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Abstract

An important objective in developing new drugs is the achievement of high specificity to maximize
curing effect and minimize side-effects, and high specificity is an integral part of the antisense
approach. The antisense techniques have been extensively developed from the application of simple
long, regular antisense RNA (asRNA) molecules to highly modified versions conferring resistance
to nucleases, stability of hybrid formation and other beneficial characteristics, though still
preserving the specificity of the original nucleic acids. These new and improved second- and third-
generation antisense molecules have shown promising results. The first antisense drug has been
approved and more are in clinical trials. However, these antisense drugs are mainly designed for
the treatment of different human cancers and other human diseases. Applying antisense gene
silencing and exploiting RNA interference (RNAi) are highly developed approaches in many
eukaryotic systems. But in bacteria RNA. is absent, and gene silencing by antisense compounds is
not nearly as well developed, despite its great potential and the intriguing possibility of applying
antisense molecules in the fight against multiresistant bacteria. Recent breakthrough and current
status on the development of antisense gene silencing in bacteria including especially
phosphorothioate oligonucleotides (PS-ODNs), peptide nucleic acids (PNAs) and
phosphorodiamidate morpholino oligomers (PMOs) will be presented in this review.

|. Background

The antisense RNA (asRNA) mechanism comprises all
forms of sequence-specific mRNA recognition leading to
reduced or altered expression of a certain transcript [1].
Naturally occurring asRNAs are found in all three king-
doms of life, although most examples are found in bacte-
ria, and they affect messenger RNA (mRNA) destruction,
repression and activation as well as RNA processing and
transcription [2]. This mechanism can be exploited in
engineering strategies for inhibiting protein synthesis.

For the asRNA as well as other antisense compounds to be
able to anneal to an mRNA or functional RNA, such as
ribosomal RNA, the chosen RNA target region must be
accessible. Determining target accessibility is the first step
in designing antisense molecules, and both experimental
and computational approaches have been applied. A brief
and inexhaustive presentation will be given here.

When antisense molecules anneal to a complementary
mRNA, translation can be disrupted as a result of steric
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hindrance of either ribosome access or ribosomal read-
through (Fig. 1). This inhibition mechanism is, of course,
specific for mRNAs. The annealing of antisense molecules
to either mRNAs or functional RNAs can result in fast deg-
radation of duplex RNA, hybrid RNA/DNA duplex, or
duplex RNA resembling precursor tRNA by ribonucleases
in the cell, or by cleavage of the target RNA by the anti-
sense compound itself. The inhibitory efficiency of these
hybridization strategies depends on factors such as length
and structure, binding rate, intracellular concentration,
and degradation resistance of the chosen antisense mole-
cule. Antisense molecules and methods have been devel-
oped and designed specifically to address these issues and
improve the inhibitory efficiency. These antisense strate-
gies will be presented as well as recent studies describing
their application.

Although the basic principle of the antisense inhibition
mechanism is the same for all three kingdoms, the condi-
tions affecting the efficiency of the particular antisense
molecule are different in each system. Antisense gene
silencing in bacterial systems will be the focus of this
review. Application of antisense inhibition methods in
eukaryotic systems, including siRNA and the RNA interfer-
ence mechanism, is reviewed elsewhere [3-7]. An RNA-
interference-based immune system in prokaryotes has
been proposed recently [8,9], but a technology exploiting
this finding for the sequence-specific inhibition of bacte-
rial proliferation has still to be developed.

2. The target

It is not possible to design antisense molecules without
investigating the RNA target. The target is an unchangea-
ble RNA molecule with a defined structure, which must be
examined in order to detect appropriate local target sites
suited for invasion of an antisense strand [10]. Conse-
quently, it is possible that the choice of target RNA limits
the degree of inhibition obtainable [11].

The only method that will give you the precise answer, as
to which target region is best suited for antisense inhibi-
tion, is empirical screening. However, this may be a tedi-
ous task, and ways of limiting the search area have been
suggested.

Different experimental procedures have been applied to
determine accessible mRNA regions, including chemical
modification mapping [12] and in vitro screening assays
using antisense oligodeoxyribonucleotides (ODNSs). The
ODN-mRNA duplexes are subjected to RNase H cleavage
followed by gel electrophoresis [13,14], primer extension
[15] or MALDI-TOF mass spectrometry [16] to identify
cleavage sites. ODN inhibition efficiency can also be
tested in in vitro transcription/translation experiments, in
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which the amount of expressed gene product is quantified
following incubation with ODN [14,17].

RNA secondary structure predictions can be carried out by
computer-assisted free energy minimization programs
(like Mfold [18]) or structure sampling algorithms (like
Sfold [19]) (for reviews see [20-22]) to identify accessible
regions (Fig. 2). However, secondary structure predictions
as well as in vitro experiments may be inaccurate due to
unpredictable RNA-protein interactions that may change
the RNA structure in the cells, as well as the coupling of
transcription and translation rendering part of the mRNA
absent for secondary structure formation. Scherr and co-
workers developed a system for carrying out ODN-RNA
binding experiments and endogeneous RNase H-medi-
ated cleavage in cell extracts resembling the environment
of the intact cell [23-26]. This approach resulted in ODN
design with cell extract efficiency correlating with in vivo
efficiency.

Antisense molecules should be targeting the start codon
and the Shine-Dalgarno sequence of an mRNA [27]. This
is suggested, since i) this region is accessible for ribosome
assembly, ii) it is the usual target of natural examples of
antisense inhibition, iii) for attenuated mRNAs this
region is sequestered within a double-stranded region
[28] and iv) consistent success has been experienced tar-
geting this region. Furthermore, an mRNA 'sequence-
walk' using 90 synthetical antisense probes pointed to the
start codon region as the most sensitive to inhibition [29].

As mentioned before, the target of antisense molecules
need not be mRNA. ODNs have been used to determine
suitable target sites in catalytic RNA, such as bacterial
RNase P RNA, by directly testing the inhibitory effect of
the ODN s on the in vitro cleavage efficiency of the RNase
[30]. Accessibility maps have also been produced for 16S
[31] and 23S rRNA [32] of Escherichia coli by the use of
ODN:s labelled with fluorescent dye.

The results obtained by other researchers are valuable
information, which others may build upon. Effective and
ineffective ODNs reported in the literature have been
entered into a database, from which they can be retrieved
using two web-based retrieval tools [33]. This provides
information on accessible and inaccessible sites in the tar-
geted RNAs. The database contains ~700 ODNss targeting
46 RNAs, but unfortunately only one of these is an E. coli
RNA, viz. 23S rRNA. If the database is regularly updated
with ODNs targeting prokaryotic RNAs, it can prove a val-
uable tool in the target selection process in the future.

3. Expressed regular antisense RNA
Regular antisense RNA refers to the most basic form of
asRNA, i.e. an unmodified RNA molecule of the exact
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Antisense inhibition mechanisms. An overview of the antisense inhibition mechanisms described in this review. AsSRNA
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reverse and complement sequence of the target RNA. To
obtain this, a segment of the target gene can be amplified
and cloned into a vector in an antisense orientation
downstream from an inducible promoter. Regular asRNA
is then introduced to the bacteria through transcription
from this asRNA-encoding vector. The half-life of a typical
bacterial mRNA is in the range of 2-4 min [34], and since
most artificial asRNAs are usually subjected to rapid deg-
radation [35], transfection of bacterial cells with an appro-
priate antisense gene vector is a way of providing a long-
term expression downregulation.

