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Abstract

In today's world, there is an increasing trend towards the use of renewable, cheap and readily
available biomass in the production of a wide variety of fine and bulk chemicals in different
biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert
biomass into target products. Many of these processes require enzymes which are operationally
stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass
transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as
sources of industrially relevant thermostable enzymes. Here we discuss existing and potential
applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate
containing raw materials. Their importance in biorefineries is explained using examples of
lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity
of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made

on developing vectors for expressing recombinant enzymes in thermophilic hosts.

Background

Thermostable enzymes and microorganisms have been
topics for much research during the last two decades, but
the interest in thermophiles and how their proteins are
able to function at elevated temperatures actually started
as early as in the 1960's by the pioneering work of Brock
and his colleagues [1]. Microorganisms are, based on their
optimal growth temperatures, divided into three main
groups, i.e. psychrophiles (below 20°C), mesophiles
(moderate temperatures), and thermophiles (high tem-
peratures, above 55°C) [2]. Only few eukaryotes are
known to grow above this temperature, but some fungi
grow in the temperature range 50 - 55°C [3]. Several years
ago Kristjansson and Stetter [4], suggested a further divi-
sion of the thermophiles and a hyperthermophile bound-
ary (growth at and above 80°C) that has today reached

general acceptance. Most thermophilic bacteria character-
ised today grow below the hyperthermophilic boundary
(with some exceptions, such as Thermotoga and Aquifex
[5]) while hyperthermophilic species are dominated by
the Archaea.

Use and development of molecular biology techniques,
permitting genetic analysis and gene transfer for recom-
binant production, led to dramatically increased activities
in the field of thermostable enzymes during the 1990's.
This also stimulated isolation of a number of microbes
from thermal environments in order to access enzymes
that could significantly increase the window for enzy-
matic bioprocess operations. One of the early successful
commercialised examples was analytical use of a ther-
mostable enzyme, Tag-polymerase, in polymerase chain
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reactions (PCR) for amplification of DNA, and a number
of other DNA modifying enzymes from thermophilic
sources have, since then, been commercialised in this area
[6-8]. Another area of interest has been the prospecting for
industrial enzymes for use in technical products and proc-
esses, often in a very large scale. Enzymes can be advanta-
geous as industrial catalysts as they rarely require toxic
metal ions for functionality, hence creating the possibility
to use more environmentally friendly processing [9].
Thermostable enzymes offer robust catalyst alternatives,
able to withstand the often relatively harsh conditions of
industrial processing.

Conversion of biomass into sugars for e.g. energy utiliza-
tion was a topic of concern about 30 years ago. Renewed
interest in biocatalytic conversions has recently emerged,
with the growing concern on the instability and possible
depletion of fossil oil resources as well as growing envi-
ronmental concern, and focus is again put on biorefining,
and the biorefinery concept. In biorefining, renewable
resources such as agricultural crops or wood are utilized
for extraction of intermediates or for direct bioconversion
into chemicals, commodities and fuels [10,11]. Ther-
mostable enzymes have an obvious advantage as catalysts
in these processes, as high temperatures often promote
better enzyme penetration and cell-wall disorganisation
of the raw materials [12]. By the parallel development in
molecular biology, novel and developed stable enzymes
also have a good chance to be produced at suitable levels.
This review will discuss the potential and possibilities of
thermostable enzymes, developed or isolated from ther-
mophiles, including examples where whole cells are con-
sidered, in bioconversions of renewable raw materials
with a biorefining perspective. Examples of commercial
thermostable enzymes acting on renewable raw materials
will be illustrated.

Stability and development of thermostable
enzymes

In industrial applications with thermophiles and ther-
mostable enzymes, isolated enzymes are today dominat-
ing over microorganisms. An enzyme or protein is called
thermostable when a high defined unfolding (transition)
temperature (T,,), or a long half-life at a selected high tem-
perature, is observed. A high temperature should be a tem-
perature above the thermophile boundary for growth
[>55°C]. Most, but not all proteins from thermophiles are
thermostable. Extracellular enzymes generally show high
thermostability, as they cannot be stabilised by cell-spe-
cific factors like compatible solutes [13]. In addition, a
few thermostable enzymes have also been identified from
organisms growing at lower temperatures (see for exam-
ple B. licheniformis amylase below). Fundamental reasons
to choose thermostable enzymes in bioprocessing is of
course the intrinsic thermostability, which implies possi-
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bilities for prolonged storage (at room temperature),
increased tolerance to organic solvents [14], reduced risk
of contamination, as well as low activity losses during
processing (when staying below the T, of the enzyme)
even at the elevated temperatures often used in raw mate-
rial pre-treatments.

Discovery and use of thermostable enzymes in combina-
tion with recombinant production and development
using site-directed and enzyme evolution technologies,
have erased some of the first identified hinders (e.g. lim-
ited access and substrate specificity) for use in industrial
biocatalysis. Today, a number of biotechnology compa-
nies are continuously prospecting for new, and adapting
existing enzymes to reactions of higher volumes and more
severe process conditions [15]. Enzyme prospecting often
focuses on gene retrieval directly from Nature by molecu-
lar probing techniques, followed by recombinant produc-
tion in a selected host. Availability of genes encoding
stable enzymes, and knowledge on structural features in
the enzymes, can also be utilized in molecular develop-
ment for enzyme improvement (Table 1).

In vitro evolution strategies can utilize genes encoding
thermostable proteins as stable scaffolds. When develop-
ing thermostable enzyme scaffolds, the starting material is
an already stable backbone, thus creating a good possibil-
ity for evolution to optimize function at selected condi-
tions for activity. An example where this type of
development has been utilized is the diversification of the
binding specificity of a carbohydrate binding module,
CBM4-2 originating from a xylanase from the ther-
mophilic bacterium Rhodothermus marinus [30]. Carbohy-
drate binding modules allow fine-tuned polysaccharide
recognition [31] and have potential as affinity handles in
different types of applications, as recently reviewed by
Volkov and co-workers [32]. Using CBM4-2, which has
both high thermostability and good productivity in E. coli
expression systems, a single heat stable protein could be
developed with specificity towards different carbohydrate
polymers [27], as well as towards a glycoprotein [33],
showing the potential of molecular biology for selective
specificity development of a single protein with overall
desirable properties.

In vitro evolution strategies are more commonly used to
increase stability (Table 1), often using genes encoding
non-thermostable enzymes with desired activities, for
development of better thermostability, and using the tem-
perature of the screening assay as selection pressure [34-
36]. This could for instance include development of ther-
mostable cellobiohydrolases, which are uncommon
among thermophiles, but beneficial for lignocellulose
conversions. In addition, such strategies can be used to
optimise stability inside the host-cell during recombinant
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Table I: An overview of suggested features for internal thermostability, selected from structural studies of homologues, along with
some development approaches to introduce thermostability, and development of thermostable proteins.

