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Abstract

Background: The molecular mechanics of inclusion body formation is still far from being
completely understood, specially regarding the occurrence of properly folded, protein species that
exhibit natural biological activities. We have here comparatively explored thermally promoted, in
vivo protein aggregation and the formation of bacterial inclusion bodies, from both structural and
functional sides. Also, the status of the soluble and insoluble protein versions in both aggregation
systems have been examined as well as the role of the main molecular chaperones GroEL and DnaK
in the conformational quality of the target polypeptide.

Results: While thermal denaturation results in the formation of heterogeneous aggregates that are
rather stable in composition, protein deposition as inclusion bodies renders homogenous but
strongly evolving structures, which are progressively enriched in the main protein species while
gaining native-like structure. Although both type of aggregates display common features, inclusion
body formation but not thermal-induced aggregation involves deposition of functional polypeptides
that confer biological activity to such particles, at expenses of the average conformational quality
of the protein population remaining in the soluble cell fraction. In absence of DnaK, however, the
activity and conformational nativeness of inclusion body proteins are dramatically impaired while
the soluble protein version gains specific activity.

Conclusion: The chaperone DnaK controls the fractioning of active protein between soluble and
insoluble cell fractions in inclusion body-forming cells but not during thermally-driven protein
aggregation. This cell protein, probably through diverse activities, is responsible for the occurrence
and enrichment in inclusion bodies of native-like, functional polypeptides, that are much less
represented in other kind of protein aggregates.
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Background

In bacteria, formation of inclusion bodies is common
during overexpression of plasmid-encoded recombinant
genes, and this fact represents an important matter of con-
cern in biotechnology [1]. Like in mammalian aggre-
somes, inclusion body formation is stimulated when
proteolysis is impaired in protease-deficient mutants
[2,3], and these protein deposits act as reservoirs of mis-
folded polypeptide chains [4] for their further refolding or
proteolysis [3,5,6]. Bacterial inclusion bodies are dynamic
structures, they grow resulting from an unbalanced equi-
librium between constant protein deposition and removal
that is lost in absence of protein synthesis [4,7]. Intrigu-
ingly, they contain significant amounts of protein in a
native-like form [8-12], a fact that is reflected by the
important extent of biological activity exhibited by inclu-
sion bodies formed by very different target proteins [13-
15]. Why active protein is found in inclusion bodies is still
controversial, and the mechanics of the aggregation proc-
ess that involves properly folded polypeptides (or
polypeptides with properly folded domains critical for
activity) remains obscure. In this context, it has been
recently proposed that protein aggregation in bacteria is
not an all-or-nothing process [16], since the quality of
recombinant proteins extends over a continuum of con-
formational forms [17], that include soluble aggregates
[18,19] and active protein entrapped in true, refractile
inclusion bodies [9,13]. The conformational status of the
inclusion body protein is influenced, among others, by
environmental factors such as the growth temperature
[20] and the gene expression strategy [21], but little is
known about the role of cellular factors on the quality of
protein species in both soluble and insoluble cell frac-
tions.

In this work, we have explored the occurrence of active,
properly folded polypeptides in inclusion bodies and in
thermally driven aggregates formed by the same protein
species, and the influence of the main chaperones DnaK
and GroEL in the quality of the deposited polypeptides
but also of those remaining in the soluble fraction.
Intriguingly, while both type of aggregates display a few
common physiological traits, the occurrence of active pro-
tein species is much higher in inclusion bodies, at
expenses of a poorer quality (when compared to thermal
aggregates) of the protein population remaining in the
soluble fraction. Also, the chaperone DnaK has a main
role in the distribution of active polypeptides between
soluble and insoluble cell fractions in inclusion body
forming cells but not during thermally driven protein
aggregation.