The inhibition mechanism is thought to include steric
hindrance of translation or rapid degradation of target
RNA possibly by RNases specific for double-stranded RNA
(dsRNA) (Fig. 1). It has been shown in Staphylococcus
aureus that when targeting an mRNA using asRNA, the 5'

portion of mRNA is completely degraded, while the 3'
portion remains intact [36]. This might be due to the ter-
minator stem-loop protecting the 3' end from exonucle-
ases.

Studies on asRNA length dependence have shown a posi-
tive correlation between the percentage of inhibition and
the length of antisense/target RNA hybridization [35], i.e.
the longer asRNA and the longer target hybridization, the
greater inhibition. This has also been suggested based on
calculations of association rate constants [37]. In Strepto-
coccus mutans, expressed asRNA larger than approximately
5% of the entire gene length has been indicated to be
required for optimal inhibition of gene expression [38].
However, this length dependence may be specific for the
studied target sequences, since shorter asRNAs have been
shown to have a larger effect on other target genes [39].
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Figure 2

Secondary structures favorable for invasion of antisense molecules. Accessible regions include internal and external
loops, bulges and joint sequences (secondary structures by Mfold).

Short asRNAs may suffer from ribosome displacement,
since the ribosome is used to encounter mRNA secondary
structures during translation. It has recently been shown
that the ribosome exhibits helicase activity [40]. Down-
stream secondary structure resulting from annealed oligo-
nucleotides of up to 27 bp could be disrupted by the
ribosomal helicase activity, but this helicase activity
appears not to function during translation initiation [40].
Consequently, asRNA annealing to the ribosome binding
site (RBS) region should have a larger inhibitory effect
than asRNA annealing further downstream on the mRNA.

The endogeneous expression of vector-induced asRNA-
encoding genes is complicated by stretches of flanking
vector-derived sequences, which are transcribed with the
asRNA, why a low ratio of vector-derived sequences to
complementary sequences is recommended [41]. This can
be achieved by applying an appropriate cloning strategy
or by introducing self-cleaving elements into the RNA
transcript (see section 4).

Since long RNA molecules may exhibit more extensive
secondary structure and may be more structurally com-
plex, the observations of increased inhibitory effect when
using longer asRNA molecules may imply that binding
occurs between folded RNAs [11]. Studies on naturally
occurring asRNAs have shown that complete pairing of an
antisense and a target RNA is slow and can be unnecessary
for inhibition [42]. Consequently, it may be contributive
to include specific secondary structure elements in asRNA

design, since unfolding of intrinsic secondary structure
and complete duplex formation may be difficult and
unnecessary. Naturally occurring asRNAs have provided
researchers with model systems for asRNA structural
design. For instance, different groups have designed asR-
NAs based on secondary structure elements found in
CopA [11,43]. CopA, a naturally occurring asRNA, and its
target, CopT, are key elements of the copy number control
circuit of bacterial plasmid R1 [44-48], and a stem-loop
structure resembling stem-loop II of CopA was incorpo-
rated into asRNA for rapid target recognition. However,
most artificially created asRNAs are still about 100-fold
less effective than natural asRNAs [11], signifying that nat-
ural asRNA regulation is not easily copied.

Computational strategies have been used extensively to
search asRNA sequences for desirable features. AsSRNA
sequences can be selected out of the complete antisense
sequence space, and a computer algorithm can be used to
generate all possible asRNA sequences, usually within a
specified range of sequence length. Secondary structure
predictions are recorded (e.g. using the program Mfold
[18]), and the lowest free energy foldings are selected. Dif-
ferent selection criteria for favorable antisense sequences
have been suggested:

¢ a high number of terminal unpaired nucleotides [49]

e overall flexibility [49]
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External Guide Sequences. A) Representation of precursor tRNA, a natural substrate for E. coli RNase P. The anticodon is
shown in red, and the sequences imitated by EGS annealing are highlighted in boldface. B) An EGS molecule annealing to an
RNA substrate. C) An EGS molecule with an attached catalytical M| RNA subunit annealing to an RNA substrate. Arrows

mark the RNase P or M| RNA cleavage sites.

e a high number of external bases (i.e. nucleotides not
involved in base pairing or structural elements) [41]

¢ a high number of structural components (i.e. structural
folding units, regions of high complementarity within an
RNA molecule) [41]

® a low ratio of the number of components to the number
of total nucleotides [50].

The common denominator seems to be a high number of
free nucleotides accessible for base pairing.

Effective asRNAs have been designed using computational
strategies and algorithms, but the results may be affected
by the specific algorithm used to calculate RNA secondary
structure, the number of lowest energy structures that are
considered, the length of target sequence segments, the
selection criteria etc. [51].

Inhibition efficiency is also influenced by reaction kinet-
ics, and since asRNA efficacy in living cells is related to
annealing kinetics in vitro (shown for naturally occurring
asRNA, [45,48]), kinetic selection techniques yielding fast
annealing antisense species can be applied to generate
effective asRNAs [52-54]. To further promote rapid recog-

nition, a high ratio of asRNA to target RNA is desirable,
and this can be accomplished by transfecting cells with
antisense genes cloned into high copy number plasmids
[35]. Furthermore, to prolong asRNA half-life and
increase the intracellular concentration, 5' stem-loops can
be inserted to protect RNAs from degradation [55-59].

3.1 Applications of expressed regular antisense RNA

The expressed asRNA strategy has mainly been used to
study gene function. If the gene in question encodes an
essential protein, knockout mutants will be lethal,
whereas inducible and titrable downregulation of gene
expression by asRNA encoded by a plasmid will enable
functional studies. This strategy has been applied for the
study of specific genes in a number of different bacteria
including E. coli (rpoS) [60], Mycobacterium smegmatis
(hisD) [61] and Mycobacterium bovis (ahpC) [62], S. mutans
(sgp) [63], S. aureus (srrAB) [64], Clostridium cellulolyticum
(cel48F) [65], Thermus thermophilus (cat) [66], Lactobacil-
llus rhamnosus (welE) [67], Borrelia burgdorferi (ftsZ(Bbu))
[68], Helicobacter pylori (ahpC) [69] and even in the proto-
zoan parasite Entamoeba histolytica (PIG-L) [70]. These
studies involved specific genes, but the asRNA expression
strategy has also been used for genome-wide studies, in
which the bacterial genome is randomly fragmented
(~200 to 800 bp) and cloned into vectors. Screening trans-
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Nucleotides in boldface indicate the conserved catalytic core nucleotides, and the arrow marks the cleavage site. Ribozyme
numbering is according to Hertel et al. [219]. This representation displays in trans cleavage, but the catalytic core nucleotides

and the cleavage site are the same for in cis cleavage.

formants for conditional growth defective phenotypes
and characterizing the corresponding expressed antisense
fragments has led to the identification of essential genes
in S. aureus [71-73] and S. mutans [38] and genes essential
to both S. mutans and E. coli [74].