Proposed features for internal stabilisation = Contributing factors References
in thermostable proteins
Helix stabilisation Low frequency of CB-branched amino acids (e.g. Val, lle, Thr). Specific amino [16,17]
acids at helical ends (e.g. Pro)
Stabilising interactions in folded protein Disulfide bridges; [18-24]
Hydrogen bonds;
Hydrophobic interactions;
Aromatic interactions;
lon-pair networks (charged residues);
Docking of loose ends
Stabilising interactions between domains/subunits ~ Oligomer formation via e.g. ion pair networks [17,19,25]
Dense packing Increase core hydrophobicit;, Fill cavities. [19]
Not a generally applicable feature as shown by Karshikoff & Ladenstein [21]
Stable surface-exposed amino acids Low level of surface amino acids prone to deamidation (e.g. GIn, Asn) or [17,24]
oxidative degradation (e.g. Cys, Met)
Approaches to introduce internal Engineering methodology
thermostability in mesophilic proteins
Reducing length of or stabilising surface loops and  Structure-based site directed mutagenesis. [17, 24]
turns Promising results reported for:
Loop deletions; Proline-stabilisation of loops;
Docking of loose ends.
Introduce stabilising interactions Structure-based site directed mutagenesis. Success reported for introduction of [17,24]
ion-pairs, disulphide bridges, while core packing and helix stabilisation usually
do not result in high stability gain.
Activity screen of diversified library at desired Directed evolution and other random methods utilized successfully in several [24, 26]
temperature cases
Approaches to develop thermostable
proteins
Diversifying specificity (Structure-based) directed evolution by e.g. oligonucleotide randomisation in active  [27]
site region, successfully utilized
Improving activity at selected pH values Directed evolution [28]
Broadening temperature range for activity by (Structure-based) directed evolution [29]
introducing flexibility in active site region Patent by Diversa.
Can be made e.g. by oligonucleotide randomisation in active site region.
Saturation mutagenesis at selected positions also used.
Substitution of surface-exposed amino acids to Site directed or saturation mutagenesis at selected positions to reduce Gin, Asn, [16, 17]

achieve long term stability

Cys, Met, suggested

expression [37]. Alternatively, the identification of ther-
mostabilising features in stable enzymes can be utilized to
engineer stability into less stable enzymes, using site-
directed mutagenesis (Table 1). Adaptations of biomole-
cules to extreme conditions involve a compromise of sta-
bility and flexibility in order to optimise the functional
state of proteins rather than to maximize stability [38,39].
The free energy of stabilization (AGy_,;) of unrelated
globular proteins of mesophilic origin is marginal (in the
range 30-65 kJ/mol), corresponding to a few weak inter-
actions, and the difference between a thermostable pro-
tein and a protein of mesophilic origin (AAGy_y)
corresponds to only a few additional interactions. In addi-
tion, despite several statistical studies of primary
sequences, no general strategies in terms of preferred

amino acid exchanges are to be expected [38-43], and very
small 3D-structural alterations may hence suffice to cope
with the various extreme conditions [38,42]. To rationally
identify the type of stabilising interactions used, several
studies have been undertaken where 3D-structures of one
unique enzyme isolated from a range of organisms grow-
ing at different temperatures have been investigated.
These studies include a number of intracellular enzymes
[17,19,20,42] and a few extracellular enzymes, e.g. endog-
lucanase [23] and lipase [44]. A number of features have
been proposed from these studies (Table 1), and e.g.
increase in ion-pairs and ion-pair networks has frequently
been observed, especially in enzymes from hyperther-
mophilic species. Disulphide bonds is another protein
stabilising feature, shown to be important for many
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enzymes and proteins, that has recently also been shown
for intracellular hyperthermophilic proteins, seeming to
be especially common in small proteins [18]. Stabilisa-
tion of less stable proteins using these strategies requires
structural knowledge and it can be rather complicated to
predict the effect of introducing novel interacting amino
acid residues. Despite these difficulties, continued devel-
opments of stable enzymes with desired activities, using
both site-directed and random techniques, pave the way
for more efficient enzymes. It is thus expected that use of
thermostable enzymes in industrial applications will
increase with time, ultimately leading to wider availability
and lower price, hence improving their potential in large
scale applications like biorefining.

Biorefineries for renewable resource utilization
The biorefinery has lately become a key concept used in
the strategies and visions of many industrial countries,
being driven by a combination of environmental (encour-
aging renewable chemicals and fuels, and discouraging
net greenhouse gas), political and economical concerns
[45-49]. A biorefinery is defined as a system combining
necessary technologies between renewable raw materials,
industrial intermediates and final products [10,11] (Fig.
1). The goal is to produce both high value, low volume
products and low value, high volume products (e.g. fuels)
[10]. The feedstocks (or their rest products) can be used
directly as raw materials for bioprocessing, or be used as
cheap substrates for fermentation processes from which
products can be extracted [50]. Depending on the feed-
stock available in different countries, biomass of different
origins have been suggested as raw materials, and include
for example corn [51], wheat [52], sugar cane [46,53],
rape, cotton, sorgo, cassava [54] and lignocellulose [47].
The simplest biorefinery systems have in principal fixed
processing of one type of feedstock (e.g. grains) to one
main product, while the most flexible ones use a mix of
biomass feedstock to produce an array of products. Differ-
ent types of biomass feedstock can be used, such as whole
crop (e.g. cereals and corn), or lignocellulose feedstock
(e.g. biomass from wood or waste) [10,11]. In order to
achieve efficient conversion of the raw material, a mixture
of mechanical, biocatalytic and chemical treatments are
expected to be combined. Our focus will be on the biocat-
alytic conversions, and examples using crops or lignocel-
lulosics as raw materials will be given.

Biocatalysis, involving enzymatic or microbial actions,
undertake a dual task in the biorefinery systems, both gen-
erating metabolizable building blocks (generating sugars
from polymers) for further conversions, and acting as spe-
cific catalysts in the conversion of building blocks into
desired products (conversion specificity). A wide range of
reaction types, e.g. oxidations, reductions, carbon-carbon
bond formations, and hydrolysis, can be catalysed using
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enzymes. To give a few examples, monooxygenases can be
used for hydroxylation and Baeyer-Villiger oxidation reac-
tions [55]. Stereoselective reduction of carbonyl com-
pounds to chiral alcohols can be made using alcohol
dehydrogenases, among which some of thermophilic ori-
gin are reported [56]. As these enzymes are coenzyme
dependent, regeneration strategies have to be considered
(see below next section). Epoxide synthesis, using lipases
or oxidoreductases, have great potential for the synthesis
of a wide range of chemicals, and enzymatic reactions
could replace some toxic chemicals [57]. C-C-bond for-
mation can be carried out with lyases [58]. Glycoside
hydrolases and transferases can catalyse glycoside synthe-
sis (eventually via reverse hydrolysis), for production of
glyco-oligosaccharides of defined lengths, as well as other
glyco-conjugates as for example alkyl-glycosides, and
thermostable enzymes have been utilized for this purpose
[59,60]

These reactions may be performed using free or immobi-
lised whole cells, crude, purified or immobilised enzymes,
many of which are based on recombinant organisms [15].
To increase the substrate availability, polymer-hydrolys-
ing enzymes give a significant contribution. For example,
glycoside hydrolases (which are also used in food and
feed processing) degrade the polymeric storage and build-
ing materials of plants and trees into oligo- and monosac-
charide building blocks that are easier for microorganisms
to take up and metabolize. This can be desirable if whole
cell biocatalysts (i.e. native, recombinant protein produc-
ing or otherwise metabolically engineered microorgan-
isms) are selected, which could be the case when
metabolic pathway products are the target compounds.
Enzymes acting on glycosidic bonds can also be utilized
for modification of glycoside-containing natural products
like flavonoid antioxidants [61]. The possibility to use
whole cells, as well as isolated enzymes for further
processing increases the diversity of potentially produced
building blocks, and a number of metabolic products
have already today been identified as interesting platform
chemicals.