http://www.microbialcellfactories.com/content/5/1/26

Results

Composition of [-galactosidase-based thermal aggregates
and inclusion bodies

E. coli B-galactosidase is a huge, homotetrameric enzyme
formed by the lacZ gene product. When overproduced in
bacteria, the enzyme remains soluble in the cell cytoplasm
and is clearly functional. In an engineered version of the
enzyme, the VP1LAC fusion, the presence of a small viral
capsid protein at the amino terminus promotes aggrega-
tion as cytoplasmic inclusion bodies, and VP1LAC is dis-
tributed in the soluble and insoluble cell fractions at
comparable proportions [22]. Interestingly, VP1LAC
inclusion bodies are enzymatically active [13] at an extend
not much different than that found in the soluble protein
version [21]. To compare the performance of the enzyme
in either thermal aggregates and inclusion bodies, we have
used a particular thermo-inducible expression system that
enables a comparative study. Expression of both lacZ and
VP1LAC genes was triggered from a temperature-induci-
ble plasmid vector encoding a temperature sensitive
lambda repressor, essentially inactive at 42° [23]. The
temperature shift from 28 to 42° induced efficient recom-
binant protein production (without signs of cell toxicity)
(Figure 1A), The lower amounts of -galactosidase com-
pared to that of VP1LAC (Figure 1B) were probably caused
by a slightly higher proteolytic sensitivity of the parental
protein as previously reported [24]. Under this condi-
tions, cells undergo a mild heat shock that results in ther-
mal denaturation and aggregation of cellular proteins. In
particular, the production of the misfolding prone
VP1LAC resulted in its accumulation as inclusion bodies
[4]. Also, a small part of the recombinant -galactosidase
present in the cells (up to around 5%) was found in the
insoluble cell fraction as part of thermal aggregates, and
this figure remained nearly constant throughout the heat
shock (Figure 2A). In contrast, a progressively higher frac-
tion of VP1LAC (up to 45% at 3 h) occurred as inclusion
bodies (Figure 2A). Despite at 42°C the recombinant -
galactosidase is the most abundantly produced protein in
the cell, the enzyme only represented around 3% of the
protein species found in the insoluble cell fraction, while
VP1LAC accounted for 90% of the inclusion body mate-
rial (Figure 2B). During the experiment time, inclusion
bodies were steadily enriched with VP1LAC species and
therefore their homogeneity dramatically increased, while
the B-galactosidase fraction in thermal aggregates ran-
domly fluctuated between 1.5 and 3%. These results are
compatible with the seeding process recently shown to
drive inclusion body formation [9] and indicate that, in
contrast, thermal aggregation does not involve interaction
between homologous protein patches and it is not, at least
strictly, sequence-specific. On the other hand, polypep-
tides embedded in both kinds of aggregates undergo
important changes in their global secondary structure
(Figure 3; Table 1), through the continuous formation of
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A. Cell growth measured through optical density for
MC4100 cultures producing either B-galactosidase (black
symbols) or VPILAC (white symbols). Time O represents the
temperature up shift. B. Total yield of B-galactosidase (black
bars) and VPILAC (grey bars), as measured by Western blot
densitometric units.

extended, intermolecular B-sheet structure, being more
pronounced in inclusion bodies than in thermal aggre-
gates. This was deduced from the evolution of the bands
at 1627 cm! and 1692 cm! (B-sheet) relative to that at
1652 cm! (disordered and/or a-helix) (Table 1). The pres-
ence of a band at 1638-1640 cm!, even if not well
resolved, can be attributed to the occurrence of some
intramolecular B-sheet. This band appeared only in aged
inclusion bodies and it was absent in thermal aggregates.
According to previous analysis [9] this peak corresponds
to native-like species, that could be accounted by B-galac-
tosidase moieties.

Impact of DnaK and GroEL in -galactosidase aggregation
and activity

The formation of B-galactosidase thermal aggregates and
VP1LAC inclusion bodies was explored in absence of the
main cytoplasmic chaperones, either DnaK or GroEL. It
has been previously reported that when DnaK is not avail-
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Figure 2

A. Fraction of the produced recombinant polypedptides
found in protein deposits, either thermal aggregates of j3-
galactosidase (black bars) or VPILAC inclusion bodies (grey
bars). B. Percentage of B-galactosidase (black bars) and
VPILAC (grey bars) found in thermal aggregates and inclu-
sion bodies respectively.

able, inclusion bodies are larger than in the wild type
strain and the amounts of soluble VP1LAC much lower
[25]. Such alteration in inclusion body formation can be
accounted for by two described DnaK activities, namely
preventing aggregation [26] or actively disaggregating pro-
teins [27-29], both done in combination with other chap-
erones and small heat shock proteins. As observed in the
DnaK- background (Figure 4), the deposition of the
recombinant enzyme was enhanced in both types of
aggregates, although the negative impact on solubility was
dramatically higher in those formed by the parental form
of the enzyme. The parallel stimulation of aggregation
would indicate that DnaK is managing both thermal
aggregates and inclusion bodies, although the chaperone
could be more active in controlling deposits of denatured

Page 3 of 9

(page number not for citation purposes)



Microbial Cell Factories 2006, 5:26

-0.0006 -| .
B-Galactosidase

-0.0005 |
-0.0004 |
-0.0003 |
-0.0002 |
-0.0001 |
0.0000 A

[

=

£ 0.0001 4

2

3 0.0002

©

c

g 0.0003

D .0.0006 |

a VP1LAC
-0.0005 -|
-0.0004 |
-0.0003 -|
-0.0002 |
-0.0001 |
0.0000 -
0.0001 -
0.0002 -
0.0003 . . : : : : : :