Changing the expression profile of bacteria can have other
purposes. Metabolic engineering of bacteria can improve
their use as fermenters and cell hosts for recombinant het-
erologous protein production. For instance, an increase in
the butanol-to-acetone ratio in Clostridium acetobutylicum
fermentations was obtained using expressed asRNA spe-
cific for proteins in the involved pathways [50,75,76]. In
another study, asRNA was used to reduce synthesis of a
glycosyltransferase, which resulted in a change in the
molecular mass of the polysaccharides produced in L.
rhamnosus [67]. In E. coli, different strategies have been

explored in order to increase recombinant protein pro-
duction yield, including downregulating the global regu-
lator ©32 to decrease proteolytic degradation of
recombinant protein [77], downregulating RNase E to sta-
bilize target product mRNA [78], and reducing endogene-
ous acetate production to improve heterologous protein
synthesis [79] without concomitant growth inhibition.
Acetate can cause inhibition of growth and recombinant
protein synthesis, but the acetate pathway is also physio-
logically indispensable, which is why asRNA downregula-
tion of enzymes of the acetate pathway is preferred over
gene knockout. Additionally, asRNA expression can be
used to protect bacteria used in industrial fermentations
against bacteriophages (for reviews see [80-82]).

The expression of asRNA has also been used to validate

the point of action of antibiotics. Targeting the proposed
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molecular target of an antibiotic by asRNA and reducing
its expression will sensitize the bacteria to this specific
antibiotic. This strategy has especially been used in S.
aureus to validate mode of action of antibiotics [72,83] as
well as to screen for novel antibacterial agents [36,84-89],
but it can also be used to restore antibiotic susceptibility
of other resistant strains [90].

Alpha-toxin of S. aureus is well-established as a lethal
toxin in mice [91]. A 14- and 16-fold reduction in alpha-
toxin expression has been achieved in S. aureus cell cul-
tures by introducing asRNA against the gene encoding this
toxin [92,93]. The effect has also been tested in murine
models. Mice were infected with the transformed S. aureus
strains, and inducer was administered orally [92]. The
asRNA expression was shown to eliminate the lethality of
the infection. This lead to the proposal of using this strat-
egy to create live-attenuated strains for vaccine candidates
[93].

In all the studies mentioned so far, the expressed asRNAs
have been complementary to their target mRNAs in an
antiparallel orientation. However, expression of parallel
asRNA targeting the E. coli lon mRNA has been shown to
interfere with target protein synthesis [94] but has not
been further investigated.

4. External Guide Sequences

External guide sequences (EGS) are small asRNA mole-
cules, which hybridize to their target RNA to create a struc-
ture that mimics a naturally occurring cleavage substrate
of RNase P (Fig. 1). RNase P is an essential enzyme, which
is found in all organisms, and it is also one of the most
abundant and active enzymes [95]. In E. coli, this ribonu-
cleoprotein consists of a catalytic M1 RNA subunit [96]
and a C5 protein subunit, which is a necessary cofactor in
vivo [97]. RNase P is responsible for generating mature
5'ends of tRNAs by a single endonucleolytic cleavage of
their precursors [98], and this cleavage is not sequence-
specific but depends on a higher order structure in precur-
sor tRNA (ptRNA) [99]. RNase P cleavage of one of the
strands in a bimolecular substrate resembling ptRNA
structure has been demonstrated [100]. Actually, the
model substrate could be simplified to consist of two
complementary RNA strands forming a stem-like struc-
ture of typically 13-16 bp [100,101], and this led to the
development of EGSs (Fig. 3).

Since the target mRNA will be one of the two strands in
the model substrate, the EGS is designed to serve as the
complementary RNA strand, guiding the RNase P cleav-
age.

Some criteria must be met by the target mRNA and the
EGS to ensure sufficient ptRNA mimicry: i) the 3'end of

http://www.microbialcellfactories.com/content/6/1/24

the EGS must contain an unpaired RCCA sequence [102]
(and consequently, positions -2 and -3 of the mRNA
cleavage site must not be guanosines), ii) the mRNA must
contain a guanosine 3' to the cleavage site and iii) a pyri-
midine 5' to the cleavage site [103,104]. Furthermore, if
the 3' RCCA sequence is followed by a long flanking
region, RNase P cleavage efficiency is markedly reduced
[105], and this will often be a problem when expressing
EGSs from a transfected plasmid.

To circumvent this problem, the EGS-encoding sequence
can be followed by a hammerhead-encoding sequence
(HH sequence) [106,107]. When this long transcript is
produced, the hammerhead sequence will form a specific
secondary structure and self-cleave, generating a free EGS
molecule with only few nucleotides 3' to the RCCA
sequence [105]. The general structure of a hammerhead
sequence is illustrated in Fig. 4, in which the conserved
core nucleotides needed for efficient cleavage are high-
lighted in boldface. The hammerhead sequences are also
useful when expressing two EGSs from the same plasmid,
in which case two hammerhead sequences of opposite
direction are required between the two EGSs and a third
one downstream from the last EGS, as illustrated in Fig. 5.

4.1 Applications of External Guide Sequences

EGS inhibition of protein synthesis was first investigated
in an E. coli plasmid system [99,105]. Alkaline phos-
phatase and B-galactosidase mRNAs were targeted using
single EGSs followed by hammerhead sequences and
EGSs covalently linked to M1 RNA. The M1 RNA-EGSs
cleaved target mRNA independently of RNase P.

EGS expression has been used for phenotypic conversion
of antibiotic-resistant bacteria. Expressing EGSs targeting
the resistance-conferring genes of chloramphenicol
acetyltransferase (cat), B-lactamase (bla) [99,108] and
aminoglycoside 6'-N-acetyltransferase type Ib (aac(6')Ib)
[109] restored antibiotic sensitivity, and it was demon-
strated that a high EGS-to-target mRNA ratio is required
for efficiency [108,110].

Bacterial growth can also be inhibited by targeting essen-
tial genes, as e.g. the genes encoding C5 protein subunit
of RNase P (rnpA) and subunit A of gyrase (gyrA) in E. coli.
Multiple EGSs targeting these to mRNAs showed additive
effects and resulted in a 26-fold decrease in growth after
EGS induction, the highest growth inhibition achieved in
this study in wild-type E. coli [110].

The results obtained in E. coli has been transferred to Sal-
monella enterica serovar Typhimurium [111]. The non-
essential target genes invB and invC express proteins
required for type III secretion and for host cell invasion,
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Hairpin core sequence. Generalized representation of a minimal hairpin-substrate complex. N: any nucleotide, N": nucle-

otide complementary to N, H: any nucleotide but C, Y: pyrimidine nucleotide. Nucleotides in boldface indicate the conserved
catalytic core nucleotides, and the arrow marks the cleavage site. Ribozyme numbering is according to Butcher and Burke [220,
221]. This representation displays in trans cleavage, but the catalytic core nucleotides and the cleavage site are the same for in

cis cleavage.

respectively. EGS targeting of these genes resulted in a
decreased host cell invasion rate.

Since the EGSs are expressed from plasmids, the bacteria
may try to lose these plasmids to avoid inhibition [109].
Plasmid loss in liquid cultures of bacteria have been
shown to begin after 6 hours of growth [108]. In another
study transformants containing EGSs with high inhibition

index values lost their plasmids more often, exhibited
smaller colony size when induced and were more difficult
to grow in general than the corresponding low inhibition
index EGS transformants [110]. It would seem that the
bacteria, when exposed to more effective EGSs, will try
harder to escape the growth-inhibiting agents. For in vitro
applications, the use of antibiotic resistance markers is
routinely used to prevent loss of plasmid, but the EGSs
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may also be administered directly as chemically synthe-
sized molecules, avoiding the problem of plasmid loss.