Platform chemicals

The US Department of Energy has published a list of top
value chemical building blocks, i.e. platform chemicals
that can be derived from biomass by biological or chemi-
cal conversion and subsequently converted to a number
of high-value bio-based chemicals or materials [62]. The
12 top value building blocks are listed in Table 2. Each
building block can be converted to numerous high-value
chemicals or materials and the potential industrial appli-
cations are immense (some of which are listed in Table 2).
All building blocks listed can be produced from biomass
(cellulose, hemicellulose, starch or vegetable oils) either
by fermentation or by in vitro enzymatic conversions via
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biodiesel || oils, fatty acids ||detergents

adhesives

biogas lubricants

dyes, pigments, inks

Figure |

Schematic overview of the basic principle of a biorefinery, along with some product examples.

the intermediate sugars; glucose, fructose, xylose, arab-
inose, lactose, and sucrose, respectively (glycerol
excepted). In the suggested biocatalytic routes, fermenta-
tions of mesophilic organisms are still dominating among
the top 12, and in some cases the biotransformation route
is not known and needs to be explored. In order to achieve
a proficient utilization of biomass materials (e.g. to
release as much sugars as possible from the raw material),
it is believed that there is a need for efficient thermostable
biocatalysts.

Catalysis at high temperature could for example be advan-
tageous in bioconversion of the hemicellulose xylan from
lignocellulosic materials into xylitol (Table 2, [63]). The
difficulty of lignocellulose degradation has been reported
by several authors [64-66], and a thermal pre-treatment is
often included to enhance the degradability of these mate-
rials. Thermal treatment is also reported to improve the
enzyme penetration for hemicellulase conversions [12],
improving xylan availability. Three enzymes are needed

for the xylan to xylitol conversion: xylanase (EC 3.2.1.8),
xylosidase (EC 3.2.1.37), and xylose reductase (EC
1.1.1.21). Use of thermoactive and thermostable xylanase
allow the enzymatic action to take place simultaneously
with the heating step, without need to pre-cool the sys-
tem, hence shortening processing time. By adding ther-
mostable xylosidase (active on xylo-oligosaccharides),
efficient hydrolysis into xylose monomers can be
achieved. Conversion of xylose to xylitol is however cata-
lysed by a NAD(P)H-dependent xylose reductase: there-
fore, to reduce the need of co-factor (and its costs),
addition of a co-factor recycling enzyme, or whole cell
catalysis utilizing intracellular co-factors should be con-
sidered. Today, xylose to xylitol conversions are often
reported using different pentose utilizing yeast strains
[67] but a problem with these strains is further conversion
of xylitol into xylulose. In xylose fermenting yeasts, like
Pichia and Candida, this step is catalysed by an NAD+-
dependent xylose dehydrogenase, while in bacteria the
corresponding step is catalysed by a xylose isomerase.
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Table 2: Prioritized sugar-derived building blocks as listed by the US Department of Energy. Adapted from [62].

Building blocks Carbons Pathways Derivatives Direct uses or uses of
derivatives

1,4 diacids 4 Aerobic fermentation to THF, 1,4-Butanediol, y- Green solvents, Fibers (lycra,

(succinic, fumaric, and malic) overproduce C4 diacids from  butyrolactone, pyrrolidones, others), TBD, water soluble
Krebs cycle patways esters, diamines, 4,4-Bionelle,  polymers

hydroxybutyric acid,
unsaturated succinate
derivatives, hydroxy succinate
derivatives,
hydroxybutyrolactone

2,5-furan dicarboxylic acid 6 Oxidative dehydration of Cé Numerous furan derivatives, Furanoic polysters (bottles,
sugars (chemical) Enzymatic succinate, esters, levulinic acid, films containers) Polyamides
conversion? furanoic polyamines, (new nylons)

polyethylene terephthalate
analogs

3-hydroxypropionic acid 3 Aerobic fermentation Acrylates, Acrylamides, esters, Sorona fiber, contact lenses,

|,3-propanediol, malonic acid,  diapers (super absorbent
propionol, polymers)

Aspartic acid 4 Conversion of oxaloacetate in  Amine butanediol, amine Amino analogs of C4 |,4
the Krebs cycle via aerobic tetrahydrofuran, amine- dicarboxylic acids Pharma and
fermentation or enzymatic butyrolactone, aspartic sweetener intermediates
conversion anhydride, polyaspartic,

various substituted amino-
diacids

Glucaric acid 6 One step nitric acid oxidation  Dilactones, monolactones, Solvents, nylons of different
of starch (chemical) Aerobic polyglucaric esters and amides  properties
fermentation

Glutamic acid 5 Aerobic fermentation Diols, amino diols, diacids, Monomers for polyesters and

glutaric acid, substituted polyamides
pyrrolidones

Itaconic acid 5 Aerobic fungal fermentation Methyl butanediol, Solvents, polymers (BDO,

butyrolactone, tetrahydrofuran ~ GBL, THF), nitrile latex
family, pyrrolidones,
polyitaconic

Levulinic acid 5 Acid catalyzed decomposition  3-aminolevulinate, Methyl Fuel oxygenates, solvents,
of cellulosics and sugars tetrahydrofuran, 8- polycarbonate synthesis
Biotransformation? butyrolactone, acetyl acrylates,

acetic-acrylic succinic acids,
diphenolic acid

3-hydroxybutyrolactone 4 Oxidative degradation of Hydroxybutyrates, epoxy-0- High value pharma
starch Biotransformation? butyrolactone, butenoic acid, compounds, solvents, amino

furans, analogs for analogs to lycra fibers
pyrrolidones

Glycerol 5 Enzymatic or chemical Fermentation products, Personal/oral care products,
transesterification of oils propylene glycol, 1,3- pharmaceuticals, foods/

propanediol, diacids, beverages, polyether polyols,
propylalcohol, dialdehyde, antifreeze, humectant
epoxides, glyceric acids,

branched polysters and polyols

Sorbitol 6 Hydrogenation of glucose Ethylene glycol, propylene Polyethylene isosorbide,
(chemical) Aerobic glycol, glycerol, lactic acid, terephthalates (bottles),
fermentation or isosorbide, branched antifreeze, PLA (polylactic
biotransformation polysaccharides acid), water soluble polymers

Xylitol/arabinitol 5 Aerobic or anaerobic Ethylene glycol, propylene Non-nutritive sweeteners,

fermentations or enzymatic
conversions of lignocellulose

glycol, glycerol, lactic acid,
hydroxy furans, xylaric acid,
polyols

anhydrosugars, unsaturated
polyster resins, antifreeze

Metabolically engineeed Saccharomyces cerevisiae trans-
formed with xylose reductase (from P. stipidis) has xylitol
as an end product, and this organism has been used for

the conversion of xylose to xylitol with more than 95%
conversion, but as a new co-factor dependent enzyme is
introduced, co-factor recycling has to be considered [68].
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Industrial enzymes and biorefining/related
applications

To further illustrate the use of thermostable biocatalysts
on renewable raw materials in large scale, we will focus on
the potential and applications of hydrolytic enzymes
(proteases, lipases and glycoside hydrolases), which are
established in industrial scale. Protease and lipase appli-
cations will only be mentioned briefly (for reviews, see
[69-72]) and special emphasis will be put on glycoside
hydrolases.