1600 1610 1620 1630 1640 1650 1660 1670 1680 1690 1700
Wavenumber (cm™)
Figure 3

FTIR of B-galactosidase aggregates (top) and VPILAC inclu-
sion bodies (bottom) formed during either | (continuous), 3
(dotted) or 5 (dashed) hours. The vertical line at 1640 cm-!
indicates the position of the band that can be attributed to
intramolecular B-sheet.

polypeptides. This is suggested by the fact that the amount
of insoluble VP1LAC is not even doubled in its absence,
while the increase of aggregated B-galactosidase is nine
fold higher than that of the wild type enzyme. The pres-
ence of a non-functional form of the chaperone GroEL
(GroEL44), only had a minor, non-significant impact on
protein solubility in both aggregation conditions (Figure
4). The comparative ATR-FTIR of both types of aggregates
formed in the mutant strains indicated a different struc-
tural pattern compared to the wild type (Figure 5). For
VP1LAC in inclusion bodies, the absence of GroEL results
in a significant enrichment of native like intramolecular -
sheet structures (peaking at 1638-1640 cm!). In the case
of thermal aggregates the absence of either DnaK or GroEL
results in more complex FTIR spectra relative to that
recorded for the aggregates formed in the wild-type strain,
reflecting a higher degree of conformational heterogene-

ity.

http://www.microbialcellfactories.com/content/5/1/26

Table I: Time evolution of the secondary structure in both 3-
galactosidase thermal aggregates and VPILAC inclusion bodies
as measured by FTIR peak ratios.

Protein? Time (h) Ratio 1627/1652>  Ratio 1692/1652P
B-galactosidase | 1.31 0.42

3 1.53 0.40

5 1.63 0.52
VPILAC | 1.36 0.54

3 2.14 0.83

221 0.96

aData are from Figure 3

bPeaks at 1627 cm-! and 1692 cm! can be attributed to extended
intermolecular B-sheet while that at 1652 to disordered structure
and/or o-helix.

As it has recently been proven that deposition as bacterial
inclusion bodies does not necessarily represent functional
protein inactivation [13], the specific activity of both
model proteins was investigated in wild type cells and in
absence of either DnaK or functional GroEL. As expected
(Table 2), the soluble B-galactosidase was more active
(from 2 to 8 fold) than the soluble VP1LAC. Despite this
fact, protein aggregated as inclusion bodies was much
more active than that occurring in thermal aggregates (up
to 10 fold in wild type cells), indicating a higher occur-
rence of properly folded protein. While GroEL seems to be
poorly relevant, this fact is clearly depending on DnakK,
since in JGT20, insoluble VP1LAC is around 10 fold less
active than insoluble B-galactosidase.

100
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Insoluble protein fraction (%)

0 | | ;‘
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Figure 4

Percentage of the recombinant protein found in protein
deposits, either thermal aggregates of B-galactosidase (black
bars) or VPILAC inclusion bodies (grey bars), in MC4100
(wild type), JGT20 (DnaK-) and BB4565 (GroEL44) strains.
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Figure 5

FTIR of B-galactosidase aggregates (top) and VPILAC inclu-
sion bodies (bottom) formed in MC4100 (continuous),
JGT20 (dotted) and BB4565 (dashed) strains. Vertical lines at
1628 and 1640 cm! indicate intermolecular B-sheet and
intramolecular B-sheet, respectively.

Physiological disintegration of thermal aggregates and
inclusion bodies

The kinetics of physiological disintegration of inclusion
bodies and thermal aggregates were compared upon arrest
of protein synthesis to investigate the cell ability to proc-
ess both kinds of structures when chaperones and pro-
teases become available. As shown in Figure 6, the protein
removal process is similarly efficient on both aggregate

Table 2: Specific activity (in U/ng) of B-galactosidase and its
derivative VPILAC produced in different strains, in the soluble
and insoluble cell fractions.

Strain Soluble fraction Insoluble fraction

MC4100/p)CO46 6282 + 40.5 63%03
MC4100/p)VPILAC 234.1 +52.9 652+ 19.4
BB4565/p)CO46 689.7 + 164.9 63.6 £22
BB4565/p)VPILAC 2302 +25.7 129.6 + 45.9
JGT20/p)CO46 8889 + 179.3 175.2 + 349
JGT20/pJVPILAC 12.5 3.8 10.3 £ 6.3
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Figure 6

A. Amount of B-galactosidase (black bars) or VPILAC (grey
bars) retained in the insoluble cell fraction after arrest of
protein synthesis, as determined by Western blot densito-
metric units. B. Representation of the above values referred
to the starting insoluble material amount.

types, although inclusion body disintegration might be
slightly delayed from 3 hours on, with respect to the dis-
integration of denatured protein clusters.