Even though the results described here are obtained
through induced EGS expression from plasmids trans-
formed into bacteria, the technology can, in principle, be
transferred to in vivo applications. Guerrier-Takada et al.
suggest altering the so-called R-plasmids of enteric bacte-
ria and derivatives, which are responsible for establish-
ment and transfer of drug resistance in clinical
populations, to carry EGS-encoding genes instead of genes
for drug resistance [108]. Another option may be to use
carriers such as fluid liposomes, which has been shown to
facilitate E. coli cell entry of both plasmid DNA and anti-
sense oligonucleotides [112]. Chemically synthesized
EGSs could be added instead of plasmid DNA, and the
EGSs could be DNA-based instead of RNA-based to
increase nuclease stability. However, DNA-based EGSs
have been shown to be 10-fold less efficient in vitro than
unmodified RNA-based EGSs [113].

Using EGS technology for microbial antisense inhibition
still needs further development and optimization, and
some of the modifications investigated in human cells are
still to be investigated in bacterial cells. It should be kept
in mind, though, that due to differences in the structural
requirements of EGSs directing mRNA cleavage by either
human or bacterial RNase P, the results obtained in one
system may not be transferred to the other [99].

5. Catalytic antisense and its applications

The hammerhead self-cleaving domain, which was just
briefly mentioned above, was first discovered in plant
viroids [114-116], and it was soon demonstrated that this
structure could be dissolved into two strands, one of them
directing the in trans cleavage of the other [117,118]. As
shown in Fig. 4, trans-acting hammerhead ribozymes
form helices I and III with complementary sequences in
the substrate, whereas helix II is an intramolecular struc-
ture of the ribozyme. Truncation tests have revealed that
helix length can be varied for optimization of cleavage
efficiency [119-121].

The use of catalytic antisense RNA in bacterial systems has
been limited. The explanation for this might involve the
tight coupling of transcription and translation in prokary-
otes. A plasmid-encoded hammerhead ribozyme targeting
chloramphenicol acetyltransferase (cat) gene was only
efficient in mutant strains of E. coli [122], in which the
translation rate was decreased so as to uncouple transla-
tion from transcription.

The self-cleaving hammerhead structure has instead been
used indirectly in bacterial growth inhibition, by releasing

http://www.microbialcellfactories.com/content/6/1/24

EGSs from long RNA transcripts as described in the previ-
ous section.

The hairpin motif is a somewhat larger catalytic RNA
motif, and it was first discovered in the negative strand of
the tobacco ringspot virus satellite RNA, (-)sTRSV [123-
125]. As for the hammerhead motif, the hairpin motif
could be dissolved into two separate strands, one of them
directing the in trans cleavage of the other. The secondary
structure of the minimal hairpin ribozyme involves two
arms hybridising to the target sequence in addition to two
intramolecular helices, as shown in Fig. 6 (for further
details on hairpin ribozyme structure see [126-128] and
references herein).

The hairpin ribozyme has not been a common object of
studies in prokaryotes. Hairpin ribozymes produced in E.
coli showed only a minor or negligible effect [11]. This
might be a result of the chosen target for the ribozymes,
since ribozymes targeting downstream from the RBS
region might be displaced by the translating ribosome.

RNA ribozymes may be subjected to rapid degradation by
nucleases, so catalytic DNA has also been investigated.
The most prominent deoxyribozyme is the so-called 10-
23 DNA enzyme (Fig. 7), which was obtained by in vitro
selection from a combinatorial library [129]. It is com-
posed of about 30 deoxynucleotides, 15 in a catalytic core
region and 6-12 in each of two flanking arms comple-
mentary to the target RNA. It catalyzes an Mg2+-dependent
cleavage between an unpaired purine and a paired pyrimi-
dine [130]. Deletion analysis showed that the bases at
positions 7 and 8 could be deleted without severely
impacting the catalytic activity of the enzyme [131].

Chen et al. developed a vector system for the in vivo expres-
sion of single-stranded DNA (ssDNA) and DNA enzymes
(DNAzymes) in mammalian cells [132-134], which was
recently transferred to E. coli [135]. Using this system,
ssDNA was synthesized by reverse transcription from a
specific vector (see Fig. 8 for details), and the encoded
DNAzyme was a 10-23 DNAzyme targeting the ftsZ gene
essential for bacterial division and viability. FtsZ expres-
sion level in E. coli cells was reduced significantly upon
induction, and cell growth was inhibited in a time- and
inducer concentration-dependent manner [135].

Ribonucleases can also be produced synthetically. Artifi-
cial ribonucleases composed of building blocks of differ-
ent features have been developed and tested for in vitro
cleavage of RNA [136,137].
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Figure 7
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cleavage site

10-23 DNA enzyme. Generalized representation of a 10-23 DNA enzyme-substrate complex. N: any nucleotide, N': nucle-
otide complementary to N, R: purine nucleotide, Y: pyrimidine nucleotide, R": purine complementary to Y, M: Aor C, H: A, C
or T and D: G, A, or T. The nucleotides likely to be directly involved in forming the catalytic site are highlighted in bold, and
the arrow marks the cleavage site. Numbering is according to Zaborowska et al. [222].

6. Antisense oligonucleotides, analogues and
mimics

Antisense phosphodiester oligodeoxyribonucleotides
(asODN, Fig. 9) are short (usually 10-30 nucleotides)
synthetic DNA sequences complementary to a given
mRNA target. When hybridizing to mRNA, the heterodu-
plex is recognized by RNase H, and the RNA strand is
degraded [138] (Fig. 1). This is the main mechanism of
action, however, ODNs have also been used in an RNase
H-independent strategy to bind and induce misfolding of
catalytic RNA [139,140].

As described in section 2, the asODNs have mainly been
used in cell-free or cell extract assays to determine accessi-
ble target sites in mRNAs as well as studying topology of
ribosomal RNAs [141-144]. However, ODNs have been
used in antimicrobial studies as well. ODNs have been
shown to decrease the level of antibiotic resistance in E.

coli by targeting the aac(6')Ib mRNA [14], which has also
been targeted by EGS technology, as mentioned in section
4.

ODN: s are subjected to rapid degradation by nucleases, so
their use as antisense agents has been limited. Instead,
synthetic DNA analogues with altered backbones have
been developed to overcome some of the problems found
with natural DNA oligonucleotides. The naturally occur-
ring DNA bases are maintained in positions required for
complementary base pairing, but the linkages between the
bases have been modified to prevent degradation by
nucleases, to improve cellular uptake, and increase bind-
ing affinity. Different linkages of these analogues have dif-
ferent advantages and effects, which will be reviewed here
as well as the development of these DNA analogues as
antimicrobial agents.
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Synthesis of single-stranded DNAzymes. The ssDNA was synthesized by a reverse transcriptase from moloney murine
leukemia virus (MoMuLV), the gene of which was placed downstream from a hybrid P 5., promoter in the vector. This was
followed by coding sequences for a reverse transcription termination structure, a DNAzyme, a primer binding site (PBS), and a
terminator. The MoMulLV reverse transcriptase was synthesized from the resulting transcript encoding reverse transcriptase,
reverse transcription terminator, DNAzyme, and PBS. Endogeneous tRNA(Val) then hybridized to the PBS and primed the
reverse transcription of the single-stranded DNAzyme, which was stopped by the reverse transcription terminator.