According to a report from the Business Communications
Company Inc, the global market for industrial enzymes
was estimated to totally $2 billion in 2004 [73]. Further-
more, the annual growth rate of industrial enzymes is pre-
dicted to be between 4 and 5% and with this comes lower
prices of enzymes due to an intensified competition on
the market. The industrial enzyme market can be sepa-
rated into application sections: (1) technical enzymes, (2)
food enzymes, and (3) animal feed enzymes. The largest
section is technical enzymes where enzymes used for
detergents and pulp and paper constitute 52% of the total
world market [73]. Leading enzymes in this section are
hydrolytic enzymes, classified as proteases and amylases,
which comprise 20 and 25% of the total market, respec-
tively [73]. Hydrolases are generally easy to use in bio-
processes, as they normally do not require co-factors or
complex substrates. Moreover, they can be used at an early
stage on the readily available material found in the forest
and agricultural sectors. Some available applications from
biomass materials where thermostable variants have been
considered are listed [see Additional file 1] together with
the enzyme activities which can be used for their degrada-
tion or modification. Applications of selected examples
with a biorefining perspective will be further discussed in
the text in the respective sections below.

Crop biorefining

The initial step in crop biorefining is fractionation. This is
achieved by both physical, chemical and biological proc-
esses [74]. After a starting physical step, often milling, the
biological process employs different hydrolases, depend-
ing on what kind of crop is fractionated. Fractionation is
often accompanied by elevated temperatures, which
demands thermostable and thermoactive enzymes.
Chemical processes may be used for some applications,
but may generate toxic and unwanted side products, and
we will not focus on those methods here. Instead enzy-
matic degradation of starch from grains and utilization of
products gained from this will serve as an example of the
potential of thermostable enzymes in this type of process-
ing. The straw may also be processed to utilize the carbo-
hydrates present in the lignocellulosic fraction (see
below).

http://www.microbialcellfactories.com/content/6/1/9

Starch degradation and modification

Starch from cultivated plants is one of the most abundant
and accessible energy sources in the world. It consists of
amylose and amylopectin, and an overview of the princi-
pal structure indicating sites of enzymatic attack is given
in Fig. 2. Corn is the most used crop in starch processing
in industries, but wheat, potato and tapioca are also
important crops while rice, sorghum, sweet potato, arrow-
root, sago and mung beans are used to a lesser extent [75].

Hydrolases (and sequence-related transferases) acting on
starch are members of the o-amylase superfamily, which
consists of a large number of primary sequence-related
enzymes with a retaining catalytic mechanism [76], liber-
ating groups in the o-configuration. The superfamily
belongs to glycoside hydrolase clan GH-H, and consists of
3 sequence-related families of glycoside hydrolases
(GH13, 70 and 77 [77]) catalysing a range of reactions
[see Additional file 1]. Specific consensus sequences, and
a varying number of domains, are believed to be respon-
sible for the specificity variations, leading to hydrolysis or
transferase activity, as well as differing substrate specifi-
city.

Processed starch is mainly used for glucose, maltose, and
oligosaccharide production, but a number of products/
intermediates can also be produced via cyclodextrins. Glu-
cose can be further converted to high-fructose syrups, crys-
talline dextrose and dextrose syrups, which are used in
food applications [78]. Glucose can of course also be fer-
mented to produce ethanol (see Biofuel below), amino
acids or organic acids [78]. Conversion to high-fructose
syrup by glucose isomerase (EC 5.3.1.5) is usually run at
55-60°C and pH 7.0-8.5 [78], requiring a thermostable
enzyme. Fructose is a popular sweetener, partly because of
the availability of bulk quantities of corn starch at low
cost.

Starch processing is usually performed in a two-step
hydrolysis process of liquefaction and saccharification.
Liquefaction is the conversion of granular starch into sol-
uble, shorter-chain-length dextrins [DE (dextrose equiva-
lents) 9-14]. In liquefaction, starch is gelatinized by
thermal treatment requiring a temperature around 70-
90°C (for corn) [78], but to assure the removal of all
lipid-amylose complexes, a preferred process temperature
is above 100°C [78]. When the starch-slurry is cooled
down it forms a thermo-irreversible gel, by a process
known as retrogradation, in which the amylose chains
interact by hydrogen bonding [79]. The crystalline order is
then lost and the starch granules swell as the amylose and
amylopectin chains are hydrated [80]. A thermostable o-
amylase [see Additional file 1] is added before the heat
treatment, which takes place at 105-110°C for 5-7 min
[81]. The starch-slurry is then flash-cooled to 95°C and
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kept at that temperature for 60-120 min to complete the
enzymatic liquefaction [81,82]. Consequently, a highly
thermostable enzyme is required which will be active dur-
ing the whole procedure. Nowadays there are, in addition
to the originally used enzymes from Bacillus stearother-
mophilus or B. licheniformis, numerous examples available
and marketed e.g. the Valley "Ultra-thin™" from Valley
Research/Diversa, Multifect AA 21L° from Genencor and
Termamyl® and Liquozyme® from Novozymes [see Addi-
tional file 2]. Ideally, the enzyme should be active and sta-
ble at a low pH (~4.5) and not demand calcium for
stability. Some engineered enzymes have been reported to
fulfill these desired properties [see Additional file 2]. The
water content in the starch-slurry is generally quite high
(35%), as a high viscosity increases the melting tempera-
ture of starch [83]. Reduction of the moisture content
could be more economical, and has shown to be possible
when including a shearing treatment [82]. This was how-
ever accompanied by increased formation of isomaltose
[82], and increased temperatures would also require
enzymes with very high thermostability.

Saccharification involves hydrolysis of remaining oli-
gosaccharides (8-12 glucose units) into either maltose
syrup by B-amylase or glucose/glucose syrups by glu-
coamylase [84]. The process is run at pH 4.2-4.5 and
60°C, at which temperature the currently used Aspergillus
niger glucoamylase is stable. Still, the temperature has to
be cooled down after liquefaction and the pH has to be
adjusted, in order for the glucoamylase to act. More eco-
nomically feasible would be to utilize an enzyme active in
the same pH and temperature range as the liquefaction
enzymes. Kim et al. have recently reported on a glucoamy-
lase from Sulfolobus solfataricus, which is optimally active
at 90°C and pH 5.5-6.0. This enzyme also formed less
isomaltose, a common side reaction, than the commer-
cially available fungal glucoamylase [85]. To increase the
efficiency in saccharification, a debranching enzyme, such
as pullulanase, can be added to the process. Thermostable
enzyme mixes are today available on the market contain-
ing both glucoamylase and pullulanase, e.g. OPTIMAX®
from Genencor.

