosome -0.6 0.7 -3.0 -0.6 -24 -1.2
P19358 Sam2p YDR502C  methionine adenosyltransferase -2.2 -2.0 -2.5 -2.6 -0.3 -0.6
P07283 Sec53p_a YFLO45C  phosphomannomutase -0.1 0.2 -2.5 -1.6 -2.4 -1.8
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Table 2: Proteins which were differentially translated in the glucose repressed, glucose derepressed and xylose-grown cells, identified

from the 2-DE gels [Additional files 14 and 15]. (Continued)

P07283 Sec53p_b YFLO45C  phosphomannomutase -1.1 0.2 -2.0 -1.6 -0.8 -1.8
P33330 Serlp YORI84W  phosphoserine transaminase -0.8 -0.3 -0.9 -1.0 -0.1 -0.8
P37291 Shm2p YLRO58C  glycine hydroxymethyltransferase 0.1 -0.1 -1.5 0.6 -1.6 0.7
Q03144 Snolp YMRO095C  molecular function unknown 0.3 0.4 -0.8 2.0 -1 1.6
P00447 Sod2p YHRO08C  manganese superoxide dismutase -0.5 -0.2 1.9 1.1 2.4 1.2
P15705 Stilp YOR027W  Hsp90 cochaperone 0.6 0.2 1.7 0.3 1.1 0.1
P23254 Tkilp YPRO74C  transketolase -0.6 1.1 -1.0 -0.6 -0.5 -1.7
P00942 Tpilp YDRO50C triose-phosphate isomerase -1 0.2 0.5 -0.1 1.5 -0.3
P17649 Ugalp YGROI9W  4-aminobutyrate transaminase -0.8 -0.1 1.4 0.2 22 0.3
QIl2363 Wtmlp_a YOR230W transcriptional modulator 0.1 -0.1 1.7 0.2 1.6 0.3
QI12363 Wtmlp_b YOR230W  transcriptional modulator -0.1 -0.1 1.3 0.2 1.4 0.3
P23180 Yhi021p YHLO2IC  molecular function unknown -0.5 -0.8 1.6 0.6 2.1 1.3
P35691 Ykl056cp YKLO56C  molecular function unknown -1.0 0.5 -1.8 -14 -0.9 -1.9
Q04869 Ymr3l5wp YMR3I5W  molecular function unknown 2.5 2.3 3.1 1.8 0.6 -0.4

Log2 values of the protein abundance ratios, and the expression ratios for the corresponding gene of cells grown on xylose for 72 h (X72) to cells
grown on glucose for 24 h (G24), or 5 h (G5), and of cells grown on glucose for 24 h to cells grown on glucose for 5 h are given. Proteins whose
encoding genes showed a statistically significant expression difference in the samples studied are marked with bold text.

aDifferent pl forms of a protein indicated by a, b and ¢

bThese spots of Pdc|p had substantially lower molecular weight compared with the major Pdc|p protein spot identified earlier [15] and are likely

either degraded or post-translationally processed forms of the enzyme.

based on ANOVA, however, the analysis clearly illustrates
the distinct trends in the expression of genes of individual
pathways in the central carbon metabolism on xylose
compared to the glucose repressed and derepressed cells.

In addition to Snf3p and Rgt2p, extracellular glucose is
sensed via Gprlp, which signals the presence of glucose
via Gpa2p to the cyclic AMP-protein kinase A (cAMP-
PKA) signalling pathway [51]. The glucose-induced acti-
vation of cAMP synthesis is subsequently repressed by glu-
cose and therefore not considered to be operative during
growth on glucose [52]. Most genes encoding compo-
nents of the cAMP-PKA pathway had intermediate expres-
sion in the xylose-grown cells with highest expression in
the glucose derepressed cells and lowest in the glucose
repressed cells [Additional file 16]. Consistently, 52% of
the genes (28/54 genes) repressed via this pathway in the
presence of glucose had the same intermediate expression
profile in the xylose-grown cells (data not shown).

Some glucose repressible genes had their highest
expression on xylose

HXK1, HXT16 and SUC2, which are all repressed by glu-
cose via the Snflp/Miglp-pathway [42,53-55], had their
highest expression levels in the xylose-grown cells (Fig. 2,
cluster 4). MAL11, MAL31, and MAL32, encoding activi-
ties for the utilisation of maltose and representing classi-
cal prototype genes of glucose repression by Miglp, were
also relieved from glucose repression (Fig. 2, cluster 6).
This was observed despite the fact that GAL83 encoding
one of the B-subunits of the Snf1 kinase complex and ena-
bling nuclear localisation of the kinase in the presence of

non-fermentable carbon sources [56] had its lowest
expression in the cells grown on xylose (Fig. 2, cluster 3),
as if xylose was perceived as a fermentable, repressive car-
bon source.