Methylphosphonate oligonucleotides (MPOs, Fig. 9) are
formed by replacing one of the non-bridging oxygens of
ODN phosphodiester bonds with a methyl-group. Besides
the formation of noncharged oligonucleotides this also
generates chirality at the phosphorus centres. Thus, MPOs
can consist of phosphate backbones, in which either all
phosphorus centres are in the R configuration (all-Rp, the
p denominating the phosphorus centre) or S configura-
tion (all-Sp) or a mixture. The all-Rp diastereomers have
been indicated to form more stable duplexes than the all-
Sp diastereomers or racemic MPOs [145-147].

MPOs act by an RNase H-independent inhibition mecha-
nism (Fig. 1), and though highly stable, the reduced solu-
bility and cellular uptake of methylphosphonate ODNs
[138,148] have limited their use as antisense agents in
bacteria [149,150].

A wide variety of DNA (or RNA) analogues (Fig. 9) have
been designed and used in bacterial systems, e.g.

¢ methylcarbamate ODNs [151],
¢ photoactivatable ODNs [152],
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Structures of antisense building blocks. Structures of the building blocks for unmodified oligodeoxynucleotides (ODN:Ss),
methylphosphonate oligonucleotides (MPOs), locked nucleic acids (LNAs), 2'-O-methylribonucleotides (2'-OMes), phospho-
rothioate-linked 2'-deoxy-2'-fluoro-D-arabinonucleic acids (PS-FANAs), phosphorothioate oligonucleotides (PS-ODNs), pep-
tide nucleic acids (PNAs), and phosphorodiamidate morpholino oligomers (PMOs). All examples include an adenine base.

¢ Jlocked nucleic acids (LNA) [153,154],

® mixed-backbone ODNs composed of

- segments of phosphorothioate ODNs (PS-ODNs, see
section 6.1) and 2'-O-methylribonucleotides (2'-OMe)
[155] or

- phosphorothioate-linked 2'-deoxy-2'-fluoro-D-arabino-
nucleic acid (PS-FANA) [156],

but also fundamentally different strategies have been
investigated, e.g.

¢ oligonucleotide-directed misfolding of RNA [139],

e triplex-forming antigene ODNs [157,158] and

¢ expression of multicopy, ssDNA from retrons [159,160].
However, the DNA analogues and mimics that have been

most widely used in bacteria and show the most promis-
ing results are the phosphorothioate ODNs (PS-ODN:s),

the peptide nucleic acids (PNAs) and the phosphorodi-
amidate morpholino oligomers (PMOs) [136,161,162],
which are discussed in the following subsections.

6.1 Phosphorothioate oligonucleotides

Replacing one of the non-bridging oxygens of the phos-
phodiester bonds of DNA with sulfur gives phospho-
rothioate oligodeoxynucleotides (PS-ODNs, Fig. 9),
which are some of the most studied oligonucleotides. As
for the MPOs, the introduction of sulfur atoms introduces
chirality at the phosphorus centers, and the PS-ODNs
behave differently depending on the diastereomeric con-
figuration of the linkages. Thus, the all-Rp version has a
higher binding affinity and a greater RNase H activation
but a lower in vitro stability against nucleases than the all-
Sp diastereomer. PS-ODNs of mixed diastereomeric link-
ages show intermediate abilities [163,164]. It has been
indicated that nuclease stability is one of the most impor-
tant factors for PS-ODN efficacy [165], and hence the ster-
eocontrolled synthesis of antisense PS-ODNs has been
well investigated (for a review see [163]).
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The first FDA-approved antisense drug. Structure of the 2|-mer phosphorothioate, fomivirsen (brand name Vitravene,
illustration from [223]). The patient target group for this drug is rather small, and it was taken off the market by the manufac-

turer in 2002 due to poor sales [224].

The PS-ODN:s are highly soluble, and their mechanism of
action involves binding to target RNA and activating
RNase H for cleavage of the target (Fig. 1). RNase H-
dependent ODN5s can be targeted to virtually any region
of the RNA or mRNA, whereas antisense agents inhibiting
expression through steric blocking should be targeted to
the 5' end or the initiation codon region [138]. The phos-
phorothioate DNA analogues can display poor sequence
specificity, since even short duplexes of PS-ODN/RNA can

be degraded by RNase H, and PS-ODNs can therefore
induce cleavage of sequences with only partial homology
to the targeted RNA [166]. They have also been shown to
induce sequence-independent effects by interacting with
cellular proteins, though this is suggested to be synergistic
with the downregulating effect of the PS-ODN [138].
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6.2 Applications of phosphorothioate oligoculeotides
PS-ODNs have been studied and used extensively in
eukaryotic systems, and this has led to the development of
the first FDA-approved antisense drug, fomivirsen [167]
(commercially known as Vitravene). The 21-mer PS-ODN
(Fig. 10) designated ISIS-2922 targets the major immedi-
ate-early gene of human cytomegalovirus in HIV-patients
with retinitis. More PS-ODN drugs for treatment of
human diseases are in clinical trials, but the use of PS-
ODN:s in bacteria has been rather limited and nearly con-
fined to Mycobacteria (Table 1).

Applying PS-ODN technology to M. tuberculosis demon-
strated several important parameters:

e concentrations of 210 uM were most effective (much
higher concentrations are undesirable due to increase in
non-sequence-specific interactions with host proteins and
nucleic acids [168]),

e PS-ODNs should be at least 18 and preferably 24 bases
in length to minimize random hybridization,

¢ and mRNA targets should have a low propensity to form
stable secondary structure at 37°C (based on a secondary
structure analysis program) [168,169].

This was elucidated from the targeting of three different
sites in glnA1 mRNA encoding glutamine synthetase, the
export of which is associated with pathogenicity and for-
mation of cell wall structure [170]. Besides glnAl [168],
PS-ODNs have been used to target

* fbpA, -B and -C [169,171] (single operon genes encoding
three proteins of the 30/32-kDa protein complex that are
essential for mycobacterial cell wall synthesis and leading
tuberculosis vaccine candidates [172]),

e alr [169] (encoding alanine racemase essential for syn-
thesis of cell wall peptidoglycan)

e and inol [173] (encoding inositol-1-phosphate syn-
thase, a key enzyme in phosphatidyl-inositol synthesis).

Combinations of PS-ODNSs targeting these mRNAs dem-
onstrated growth inhibition of M. tuberculosis and sensi-
tized the cells to conventional drugs. Furthermore, it was
most importantly demonstrated that bacterial growth
could be inhibited in human macrophages infected with
M. tuberculosis, albeit with a fairly low efficiency [171].

PS-ODNs have been used in a few other bacterial species.
The MecR1-mecl gene of S. aureus regulates synthesis of
penicillin-binding protein 2a (PBP2a), which mediates
resistance to methicillin and all B-lactam antibiotics. A PS-

http://www.microbialcellfactories.com/content/6/1/24

ODN targeting MecR1 mRNA restored antibiotic suscepti-
bility of a methicillin-resistant S. aureus (MRSA) strain
[174].

Another example of restoration of antibiotic susceptibility
comes from mutant E. coli strains, in which a PS-ODN
restored a norfloxacin sensitive phenotype, although with
lower efficiency [175].

In Streptococcus mutans, gtfB encodes glycosyltransferase,
which is responsible for synthesis of water-insoluble glu-
cans facilitating adhesion of the organism to the surface of
teeth. The GtfB synthesis and activity as well as biofilm
formation of S. mutans was inhibited by an anti-gtfB PS-
ODN, but bacterial growth was unaffected [176]. Never-
theless, this might be useful in caries prevention.