Gelatinized starch (obtained from liquefaction) can also
be modified by amylomaltases (EC 2.4.1.25, and mem-
bers of GH 77) that are 4-a-glucanotransferases transfer-
ring o-1,4-linked glucan fragments from the starch to an
acceptor, which may be the 4-OH group of another a-1,4-
linked glucan or glucose [86]. In plants, this enzyme is
also called disproportionating enzyme or D-enzyme [79].
Several industrially relevant thermostable and thermoac-
tive amylomaltases are known to date (Thermus species,
Thermococcus species, and Aquifex aeolicus, [see Additional
file 2]), with optimal temperatures between 75 and 90°C.
Amylomaltase catalysis results in conversion into a ther-
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moreversible starch gel that consists of amylopectin with
shortened and elongated side-chains, but free of amylose
[79]. The obtained gel behaves similar to gelatin (and may
substitute gelatin obtained from the bone marrow of
cows) and has many uses in the food industry. Applica-
tions of amylomaltases on starch also include formation
of cycloamyloses [87] and production of isomalto-oli-
gosaccharides [88].

Cyclodextrins (CDs) are other starch-derived products
with a range of possible applications, due to the apolar
interior that can host "guest molecules” and solubilize
and stabilize them [89]. There are CDs of different sizes,
suitable for different applications. Examples of applica-
tions of CDs and derivatives thereof are: carriers for thera-
peutically  important  peptides,  proteins  and
oligonucleotides [90], solubilization and stabilization of
a range of pharmaceutical molecules [91], analytical sep-
arations [92], and various applications in foods and cos-
metics, textiles, and adhesives [93]. There are also large
cyclic dextrins, commonly known as cycloamyloses [94]
or LR-CDs [95]. These products can be synthesized by
CGTases [96] or amylomaltases [87,97]. Cycloamyloses
can be used as a coating material, in adhesives, for biode-
gradable plastics, as a high energy additive to soft drinks,
as a retrogradation retardant for bread improvement, for
freeze resistant jellies and for production of non-sticky
rice as described by Larsen, 2002, and references therein
[98]. Cycloamyloses have also been proposed to aid in
protein refolding by acting as an artificial chaperone [99]
and for solubilization of larger compounds, e.g. Buckmin-
ster fullerene (C60, C70) [95].

Biodegradation and modification of lignocellulose
Lignocellulose is an important example of an abundant
raw material, produced in large quantities for the produc-
tion of forest products, often leaving a significant fraction
of unutilized waste products. Agricultural waste, such as
straw, also has significant lignocellulose content.
Enzymes (including commercially available feed
enzymes) that hydrolyze the polymeric lignocellulose
into shorter metabolizable intermediates, or that reduce
viscosity of non-starch polysaccharide in feed cereals (e.g.
barley, rye, oats) [100] can be used to improve utilization
of the lignocellulosic carbohydrate fraction. As the ligno-
cellulosic materials often are subjected to thermal treat-
ments to facilitate degradation, thermostable enzymes
have a clear advantage. Feed enzymes have been on the
market for 15 years and the estimated value of this market
is around $US360 million [100]. Feed processing is nor-
mally performed at high temperatures [101], so use and
development of stable and robust enzymes has been
imperative.
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Lignocelluloses of plant cell walls are composed of cellu-
lose, hemicellulose, pectin, and lignin (the three former
being polysaccharides). Cellulose is the major constituent
of all plant material and the most abundant organic mol-
ecule on Earth [102], while hemicelluloses and pectins are
the matrix polysaccharides of the plant cell wall. Many
enzymes are involved in the degradation of this biomass
resource [103], and they are often built up by discrete
modules (the most common being catalytic or carbohy-
drate-binding modules), linked together by short linker
peptides, sometimes connecting one catalytic module
with specificity towards cellulose with a hemicellulose-
specific module. Such multiple enzyme systems aid in cre-
ating efficient degradation of the lignocellulosic materi-
als. In addition, several microorganisms produce multiple
individual enzymes that can act synergistically. Fig. 3
shows an overview of some polymers present in lignocel-
lulose, and the sites of attack for a number of enzymes act-
ing on these substrates. More examples of the
lignocellulose degrading enzymes of thermophilic origin
with differing specificities are given [see Additional file 3].

Cellulose conversion by cellulases

Cellulose is a homopolysaccharide composed of B-D-glu-
copyranose units, linked by B-(1—4)-glycosidic bonds.
The smallest repetitive unit is cellobiose, as the successive
glucose residues are rotated 180° relative to each other
[104-106]. The cellulose hydrolysing enzymes (i.e. cellu-
lases) are divided into three major groups: endogluca-
nases, cellobiohydrolases (and exoglucanases), and f-
glucosidases, all three attacking f-1,4-glycosidic bonds
[107,108]. The endoglucanases ([EC 3.2.1.4], classified
under 12 different GH families with both inverting and
retaining reaction mechanisms, and with different folds)
catalyse random cleavage of internal bonds in the cellu-
lose chain, while cellobiohydrolases (EC 3.2.1.91, GH 5,
7 [retaining] and 6, 9 [inverting]) attack the chain ends,
releasing cellobiose. B-glucosidases (EC 3.2.1.21, GH1, 3
[retaining] and 9 [inverting]) are only active on cello-oli-
gosaccharides and cellobiose, releasing glucose (Fig. 3A).

A significant industrial importance for cellulases was
reached during the 1990's [109], mainly within textile,
detergent and paper and pulp industry (e.g. in deinking of
recycled paper). Several thermostable enzymes have been
characterized [see Additional file 3], and there has been
many trials in these areas as thermostability is highly rel-
evant for the performance of the enzymes.

Degradation of cellulose (Fig. 3A) into fermentable sugars
for commodity product production is a biorefining area
that has invested enormous research efforts as it is a pre-
requisite for the subsequent production of energy, see
Biofuel below. It is likely to be performed at least partly at
high temperatures to facilitate the degradation, thus mak-
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ing thermostable enzymes (or thermophilic microorgan-
isms) desirable. Although cellulases cleave a single type of
bond, the crystalline substrates with their extensive bond-
ing pattern necessitate the action of a consortium of free
enzymes or alternatively multi-component complexes
called cellulosomes [110]. Carbohydrate-binding mod-
ules connected by linkers to the catalytic modules can also
give significant contribution to the action of the enzymes,
and improve the degradation efficiency, especially on
complex lignocellulosic substrates [111-113]. Further
improvements in the efficiency level in cellulose degrada-
tion (more rapid and less costly), would create both envi-
ronmental and economic benefits, motivating trials using
enzyme blends, as well as engineered cells, and is still a
key challenge open for research [114].

Hemicellulose conversions

Hemicellulose is the second most abundant renewable
biomass and accounts for 25-35% of lignocellulosic bio-
mass [115]. Hemicelluloses are heterogeneous polymers
built up by pentoses (D-xylose, D-arabinose), hexoses (D-
mannose, D-glucose, D-galactose) and sugar acids [115].
Hemicelluloses in hardwood contain mainly xylans (Fig.
3B), while in softwood glucomannans (Fig. 3C) are most
common [115]. There are various enzymes responsible for
the degradation of hemicellulose. In xylan degradation,
e.g. endo-1,4-B-xylanase (EC 3.2.1.8), B-xylosidase (EC
3.2.1.37), a-glucuronidase (EC 3.2.1.139), o-L-arabino-
furanosidase (EC 3.2.1.55) and acetylxylan esterase (EC
3.1.1.72) (Fig. 3B) all act on the different heteropolymers
available in Nature. In glucomannan degradation, 3-man-
nanase (EC 3.2.1.78), and B-mannosidase (EC 3.2.1.25)
are cleaving the polymer backbone (Fig. 3C). The main
chain endo-cleaving enzymes (xylanases and mannan-
ases) are among the most well-known. Most xylanase
sequences are classified under GH family 10 and 11 (both
retaining), and a few additional enzymes are found in
other families (both inverting and retaining [77]). Man-
nanases are predominantly classified under GH family 5
and 26 (both with retaining mechanism), and only one
bifunctional enzyme is to date classified in GH44 [invert-
ing]. These families all have representatives of ther-
mophilic origin.