Growth on xylose affected expression of genes in the
pathways of acetyl-CoA synthesis and consumption

The metabolic pathway responsible for the cytoplasmic
synthesis of acetyl-CoA from ethanol involves alcohol
dehydrogenase 2, cytoplasmic aldehyde dehydrogenase 6,
and acetyl-CoA synthase encoded by ADH2, ALD6 and
ACS1, respectively. ADH2 and ACS1, and the genes
encoding the two transcription factors, Adrlp and Cat8p,
which regulate their expression [57] had higher transcript
levels on xylose compared to the glucose repressed cells
(Fig. 2, cluster 2). However, expression of ALD6 was lower
on xylose compared with the glucose repressed and dere-
pressed cells (Fig. 2, cluster 5), as was the abundance of
two isoforms of Ald6p in the proteome analysis (Table 2)
[Additional file 15]. ALD5 encoding a mitochondrial,
NADPH-dependent isoform of acetaldehyde dehydroge-
nase [58], was up-regulated on xylose (Fig. 2, cluster 7). In
the proteome analysis, Ald4p, another mitochondrial,
NADPH-dependent isoform, had its highest abundance
on xylose (Table 2) [Additional file 15]. The expression of
glucose repressed ACHI1, encoding a mitochondrial
acetyl-CoA hydrolase [59], had higher transcription on
xylose compared to the glucose repressed cells (Fig. 2,
cluster 2), which was also reflected in the abundance of
Ach1p (Table 2) [Additional file 15].
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Figure 3

Expression profiles of genes involved in the main metabolic networks of S. cerevisiae. Transcription factors are pre-
sented with boldfacing and connected to the respective target genes with gray lines. The connections shown between tran-
scription factors and their target genes are based on compilations in Yeast Proteome Database [70][80] and on the
transcription factor binding network by Young and co-workers [82]. Expression of the genes presented in white boxes with
black text was highest in the glucose derepressed cells (Derep.) and lowest in the glucose repressed cells (Rep.). Expression of
the genes presented in black boxes with white text was highest in the glucose repressed cells and lowest in the glucose dere-
pressed cells. Expression of the genes presented in dark gray boxes with black text was highest in the xylose-grown cells and
lowest in the glucose derepressed cells. Expression of the genes presented in light gray boxes with black text was highest in the
xylose-grown cells and lowest in the glucose repressed cells. Expression of the genes presented in gray boxes with white text
was lowest in the xylose-grown cells. In addition to the genes shown in the figure, 89% of the genes (31 out of 35) annotated
to GO category "Oxidative phosphorylation" and its daughter categories [33] had highest expression in the glucose dere-
pressed cells, lowest expression in the glucose repressed cells and intermediate expression in the cells grown on xylose (data
not shown).
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Distinct phosphorylation patterns of some major glycolytic
enzymes on xylose and glucose

Interestingly, several glycolytic enzymes (i.e. Hxk2p,
Pgklp, Enolp, Eno2p) had post-translationally modified
forms with different abundances in the xylose-grown and
glucose repressed and derepressed cells (Table 2) [Addi-
tional files 14, 15 and 17]. The fluorescent phosphopro-
tein-specific Pro-Q Diamond stain revealed reproducible,
distinct patterns of phosphorylated forms of Hxk2p,
Glklp, Enolp and Eno2p that were present in different
relative quantities in the three different conditions studied
(normalised to the total amount of each protein; Fig. 4)
[Additional file 17]. Both Enolp and Eno2p had three
phosphorylated pl forms with different abundances in the
xylose- and glucose grown cells (Fig. 4). The expression of
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ENO1 was expected to be repressed by glucose, but both
ENOI1 and ENO?2 should be expressed during growth on
non-fermentable carbon sources [49]. Two phosphor-
ylated isoforms were identified for Glklp and three for
Hxk2p (Fig. 4). GLK1 should be expressed during growth
on non-fermentable carbon sources and Hxk2p should be
dominant during growth on glucose [55]. The expression
of ENO1 and GLK1 did not significantly change between
the three samples studied.