In this study, uptake of PS-ODN and hence inhibitory effi-
ciency in this Gram-positive bacterium was improved by
adding a transfection reagent of cationic polymers,
though inhibition was observed with free PS-ODN as well
[176].

Mycobacteria are neither truly Gram-negative nor -posi-
tive [177]. Their outer lipid bilayer is the thickest biologi-
cal membrane hitherto known, and the exceptionally low
permeability of this membrane renders mycobacteria
resistant to many antibiotics [178]. The ability of
lipophilic drugs to solubilize within the lipid portion of
the outer wall layer leads to improved efficiency over
hydrophilic drugs, which are prevented from traversing
the cell envelope [179]. Li et al. claim that the PS-ODNs
should be more easily taken up due to improved
lipophilicity [173].

In M. smegmatis, targeting the aspartokinase (ask) gene
using PS-ODNs was only effective in the presence of low
levels of ethambutol, which increases permeability of the
cell wall [180]. As mentioned above, PS-ODNs of differ-
ent targets have been shown to enter mycobacterial cells
unassisted and inhibit growth. However, improvement of
uptake is still necessary to further improve the efficiency.
Physical methods like heat shock and electroporation
have been used as well as mutant strains with a permeable
membrane [174,175], but these methods are not suited
for targeting wildtype bacteria in tissue. Combining
administration of PS-ODNs with conventional antibiotics
increasing cell permeability seems fairly straightforward.
Different as well as related strategies involve

e covalently attaching PS-ODNs to D-cycloserine (antibi-
otic thought to be taken up by D-alanine uptake system)
or biotin [180,181],
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Table I: Studies on PS-ODNs in bacteria.
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PS-ODN Target Test system Reference
21-36-mer PS-ODNs ask M. smegmatis wt and drug-resistant  [180]
in liquid culture
15-21-mer PS-ODNs marA + marO E. coli liquid culture [175]
18-24-mer PS-ODNs ginAl M. tuberculosis + M. smegmatis [168]
liquid culture
24-29-mer PS-ODNs fbpABC + glnAl + alr M. tuberculosis liquid culture [169]
18—19-mer PS-ODNs gtfB S. mutans liquid culture [176]
21-mer PS-ODN inol M. tuberculosis liquid culture [173]

e tethering PS-ODNSs to amikacin-moiety (antibiotic tar-
geting 30S ribosomal subunit),

¢ "softening" the cell wall using subinhibitory concentra-
tions of antibiotics [168],

¢ incorporation of terminal 2'-O-methyl ribose residues
(promotes stability and diminishes animal toxicity),

¢ 3' addition of a nonhybridizing poly-G tail (postulated
to improve uptake in eukaryotes) [169] and

e encapsulation into fluid liposomes [112].

Most of these strategies resulted in only slightly enhanced
efficacy if any, so the ultimate uptake-enhancing strategy
is yet to be developed.

6.3 Peptide Nucleic Acids

Peptide nucleic acids (PNAs, Fig. 9) were developed by
Nielsen et al. in 1991 [182]. They are nucleic acid ana-
logues, which are based on an aminoethylglycin back-
bone with acetyl linkers to the nucleobases [183]. This
very flexible pseudopeptide backbone is uncharged and
thus avoids the electrostatic repulsion, a natural phos-
phate-ribose backbone would induce during hybridisa-
tion. This is thought to be the reason, why these PNAs can
form very stable duplexes or triplexes with either single-
stranded or double-stranded DNA or RNA [138]. Another
consequence of this unnatural backbone is that the PNAs
are not degraded by enzymes such as nucleases and pro-
teases [184], and they are also not recognized by RNase H,
so the mechanism of action involves binding and steric
blocking of ribosomal assembly and translation (Fig. 1).
However, being neutral and only slightly hydrophilic
molecules, PNAs suffer from low aqueous solubility com-
pared to DNA molecules. Increased solubility can be
achieved by extending the PNA sequence with charged
amino acid residues such as lysines [185] or by incorpo-
rating solubility enhancers (E-linkers) [186] prepared by
replacing the nucleobases of the standard PNA monomers
with either neutral or positively charged hydrophilic moi-
eties. Though these E-linkers do not influence the hybrid-

ization performance of the PNAs, PNA probes with
solubility enhancers have been found to be almost inca-
pable of penetrating cell walls of a number of Gram-posi-
tive bacteria in whole cell FISH analysis [187], so they
should not be used indiscriminately. A different solution
has been to grow target cells in 10% LB media to over-
come solubility limitations of PNAs [188,189].

A number of different analogues have been produced
introducing different non-natural nucleobases into the
PNAs [185], and some of these analogues resulted in a
high preference for RNA binding over DNA binding
[190,191].

PNA oligos are usually very short, since increasing the
length generally results in decreased solubility [186], and
shorter PNAs are more likely to efficiently enter cells [27].
For antisense applications in bacteria, 9-12-mer PNAs
with low self-complementarity and an average GC content
are recommended [192]. A low GC content, especially in
short PNAs, could result in low binding affinity, whereas
a high GC content could cause problems with respect to
synthesis and solubility [183].

Triplexes formed between one homopurine DNA or RNA
strand (composed of adenine and guanine bases only)
and two sequence-complementary PNA strands are
extraordinarily stable [183]. One PNA strand binds
through Watson-Crick base pairing (preferably in antipar-
allel orientation) and the other via Hoogsteen base pair-
ing (preferably in parallel orientation). The PNA strands
can be advantageously connected to each other covalently
by a flexible linker (e.g. three 8-amino-3,6-dioxaoctanoic
acid units) to create a bis-PNA (Fig. 11). Furthermore, the
binding can be rendered pH independent by replacing
cytosines in the Hoogsteen base pairing strand with pseu-
doisocytosines [193].

For Gram-negative bacteria, the peptidoglycan-layer, the
lipid bilayer, and especially the external lipopolysaccha-
ride (LPS) layer provide the bacteria with an efficient first-
line of defence and the PNA with a major challenge [194].
PNAs are larger than most drugs (about 2000-4000 MW
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Schematic representation of bis-PNA binding. (Top) Bis-PNA (depicted in red) can bind to both DNA and RNA
through Hoogsteen base pairing (unbroken line) and Watson-Crick base pairing (dotted line). (Bottom) An example on Hoog-
steen (on the left) and Watson-Crick (on the right) base pairing is shown in detail.

[195]) and are not readily taken up by bacteria, so differ-
ent strategies have been developed to facilitate cellular
uptake (see reviews by Nielsen [195-197]). Methods for
physically disrupting cell membranes are limited to cells
in culture, but strategies involving cationic liposomes and
conjugation to fatty acids or peptides can be applied in tis-
sues as well. Conjugation of PNAs to small cationic pep-
tides termed cell-penetrating peptides (CPPs) appears to
be the most efficient strategy for PNA cell entry [198].
(KFF)3K, shown by Vaara and Porro to have a cell wall-

permeabilizing effect, has become one of the most widely
used CPPs [199].