Hemicellulose is, like cellulose, an important source of
fermentable sugars for biorefining applications (see also
Biofuel below), and efficient degradation is vital for its
use. As exemplified above, we can also predict an applica-
tion potential in the production of intermediates for green
chemicals (e.g. xylitol). Other biotechnological applica-
tions are also established for these enzymes, many of
which motivate the use of thermostable enzymes. A selec-
tion of enzymes is shown below [see Additional file 3].
Use of endo-1,4-B-xylanases (EC 3.2.1.8.) in the bleaching
process of pulps for paper manufacturing is a concept
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Simplified structures and sites of enzymatic attack on polymers from lignocellulose. A cellulose chain fragment (A) is shown,
along with hypothetical fragments of the hemicelluloses xylan (B), glucomannan (C), and pectin (D). Sites of attack of some of
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introduced by Finnish researchers, which is of great envi-
ronmental interest due to the possibility to decrease
chemical bleaching consumption in subsequent steps
[116,117]. Due to process conditions, enzymes function-
ing at high temperatures and high pH-values are desirable
in the following bleaching process. Enzymes from ther-
mophiles meet the temperature demand, as they display
intrinsic thermostability, and maximum activity at high
temperature, and e.g. the xylanase Xyn10A from R. mari-
nus has been shown to improve brightness in bleaching
sequences of hardwood and softwood kraft pulps pre-
pared by Kraft processing, when introducing the enzyme
treatment step at 80°C [118]. Several patents have been
filed on thermostable xylanases in relation to use in pulp-
ing [119-121], including e.g. amino acid substituted
GH11 enzymes for improved performance [122]. Xyla-
nases are also produced in industrial scale as additives in
feed for poultry [123] and as additives to wheat flour for
improving the quality of baked products [63].

Mannanases have potential in pulp bleaching, especially
in combination with xylanase [124], and applications in
food and feed include viscosity decreasing action in coffee
extracts for instant coffee production [125].

Conversion of pectins

Pectins are the third main structural polysaccharide group
of plant cell walls, abundant in sugar beet pulp [126] and
fruit, e.g. in citrus fruit and apple, where it can form up to
half of the polymeric content of the cell wall [127]. The
pectin backbone, which consists of homo-galacturonic
acid regions (sometimes methylated), and regions of both
rhamnose and galacturonic acid (Fig. 3D), has neutral
sugar sidechains made up from L-rhamnose, arabinose,
galactose and xylose [128]. L-thamnose residues in the
backbone carry sidechains containing arabinose and
galactose. There are also single xylogalacturonan side
chains [127]. Pectin has found widespread commercial
use, especially in the textile industry [129] and in the food
industry as thickener, texturizer, emulsifier, stabilizer,
filler in confections, dairy products, and bakery products,
etc[130]. It is also studied for its potential in drug delivery
and in the pharmaceutical industry [131], and is interest-
ing as a dietary supplementation to humans due to its
possible cholesterol-lowering effect [132]. Pectin also has
a potential in making biodegradable films [133]. Despite
these applications, pectins are, similar to cellulose and
hemicelluloses, common waste materials that can be con-
verted to soluble sugars, ethanol [134], and biogas [135].

Microbial pectinases account for 25% of the global food
enzymes sales [136], and are used extensively for fruit
juice clarification, juice extraction, manufacture of pectin-
free starch, refinement of vegetable fibers, degumming of
natural fibers, waste-water treatment, curing of coffee,

http://www.microbialcellfactories.com/content/6/1/9

cocoa and tobacco and as an analytical tool in the assess-
ment of plant products [136,137]. In some applications,
it can be more proficient to use thermostable enzymes,
particularly when using substrates (which can also be
other naturally-occurring glycoside-containing molecules
with similar linkages as in pectin) that are poorly soluble
at ambient temperatures, such as naringin and rutin,
present in fruits [138]. Many enzymes are involved in pec-
tin degradation (some major examples shown in Fig 3D),
but are referred to by several different names, which can
be quite confusing. They may be acting either by hydroly-
sis or by trans-elimination; the latter performed by lyases
[128]. Polymethylgalacturonase, (endo-)polygalacturo-
nase (pectin depolymerase, pectinase, EC 3.2.1.15),
exopolygalacturonase (EC 3.2.1.67), and exopolygalac-
turanosidase (EC 3.2.1.82) hydrolysing the polygalac-
turonic acid chain by addition of water, are all classified
under GH28, and are the most abundant among all the
pectinolytic enzymes [128,139]. a-L-thamnosidases (EC
3.2.1.40, in GH family 28, 78 and 106) hydrolyze rham-
nogalacturonan in the pectic backbone. o-L-Arabinofura-
nosidases (EC 3.2.1.55, a-L-AFases found in 5 different
GH families) hydrolyze the L-arabinose side-chains, and
endo-arabinase (EC 3.2.1.99, GH43) act on arabinan
side-chains in pectin [140]. These two enzymes operate
synergistically in degrading branched arabinan to yield L-
arabinose [126]. Polysaccharide lyases (PL), which like
GH have been classified under sequence-related families,
cleave the galacturonic acid polymer by B-elimination and
comprise e.g. polymethylgalacturonate lyase (pectin lyase,
EC 4.2.2.10), polygalacturonate lyase (pectate lyase, EC
4.2.2.2), and exopolygalacturonate lyase (pectate disac-
charide-lyase, EC 4.2.2.9) [77,139,141]. Pectinesterase
(pectinmethyl esterase, pectinmethoxylase, EC 3.1.1.11)
de-esterify the methyl ester linkages of the pectin back-
bone [139]. Thermostable pectinases are not so frequently
described, but reports show a few thermostable o-L-rham-
nosidases, e.g. from Clostridium stercorarium [142] and
from a strain closely related to Thermomicrobium [138]. A
thermostable polygalacturonase from a thermophilic
mould, Sporotrichum thermophile, optimally active at 55°C
has also been reported and may be relevant for the fruit
juice industry [143] [see Additional file 3]. Several ther-
mostable a-L-AFases (also involved in side-chain degrada-
tion of xylan) are described in the literature (listed under
hemicellulases [see Additional file 3]).

Biofuel

During the world oil crisis in the 70's the interest in the
use of cellulases to produce fermentable sugars from cel-
lulosic wastes was awakened both in the United States and
in Europe. The aim was then to become less dependent on
oil and reduce the oil imports. At present, this need is even
more outspoken, not only because of the increasing cost
of oil, but also since there is a need to reduce greenhouse
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gas emissions and overall improve air quality. Today,
there are special programs in a number of countries tar-
geted towards developing biofuel production from renew-
able resources, examining the possibilities of for example
biogas, bioethanol, biodiesel and fuel cells.