Discussion

Transcription of a number of genes involved in the utilisa-
tion of alternative or non-fermentative carbon sources are
repressed in the presence of glucose and derepressed in its
absence [60]. Glucose sensing, signalling, and repression
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Log-scale ratio of intensity of Pro-Q Diamond phosphoprotein stain to Sypro Ruby signal (total protein
amount) of phosphorylated a) enolase |, b) enolase 2, c) glucokinase, and d) hexokinase 2 protein isoforms
identified from 2-DE gel analyses (a to c refer to different isoforms on gels). G5 = cells after 5 h on glucose; G24 =

cells after 24 h on glucose; X72 = cells after 72 h on xylose.
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are thus closely linked to respirative and fermentative
modes of metabolism. Accordingly, the way the cell recog-
nises, senses, and signals the presence of xylose must
affect the efficiency of its utilisation and fermentation.
Previous studies of xylose-metabolising S. cerevisiae have
suggested that xylose has a repressing effect on gene
expression [21,61,62]. The results of the present study
show that the expression of several genes repressed via the
Snflp/Miglp glucose repression pathway i.e. genes encod-
ing respiratory, TCA, glyoxylate cycle and gluconeogenic
enzymes was lower during growth on xylose than in dere-
pressed glucose-grown cells (24 h in Fig. 1). However,
expression of these genes was higher than observed in glu-
cose repressed cells (5 h in Fig. 1). On the other hand,
some genes of the PPP and glycolysis and those typically
expressed on non-fermentable carbon sources (e.g. HXK1,
SUC2, PFK26 and some MAL-genes) showed increased
expression in the cells growing on xylose. Thus, during
xylose metabolism a mixed profile of gene expression was
observed, suggesting that xylose does not activate all the
glucose repression pathways in the same way as glucose.

The mechanisms of signal transduction by xylose are still
unknown. It has been suggested that some hexose or tri-
ose phosphates derived from glycolysis [63,64] are
involved in the regulation of gene expression, at least in
lower glycolysis. The cellular concentration of hexose
phosphates depends on the rate of glycolysis [65], but a
correlation between the repression of genes and the con-
centration of hexose or triose phosphates on different car-
bon sources has not been shown [62]. When xylose is the
main carbon source glycolytic flux to pyruvate is lower
than for cells growing on glucose [14,66]. This may con-
tribute to the observed higher expression of genes
repressed via Snflp/Miglp in the xylose-grown cells, as
Miglp is expected to be totally dephosphorylated (and
thus to repress its target genes) only at high glycolytic rates
[67].

In recent studies, growth rate has been shown to affect the
levels of transcripts, proteins and metabolites [68,69]. It
could thus be argued that the intermediate expression
level of many glucose repressed genes in the xylose-grown
cells, compared with the glucose repressed and dere-
pressed cells, is due to the different growth rate on xylose.
Comparison of the present data with the data of growth
rate regulated genes and proteins described in studies of
Regenberg et al., 2006 and Castrillo et al., 2007, showed,
however, that a majority (roughly 90%) of these genes
and proteins (in clusters 1 and 2, Fig. 2) were with
unknown function or associated with processes such as
translation, RNA metabolism, ribosome biogenesis,
amino acid metabolism, and stress, and not with the cen-
tral pathways of carbon metabolism or glucose sensing
and repression [68,69]. Additionally, in our previous che-

http://www.microbialcellfactories.com/content/7/1/18

mostat studies, TCA cycle genes had a lower expression
level on a mixture of xylose and glucose (27 and 3 g 1,
respectively) than under glucose limitation (10 gI-!) at the
same specific growth rate suggesting that xylose had a
repressive effect on the expression of these genes [21].
This supports the assumption that the lower growth rate is
not the sole explanation for the only partial repression of
the glucose repressed genes on xylose. The intermediate
expression on xylose of respiratory, TCA and glyoxylate
cycle genes was probably neither due to the lower concen-
tration of ethanol on xylose compared with the glucose
derepressed cells since Belinchén and Gancedo, (2003)
showed that in a recombinant, xylose-metabolising S. cer-
evisige strain, even in the presence of ethanol, xylose
decreased the expression of ICL1 and FBP1 compared
with derepressed, ethanol-grown cells [62]. Contradicto-
rily, Jin et al., (2004), comparing the transcriptome of
xylose-grown cells to that of glucose repressed cells, stated
that xylose is not a repressive carbon source [17]. Their
study, however, lacked the comparison of xylose-grown
cells to fully derepressed cells, whereas comparison of the
xylose-grown cells to the derepressed cells in the present
study showed that xylose decreased the expression of sev-
eral genes repressed by glucose via the Snf1p/Miglp-path-
way.