6.4 Applications of Peptide Nucleic Acids

PNA technology has been used to target a number of dif-
ferent E. coli RNAs and genes encoding essential proteins.
These targets include the peptidyl transferase center, the o.-
sarcin loop [189,192] and domain II of 23S rRNA [200],
the P15 loop region of RNase P RNA [153], and mRNAs
encoding B-galactosidase (lacZ), B-lactamase (bla) [188],
and the acyl carrier protein Acp (acpP) [192,201] (Table
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Table 2: Studies on PNAs in bacteria.
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PNA Target Test system Reference
Triplex-forming bis-PNA a-sarcin loop + peptidyl E. coli in vitro system + solid and [189]
transferase center of 23S rRNA liquid culture

15-mer PNA lacZ + bla E. coli K-12 and ASI9 in vitro + in [188]
vivo

9—12-mer PNAs and (KFF);K- a-sarcin loop + peptidyl Hela cells infected with [192]

PNAs transferase center of 23S rRNA +  noninvasive E. coli

acpP + lacZ

10—12-mer PNAs and peptide- phoB + fmhB + gyrA + hmrB + gfp S. aureus liquid culture [205]

PNAs

10-mer (KFF);K-PNA acpP Mouse infected with E. coli K-12 [201]
and SM101

12-mer peptide-PNA gfp + inhA M. smegmatis liquid cultures [206]

14-mer (KFF);K-PNA P15 loop of RNase P RNA E. coli in vitro + in vivo [153]

Triplex-forming (KFF);K-bis-PNA  Domain Il of 23S rRNA E. coli in vitro system + solid and [200]
liquid culture

15—16-mer (KFF);K-PNAs gyrA + ompA + lacZ K. pneumoniae liquid culture + [204]
IMR90 cells infected with K.
pneumoniae

10—12-mer (KFF);K-PNAs acpP + lacZ E. coli K-12 liquid culture [202]

2). The obtained results are not directly comparable due
to differences in growth medium, starting inoculum etc,
but the following will comprise an overview of the devel-
opment.

Bis-PNAs targeting the peptidyl transferase center, the a-
sarcin loop [189], and domain II [200] of 23S rRNA were
shown to inhibit translation in a cell-free translation/tran-
scription system. Substantially lower concentrations were
required for in vitro inhibition when applying two differ-
ent anti-bla PNAs and an anti-lacZ PNA [188]. Specific
inhibition of the RNase P holoenzyme was also observed
at very low concentrations when using a peptide-PNA tar-
geting the P15 loop region of the RNase P RNA. It was
shown to bind its target essentially irreversibly in vitro and
disrupt local secondary structure in the catalytic core
[153].

A rather moderate inhibition of cell growth in culture is a
common feature of most of these PNAs, even though they
are efficient inhibitors in cell-free systems. This is true at
least for wildtype E. coli strains such as K-12 or DH5a.
However, the PNAs have a greatly increased inhibitory
effect on permeable mutant strains such as AS19
[153,188,189] and SM101 [201], and inefficient uptake
and passage through the outer membrane is therefore
considered to be the reason for this somewhat moderate
cell growth inhibition observed in wildtype. Attachment
of the CPP, (KFF);K, to PNAs have been shown to
improve the inhibitory effect. For instance, the aforemen-
tioned anti-a-sarcin loop bis-PNA was in a following
study conjugated to (KFF);K, and this resulting peptide-
PNA exhibited a low minimal inhibitory concentration

(MIC) for E. coli K-12. (KFF);K was also coupled to an
anti-acp)P PNA. Here, the inhibitory effect was even
greater. In fact, it was recently demonstrated that this pep-
tide-PNA has a lower MIC than the conventional antibiot-
ics ampicillin, chloramphenicol, streptomycin and
trimethoprim and is more potent on a molar basis [202].
This study also indicated that peptide-PNAs accumulate in
bacteria through rapid uptake and slow passive efflux, and
that they mediate a long post-antibiotic effect of more
than 11 hours. So even though cell entry is still a chal-
lenge, once inside the cells the peptide-PNAs appear to be
retained for hours, unlike conventional antibiotics that
efflux within minutes [203].

The application of PNAs has been taken a step further. To
set up a simple model for the growth of an extracellular
pathogen in a host, HelLa cell cultures were infected with
non-invasive wildtype E. coli. The anti-acpP peptide-PNA
was added immediately post-infection. The PNA was bac-
tericidal at low micromolar concentrations, and no effect
was visible for the HelLa cell growth. However, peptide-
PNA is still, in animal models, inferior to conventional
antibiotics in potency [192].

Another group tested this anti-acpP peptide-PNA in an
animal disease model [201]. BALB/c mice were chal-
lenged by i.p. injection of a 90% lethal dose (LDy,) of E.
coli K-12 or LD,, of SM101 mutant strain with a defective
outer membrane. Administering anti-acpP peptide-PNA
intravenously to the mice rescued up to 60% and 100% of
the infected animals, respectively.
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Table 3: Studies on PMOs in bacteria.
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PMO Target Test system Reference
20-21-mer PMOs, (KFF);KC- 16S rRNA + acpP + lacl E. coli BL21(DE3), SMI0I and [214]
PMOs and rTat-PMOs SMI05 in solid + liquid culture
7-20-mer PMO acpP E. coli SMI0I and ASI9 and Hela  [212]
liquid culture
I 1-mer PMO acpP E. coli SM105 and ASI9 in liquid [215]
culture + in mice
10—11-mer PMOs with/without 4 acpP E. coli K-12 and E2348/69 (EPEC) [216]
different CPPs and S. enterica ser. Typh. liquid
culture + EPEC in Caco-2 cells
I 1-mer (RFF);RXB-PMO acpP Mouse infected with E. coli K-12 [217]

The inhibitory effect of peptide-PNAs has recently also
been demonstrated for another Gram-negative bacterium,
the human pathogen Klebsiella pneumoniae [204]. Target-
ing essential genes gyrA (DNA gyrase subunit A) and ompA
(major outer membrane protein A) resulted in inhibition
of protein synthesis and growth but at rather high MICs.
Furthermore, the levels of the two transcripts were
strongly reduced indicating an antigene effect. This is pos-
sible, since PNAs can invade double-stranded DNA and
form highly stable triplex-invasion complexes that are
strong enough to inhibit gene transcription and regula-
tion. Furthermore, human epithelial fibroblasts (IMR90)
were infected with multiresistant K. pneumoniae, and pep-
tide-PNA treatment was bactericidal without visible affect
on IMRIO0 cell growth.

Though Gram-positive bacteria are important human
pathogens, they have been given little attention as target
candidates for PNAs. Nekhotiaeva et al. recently demon-
strated that peptide-PNAs are indeed effective in inhibit-
ing growth of Gram-positive bacterium S. aureus [205].
(KFF);K-PNAs were used to target chromosomally
encoded alkaline phosphatase (phoB), putative peptidog-
lycan pentaglycine interpeptide biosynthesis protein
(fmhB), gyrase A (gyrA) and HmrB protein (hrmB, which is
an ortholog of the E. coli acpP gene). Generally, at least 10
UM concentrations were required for inhibition.

Passage across the outer membrane of Gram-negative bac-
teria has been indicated to be the rate-limiting step of pep-
tide-PNA uptake [198]. Gram-positive bacteria should in
their lack of an outer membrane pose an easier target, but
it appears that CPPs are still required for cellular uptake.
The mechanism has not yet been elucidated, but 'direct’
cell permeation has been suggested as the most likely
explanation for peptide-PNA entry into both S. aureus and
E. coli [198,205].