Bioethanol is the most common renewable fuel today,
and e.g the "Biofuels Initiative" in the U.S. (US Depart-
ment of Energy), strives to make cellulosic ethanol cost-
competitive by 2012 and supposedly correspond to a
third of the U.S. fuel consumption by 2030. The "Energy
for the Future" in the EU, has the objective of having 12%
renewable energy in the EU by 2010 [144]. Ethanol is
commonly derived from corn grain (starch) or sugar cane
(sucrose) [145]. Sucrose can be fermented directly to eth-
anol, but starch is hydrolyzed to glucose before it can be
fermented, generally by Saccharomyces cerevisiae [146].
Ethanol fermentation from starch can be improved by uti-
lizing better enzymes and strains and preferably hydrolyze
the starch from whole grains without a chemical pre-treat-
ment and with simultaneous liquefaction, saccharifica-
tion and fermentation [147].

However, the starch biomass material, as well as sugar
cane, is limited and for renewable biofuel to be able to
compete with fossil fuel, a cost-efficient process of an even
more abundant renewable resource is needed. Agricul-
tural and forest biomass are available in large enough
quantities to be considered for large-scale production of
alcohol-based fuels [148]. Urban wastes are an additional
source of biomass; it is estimated that cellulose accounts
for 40% of municipal solid waste [148]. Cellulose-based
products can be competitive with products derived from
fossil resources provided processing costs are reduced
[149]. Unfortunately, because of the complex and crystal-
line structure of lignocellulose, this material is much more
difficult to hydrolyze than starch. Efficient conversion of
lignocellulosic material to fermentable sugars is neces-
sary, but requires better strains or enzyme systems which
are able to convert both pentoses and hexoses and tolerate
stress conditions [150]. Use of thermostable cellulases,
hemicellulases, and thermophilic microorganisms in the
degradation of the lignocellulosic material offers an
advantage by minimizing the risk of contamination and
could enable a single-step process of enzymatic hydroly-
sis, fermentation, and distillation of formed ethanol
[151].

Today, the hydrolysis and fermentation steps are separate.
The fermentation step is usually performed by Saccharo-
myces cerevisiae or Zymomonas mobilis, but this can be a dis-
advantage, since the temperature has to be reduced from
the hydrolysis step, which is better performed at higher
temperature, at least 50°C [152]. Thermoactive yeast,
Kluyveromyces marxianus, active up to 50°C, performed
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equally well as S. cerevisiae [153], but even higher temper-
atures are desired. The fermentation can also be done by
thermo-active anaerobic bacteria. For example, some ther-
mophiles isolated from Icelandic hot springs performed
quite well in ethanol production from lignocellulolytic
hydrolysates, but need further testing [154].

Enzymatic cellulose hydrolysis to glucose is today pre-
dominantly carried out by fungi, e.g. Trichoderma, Penicil-
lium and Aspergillus [155], but to compete with results
from acid hydrolysis, more efficient degradation, presum-
ably at higher temperature is needed, and some relevant
enzymes have been described from thermophiles and
hyperthermophiles [see Additional file 3]. The obstacle
lies in expressing a range of proteins and assembling them
in vitro [151], but it has been shown that cellulases from
different origins, with different temperature optima rang-
ing from mesophilic to thermophilic, can be matched
together and still exhibit substantial synergism in the deg-
radation of cellulosic material [156]. An endoglucanase
from Acidothermus cellulolyticus, which was fused to T. ree-
sei cellobiohydrolase and expressed in T. reesei was for
example enhancing saccharification yields [157]. Endog-
lucanase and cellobiohydrolase activity is however not
sufficient, as the degradation product (cellobiose) inhibits
the former enzymes and blocks further depolymerization
of the cellulose. To solve this product inhibition, B-glu-
cosidases have to be added, or engineered into production
strains that are able to ferment cellobiose and cellotriose
to ethanol [158]. Thermophiles have not yet played any
major role in metabolic engineering, due to the limited
amount of vectors and tools available for their modifica-
tion. Instead, well-known mesophiles like S. cerevisiae are
used, and has recently been modified with genes from a
fungal xylose pathway and from a bacterial arabinose
pathway, which resulted in a strain able to grow on both
pentose and hexose sugars with improved ethanol yields
[159]. Better technologies for biomass pretreatment are
also needed. Mechanical, chemical, biological or thermal
pre-treatments enhance the cellulase accessibility by
removing lignin and hemicelluloses and by partially dis-
rupting the fiber structure. A recent review is given by
Wyman et al. [160] and a comparison has been made
between leading technologies [161].

Production possibilities of the biocatalysts

An important consideration when selecting a biocatalyst
is the prospect of producing it in sufficient amounts.
These considerations include the choice of either produc-
ing by the native host, or if the gene encoding an enzyme
of interest should be transferred to a selected host for
recombinant production. Generally, gene expression is
not a problem related to the thermophilicity of the target
protein and those originating from thermophilic

Page 13 of 23

(page number not for citation purposes)



Microbial Cell Factories 2007, 6:9

resources meet the same production bottlenecks as their
counterparts from mesophiles.

Another important consideration, crucial for the imple-
mentation of biocatalysts, is the production cost, and a
few years ago e.g. Genencor International was working
under a subcontract from the office of Biomass Program
(USA), to reduce the cellulase costs in order to make deg-
radation into fermentable sugars more cost-effective
[162].

Cellulose degradation by cellulases in large scale is (as
stated in the Biofuel-section) usually carried out by fungal
strains [155], but to introduce more thermoactive
enzymes there is a possibility for heterologous production
in bacterial hosts, which generally have higher growth
rates than fungi. The difficulty using bacterial cellulases is
that they are larger, more complex enzymes and often part
of a cellulosome with many different activities. Research
has also been aimed towards improving presently used
fermentation strains by metabolic engineering.

Enzyme production by thermophiles

Cultivation of thermophiles at high temperature is techni-
cally and economically interesting as it reduces the risk of
contamination, reduces viscosity, thus making mixing
easier, and leads to a high degree of substrate solubility.
However, compared to their mesophilic counterparts, the
biomass achieved by these organisms is usually disap-
pointingly low. The low cell yield poses problems for both
large and small scale production, which makes extensive
studies of their enzymes very difficult. This has triggered
considerable research aiming to improve thermophilic
cell yield. To date, several reports on media compositions
and culture optimization of different thermophiles are
available [163]. Special equipments and specific processes
have been developed to improve fermentation processes
of thermophiles and hyperthermophiles [164]. However,
due to factors such as requirement of complex and expen-
sive media [163], low solubility of gas at high tempera-
ture, and low specific growth rates and product inhibition

Table 3: Vectors constructed for thermophilic expression system
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[164], large scale commercial cultivation of thermophiles
for enzyme production remains an economical challenge.
The high cost of large-scale fermentation processes to pro-
duce enzymes by thermophiles and hyperthermophiles is
justifiable only for very few specific applications.

Recombinant enzyme production in mesophilic and
thermophilic hosts

Reduction of the production cost of thermophilic
enzymes is fundamental for their breakthrough in large
scale. One alternative to reduce production costs and
increase the yield of these processes is to use recombinant
technology. A wide variety of thermostable enzymes have
been cloned and successfully expressed in mesophilic
organisms, such as Escherichia coli [165], Bacillus subtilis
[166], Saccharomyces cervisae [167], Pichia pastoris [168],
Aspergillus oryzae [169], Kluyveromyces lactis [170], and Tri-
choderma reesei [171].