Yet another possibility for the intermediate expression in
xylose-grown cells may be the way cAMP-PKA mediated
pathways function on xylose. In the present study, over
50% of the genes repressible via this pathway [70] were
expressed in xylose-grown cells at levels lower than those
in glucose derepressed cells but above those in glucose
repressed cells [Additional file 16]. Glucose is sensed by
the receptor Gpr1p that initiates a signalling cascade lead-
ing to stimulation of fermentation. In the study of Rol-
land et. al., (2000) xylose (100 mM) was not sensed by
Gprlp [71]. In the present work, xylose was 210 mM at
the time of sampling, and possibly even a higher concen-
tration is needed for Gprlp to sense this sugar. Further-
more, full activation of cAMP synthesis by glucose
requires phosphorylation of glucose by Hxk1p, Hxk2p or
Glk1p [71], which does not occur on xylose.

Glucose is also sensed at high and low concentrations,
respectively by Rgt2p and Snf3p sensors. In glucose-grown
cells the signal leads to induction of the HXT genes encod-
ing glucose transporters by relieve of repression by Rgt1p
through degradation of its co-repressors Mth1p and Std1p
[43,72]. The Snflp/Miglp repression pathway contributes
to glucose induction of HXT genes by repressing SNF3 and
MTH1 [46]. The induction of MTH1 and only partial
repression of SNF3 in the xylose-grown cells shows again
that the glucose repression pathway via Snfl1p/Miglp does
not operate to the same extent on xylose as it does on glu-
cose. However, the expression profile of SNF3 and the
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highest expression of RGT2 in xylose-grown cells suggest
that these sensors detect extracellular xylose.

Changes were observed in the expression of genes of
acetaldehyde and acetyl-CoA metabolism. The increased
expression of ACS1 and ALD5, and increased abundance
of Ald4p suggest that acetaldehyde was utilised for growth
instead of ethanol production during metabolism of
xylose. The observed higher expression of ACH1, encod-
ing the glucose repressed mitochondrial acetyl-CoA
hydrolase, suggests that mitochondrial acetate concentra-
tion was perhaps elevated in xylose-grown cells compared
with the glucose repressed cells. The changes may also
reflect regulation of intracellular redox balance between
the cytosol and mitochondria, since oxidation of acetalde-
hyde to acetate by Ald6p or Ald4/5p provides cytosolic
and mitochondrial NADPH, respectively [73].

Jin et al., (2004) observed no change in the expression lev-
els of genes encoding glycolytic enzymes in a xylose-utilis-
ing S. cerevisiae strain when xylose was provided as a
carbon source instead of glucose in shake flask cultures
[17]. In the present study, some of these genes had
increased expression, and the proteome showed higher
abundance of several glycolytic enzymes on xylose com-
pared with either the glucose repressed or derepressed
cells. Several recent studies suggest that regulation of glyc-
olysis in S. cerevisiae occurs mainly at post-translational
levels at least when aerobic and anaerobic conditions are
compared, or ethanol and acetate are supplied instead of
glucose [74-76]. Supporting these findings, the proteome
analysis of the present study revealed that the relative
abundance of different isoforms of some glycolytic
enzymes correlated with the carbon source. Distinct pat-
terns of phosphorylation of hexokinase 2, glucokinase
and enolase in cells grown on xylose or glucose suggested
that these enzymes were regulated differently by phospho-
rylation in the glucose repressed and derepressed cells,
and in the cells grown on xylose. Apart from Hxk2p, pyru-
vate kinase (Pykl/2p), and the regulatory Pfk26/27p
[77,78] there is little information on the phosphorylation
of glycolytic enzymes. It has been shown that Hxk2p is
dephosphorylated on fermentable carbon sources,
whereas both phosphorylated and dephosphorylated
forms exist on poorly fermentable carbon sources [79].
The present data showed that only one of the three phos-
phorylated forms of Hxk2p was present in glucose
repressed cells whereas the other two were present only in
glucose derepressed cells and cells grown on xylose. This
suggests that xylose was sensed rather as a non-fermenta-
ble carbon source. It is tempting to speculate that phos-
phorylation of also other glycolytic enzymes than the
three kinases would be a yet poorly understood means to
modulate the activity of glycolysis. However, phosphor-
ylation may also relate to the role of these proteins in
other cellular processes [80].

http://www.microbialcellfactories.com/content/7/1/18

The present study shows that several genes that are subject
to glucose repression were expressed during batch growth
on xylose at levels intermediate between those in glucose
repressed and derepressed cells. This suggests that cells
growing on xylose do not have the appropriate expression
levels of certain genes that may be one reason why they do
not ferment xylose as fast as glucose. The results are con-
sistent with the hypothesis that xylose does not activate all
the glucose repression pathways in the same way as glu-
cose, clearly indicating that this is an interesting area for
further research towards improving xylose fermentation.
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