As mentioned in section 6.2, the outer lipid bilayer of
mycobacteria has an exceptionally low permeability. Nev-

ertheless, peptide-PNAs have been shown to enter myco-
bacterial cells and inhibit growth by antisense inhibition
[206]. (KFF);K-PNAs were used to target inhA, which
encodes the essential protein enoyl reductase, and M.
smegmatis growth was inhibited at fairly low MICs.

Further optimization of peptide-PNAs to increase effi-
ciency is still required. The linker connecting peptide and
PNA is one target of optimization [153], since Good et al.
[192] showed the linker not to be a 'silent player'.

The cell delivery efficiency of CPPs is another target for
optimization. The widely used (KFF),K carrier peptide has
been found to induce haemolysis in human erythrocytes
[199] and histamine release in some mammals [205], so
alternative CPPs would be needed for broad medical
applications of PNAs. New peptides have been proven
efficient in PNA delivery into S. aureus [205] as well as
into M. smegmatis [206]. Thus, improvement of carrier
peptides should be possible, though these new CPPs still
need further characterization.

PNA targeting has not been limited to rRNA and mRNA,
also non-coding regulatory RNAs have been used as tar-
gets for PNAs [207]. Sok-antisense-RNA inhibits synthesis
of Hok protein, which induces host cell killing. Introduc-
ing (KFF);K-PNAs against plasmid-encoded Sok-anti-
sense-RNA leads to Hok protein synthesis and cell killing
in E. coli (for description of hok/sok toxin-antitoxin system
see [208]), and the (KFF);K-PNA was actually more inhib-
itory than rifampicin. However, it still remains to be dem-
onstrated that (KFF);K-PNA targeting antitoxins can
activate suicide in plasmid-free E. coli cells.

6.5 Phosphorodiamidate Morpholino Oligomers

Phosphorodiamidate morpholino oligomers (PMOs, Fig.
9) are oligonucleotide mimics, in which the deoxyriboses
of DNA have been replaced by morpholine rings coupled
by non-ionic phosphorodiamidate intersubunit linkages
[209,210]. Despite being uncharged, the PMOs show
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excellent aqueous solubility, possibly due to good stack-
ing of the bases and shielding of hydrophobic faces [209].
Furthermore, PMOs have displayed resistance to a variety
of nucleases, proteases, esterases, and degradative
enzymes in serum and liver homogenates [211], and like
PNAs their mechanism of action is RNase H-independent
and involves sequence-specific binding and steric block-
ing of ribosomal assembly and hence translation (Fig. 1).
However, the binding affinity of PMOs is lower than for
the equivalent PNAs [212].

6.6 Applications of Phosphorodiamidate Morpholino
Oligomers

PMO-mediated translation inhibition in bacteria has
mainly been focused on targeting the mRNA encoding the
essential acyl carrier protein Acp (acpP) of E. coli (Table 3),
though the effects of PMOs on Bacillus anthracis are cur-
rently being studied [213]. As for PNAs, the outer mem-
brane of the Gram-negative E. coli poses a barrier for PMO
cell uptake, and 10-20-mer PMOs were only shown to be
effective in mutants with a defective outer membrane
[212,214]. A specific 11-mer anti-acpP PMO did, however,
briefly inhibit growth of wild-type E. coli [215].

To improve PMO efficiency, conjugation to CPPs was
tested. (KFF);KC, resembling the (KFF);K peptide used to
promote cell uptake of PNAs (see section 6.2), was effec-
tive in facilitating cell uptake of 20-mer PMOs [214]. The
free peptide was shown to be toxic at 20 uM, but conjuga-
tion to the PMO apparently eliminated this toxicity.

Using the 11-mer anti-acpP PMO, another three CPPs
were shown to efficiently assist in transporting the PMO
into cells [216]. In this study, pathogenic strains of E. coli
(enteropathogenic E. coli [EPEC]) and S. enterica serovar
Typhimurium appeared more susceptible to peptide-
PMO inhibition than wildtype E. coli, possibly due to dif-
ferent extents of peptide hydrolysis in the different strains.
EPEC growth in tissue culture could also be inhibited by
the peptide-PMOs, but their efficiency in reducing bacte-
rial viability was orders of magnitude greater in tissue cul-
ture than in liquid culture. This may be due to differences
in bacterial growth in the two types of culture.

The inhibitory effect, though modest, of the anti-acpP
PMO in a mouse model of E. coli peritonitis was the first
demonstration of antisense DNA analogues inhibiting
bacterial growth in an animal model [215]. The conjugate
of this PMO and (RFF);RXB-peptide was shown to be
about 50-100 times more potent than the single PMO in
the mouse model [217]. In the mouse model of E. coli
peritonitis, the anti-acpP peptide-PMO was found to
reduce the number of colony-forming units (CFU) in the
blood and promote survival at a potency at least 15 times
greater than ampicillin. Though the results suggested high

http://www.microbialcellfactories.com/content/6/1/24

doses of the conjugate to be toxic, preliminary toxicology
data on treatment with about 20 times higher doses of
anti-acpP peptide-PMO showed no apparent toxicity
[217]. Since the possible toxicity is thought to be caused
by the peptide moiety and not the PMO (PMO com-
pounds are considered safe in humans [218]), further
optimizations on this part of the compound will be nec-
essary, unless the toxicological studies can acquit this pep-
tide of toxicity.

The therapeutic use of antisense PMOs seem highly possi-
ble, and further pharmokinetic and toxicological studies
will help improve this compound for antibacterial treat-
ment.

7. Concluding remarks

The apparent and alluring simplicity of antisense
sequence inhibition of bacterial growth has turned out to
be simply apparent, and the antisense approach now
appears far more complicated and challenging than first
thought. Parameters such as degradation resistance, bind-
ing efficiency, solubility, intracellular concentration and
cellular delivery must be considered carefully, and further
optimization on these parameters is still required despite
the emergence of the first antisense-based drug almost a
decade ago. Pharmaceutical formulations of antisense
compounds with the same potency as antibiotics have not
yet been developed, though they become increasingly
more needed as bacterial resistance spread. The substan-
tially modified PNAs and PMOs show promising results
and may in time become the new medical weapons
against the elusive pathogenic bacteria. In any case, we
can not afford not to continue this research.

Abbreviations
2'-OMe 2'-O-methylribonucleotide

asRNA antisense RNA

cat chloramphenicol acetyltransferase
CFU colony-forming units

CPP cell-penetrating peptide

dsRNA double-stranded RNA

EGS external guide sequence

EPEC enteropathogenic E. coli

FDA The Food and Drug Administration

HH hammerhead
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i.p. intraperitoneal

IC;, concentration required for 50% inhibition
LD70/90 70%/90% lethal dose

LNA locked nucleic acids

MALDI-TOF matrix-assisted laser desorption/ionization
time of flight

MIC minimal inhibitory concentration

MoMuLV moloney murine leukemia virus

MRSA methicillin-resistant S. aureus

ODN oligodeoxynucleotide

PBP2a penicillin-binding protein 2a

PBS primer binding site

PMO phosphorodiamidate morpholino oligomer
PNA peptide nucleic acid

PS-FANA phosphorothioate-linked 2'-deoxy-2'-fluoro-D-
arabinonucleic acid

PS-ODN phosphorothioate oligodeoxynucleotide
ptRNA precursor tRNA

RBS ribosome binding region

RNAi RNA interference

rRNA ribosomal RNA

ssDNA single-stranded DNA
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