However, differences in codon usage or improper folding
of the proteins can result in reduced enzyme activity or
low level of expression [172,173]. Moreover, many com-
plex enzymes, like heterooligomers or those requiring
covalently bound co-factors can be very difficult to pro-
duce in mesophilic hosts. This initiated the search of
genetic tools for the overexpression of such enzymes in
thermophilic host systems. So far, a number of vectors
have been developed for expression of proteins in various
thermophilic hosts (Table 3). Use of the novel ther-
mophilic expression systems is, however, still at research
level and more work remains before exploitation at large
or industrial scale can be considered.

Isolated enzymes or whole cell applications?

Thermophilic enzymes are potentially applicable in a
wide range of industrial processes mainly due to their
extraordinary operational stability at high temperatures
and denaturant tolerance. Such enzymes are used in the
chemical, food, pharmaceutical, paper, textile and other
industries [182-185]. Most of these applications utilize
recombinant thermostable enzymes that have been

Host Plasmid Type Reference
Thermus thermophilus pMKMOOI Shuttle [174]
Thermus thermophilus pMKEI Shuttle [175]
Sulfolobus solfataricus pEXSs Shuttle [176]
Talaromyces sp. CL240 puUT737 Shuttle, Integration [177]
Rhodothermus marinus pRMI100 Shuttle [178]
Pyrococcus abyssi pYS2 Shuttle [179]
Thermoanaerobacterium saccharolyticum pRKMI, pRUKM Shuttle [180]
Thermoanaerobacterium saccharolyticum pUXK, pUXKC Integration [180]
Sulfolobus acidocaldarius pAGI/pAG2 Shuttle [181]
Pyrococcus furiosus pAGI/pAG2 Shuttle [181]
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expressed in mesophilic hosts. Depending on the type of
application, the nature of reactions and product purity,
the enzyme preparation can be cell-free (crude, partially
purified or homogenous) or cell-associated. For example,
the use of cell-free dehydrogenases is hampered by the
need for expensive and sensitive co-factors [186] while
transaminases suffer from unfavourable reaction equi-
libria [187]. In this regard, whole cell applications can be
more attractive. Whole cell applications have also been
reported in food processing, making use of recombinant
thermophilic o-glucosidase expressed in Lactococcus lactis
[188].

The usage of whole cells is of special interest for transfor-
mation of lignocellulosics. The bioconversion involves
two major steps; saccharification and fermentation. Sac-
charification is the hydrolysis of carbohydrate polymers
(cellulose and hemicellulose) into sugars, and this hydro-
lysate is then utilized as substrate in the fermentation step
by microorganisms that transform it into metabolic prod-
ucts (e.g. ethanol, see Biofuel). Whole-cell microbial bio-
conversion offers an attractive possibility of a single step
transformation, in which the microorganisms produce
saccharolytic enzymes that degrade the lignocellulose and
ferment the liberated sugars, which could lead to higher
efficiency than in the common multistep lignocellulosic
conversions [189,190].

The close association of cellulose and hemicellulose to
lignin in the plant cell wall, however, make this substrate
difficult to degrade into monomer sugars at high yields
(compared to sugar- or starch-containing crops, e.g. sugar
cane or maize). Pre-treatment (using steam, acid or alkali)
is thus necessary to make the carbohydrate polymers
available for enzymatic hydrolysis and fermentation
[155,191]. Among pre-treatment methods, high tempera-
ture pre-treatment using liquid hot water is shown to
make the biomass (specifically the cellulose part) more
accessible to enzymatic attack. Development of fermenta-
tion systems for thermophiles is here appealing, as it
allows energy savings by reducing the cooling cost after
steam pre-treatment, lowering the risk of contamination,
and improving saccharification and fermentation rates.
Moreover, in production of ethanol, thermophilic condi-
tions result in continuous ethanol evaporation allowing
harvest during fermentation. Simultaneous fermentation
and product recovery can decrease product inhibition of
the fermentation process (by the ethanol), reduce the vol-
ume of water consumed for distillery cooling, and the
time required for distillation, leading to a more efficient
process. A problem associated with lignocellulose pre-
treatment procedures is, however, liberation of degrada-
tion products that can inhibit microbial growth [191], but
some thermophilic bacteria have shown promising results
in fermenting lignocellulosic hydrolysates to ethanol, like

http://www.microbialcellfactories.com/content/6/1/9

the xylanolytic anaerobic thermophilic bacterium, Ther-
moanaerobacter mathranii, shown to ferment the xylose in
the hemicellulose fraction from alkaline wet oxidized
wheat straw to ethanol with no prior detoxification [191].
Still, growth on pre-treated lignocellulose may vary
dependent on both organism and substrate origin [189].
Moreover, the insolubility of lignocellulosics creates
problems in maintaining homogeneity in reactors making
monitoring and control of process parameters difficult.
Therefore, like for their mesophilic counterparts, efficient
utilization of thermophiles in integrated bioprocesses
needs thorough investigation. In the last few years, reports
have been made on solid state cultivation of thermophiles
on lignocellulosics [192,193]. In some cases, compared to
the more traditional submerged liquid fermentation, bet-
ter conversion has been reached under solid sate cultiva-
tion [194].

Use of naturally occurring microorganisms is, however,
generally not efficient enough in transforming the sub-
strate into higher value products. Thus, it is imperative to
enhance the robustness of the microbes towards increased
substrate hydrolysis and higher product yields through
metabolic engineering. Metabolic engineering has been
pursued in mesophilic hosts, resulting in strains of biore-
finery interest that produce high yields of ethanol
[195,196], propanediol [197,198], acetate [199], adipic
acid [200], succinic acid [201] and lactic acid [202]. How-
ever, such metabolic engineering reports have been very
rare for thermophiles [203], but may increase with the
availability/development of genetic tools. Several ther-
mophilic organisms such as Thermoanaerobium brockii
[204], Clostridium thermohydrosulfuricum [205], and Moore-
lla sp. HUC22-1 [206], have been studied for ethanol pro-
duction. Metabolic engineering of such thermophiles to
improve ethanol productivity and efficiency of utilizing
different substrates like cellulose, hemicellulose and pec-
tin can be very interesting.

Concluding remarks

Thermophiles and especially thermophilic enzymes have
to date gained a great deal of interest both as analytical
tools, and as biocatalysts for application in large scale.
Utilization of these enzymes is however still today,
despite many efforts, often limited by the cost of the
enzymes. With an increasing market for the enzymes,
leading to production in higher volumes, the cost is how-
ever predicted to decrease. Moreover, with a paradigm
shift in industry moving from fossils towards renewable
resource utilization, the need of microbial catalysts is pre-
dicted to increase, and certainly there will be a continued
and increased need of thermostable selective biocatalysts
in the future.
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Additional material

Additional File 1

Examples of possible and current applications of thermostable hydrolases,
and sequence-related transferases. The table shows applications of ther-
mostable enzymes; hydrolases and transferases, along with EC numbers.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2859-6-9-S1.pdf]

Additional File 2

Properties of some thermostable wild-type or engineered members of the o~
amylase family acting on starch and related molecules. The table shows
some properties of thermostable enzymes acting on starch and related mol-
ecules.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2859-6-9-S2.pdf]

Additional File 3

Properties of some thermostable hydrolases of both thermophilic and mes-
ophilic origin acting on lignocellulosic materials. The table shows some
properties of enzymes acting on lignocellulosics.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2859-6-9-S3.pdf]
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