Discussion

Under mild heat-shock conditions, most of a recom-
binant B-galactosidase produced in E. coli remains in the
soluble cell fraction, while an engineered derivative con-
taining an aggregation-prone viral peptide (VP1LAC),
forms cytoplasmic inclusion bodies. Up to around 45% of
the produced VP1LAC is found trapped in such structures
(Figure 2). When comparing with thermal aggregation,
the formation of bacterial inclusion bodies appears as a
highly specific event, that renders homogenous particles
species regarding composition (90% purity in inclusion
bodies versus 5% in thermal aggregates, Figure 2). The
heterogeneous nature of in vivo formed thermal aggregates
was not unexpected as many termolabile cellular proteins
are deposited as misfolded versions at high temperatures
[30]. The high purity of inclusion bodies, however, is
reached only 3 hours after inducing gene expression and
before that, these particles are progressively gaining
homogeneity (Figure 2). In agreement to previous obser-
vations [4,5,7], this fact reflects the dynamic nature of
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inclusion bodies versus the poor evolution of B-galactosi-
dase present in thermal aggregates, despite this protein is
much more abundant in the cell than any of the other
deposited species. The seeding mechanics of inclusion
body formation [9] and the sequence-dependent aggrega-
tion determinants acting there [9,31] have not been
described in thermal aggregation, and their absence could
account for the different time-dependent composition
patterns.

However, ATR-FTIR analysis shows that polypeptides
embedded in both kinds of aggregates undergo a struc-
tural evolution during formation (Figure 3, Table 1) that
can be seen as a continuous formation of new, non-native,
extended intermolecular B-sheet structure, more pro-
nounced in inclusion bodies than in thermal aggregates.

The presence of native-like intramolecular -sheet struc-
ture in inclusion bodies aged 3 and 5 h, and absent in the
thermal aggregates (peaking at 1638-1640, Figure 3),
would be indicative of the presence of a fraction of prop-
erly folded proteins or protein domains, in agreement
with previous structural analysis [8,10-12,32]. Also,
although aggregation reduces the B-galactosidase activity
in both B-galactosidase and VP1LAC (Table 2), many
descriptions of biological activity in structurally different
inclusion body proteins [13-15,21,33,34] indicate that
the presence of active protein could be a general trait of
such protein deposits. In fact, we prove here that inclusion
body protein is 10-fold more active than its thermally
denaturated counterpart (Table 2). On the other hand, the
disintegration of inclusion bodies and thermal aggregates
upon arrest of protein synthesis shows comparable rates
(Figure 6). This fact indicates that both aggregate types are
under the surveillance of disaggregating chaperones [27-
29,35,36] and/or proteases [3,4]. Protein removal in both
kind of aggregates also suggests that physiological disag-
gregation is not specifically involving residual native-like
structure, as it occurs also on heat denaturated protein in
which the presence of properly folded polypeptide back-
bones cannot be detected (Figure 3). Contrarily, the pos-
sibility of refolding (or digestion) specifically targeted
towards misfolded polypeptides needs to be explored.

Interestingly, the lack of either GroEL or DnaK major
cytosolic chaperones globally enhances the activity of the
aggregated proteins in both thermal deposits and inclu-
sion bodies (Table 2). The comparative FTIR analysis of
both type of aggregates formed in the mutant strains indi-
cates a different general structural pattern compared to the
wild type (Figure 5). Aggregates formed in the absence of
chaperones are more heterogeneous than those in the
wild type strain. The presence of native-like intramolecu-
lar B-sheet structure (peaking at 1638-1640 cm'!), corre-
sponding to native-like VP1LAC in inclusion bodies is

http://www.microbialcellfactories.com/content/5/1/26

enriched specially in the absence of functional GroEL.
This coincides with an increased activity of this aggregates,
suggesting that this signal corresponds to the accumula-
tion of native and functional (3-galactosidase [9]. For ther-
mal aggregates, the presence of a band in the region
assignable to intramolecular -sheet conformations is
also detected in the absence of both chaperones.
Although, due to the heterogeneous composition of this
aggregates, the band cannot attributed to a unique protein
species, the significant increased enzymatic activity exhib-
ited by thermal aggregates produced in the absence of
chaperones suggests that native functional B-galactosidase
contributes, at least partially, to this band in the FTIR
spectra.

On the other hand, the specific activity of soluble VP1LAC
is between 2 and 3 fold lower than that of the parental
enzyme (for wild type and GroEL44 strains), as it would
be expected for a fusion protein. However, in absence of
Dnak, soluble VP1LAC (but not B-galactosidase) is much
more inactive, indicating that this chaperone importantly
participates in the VP1LAC (but not B-galactosidase) fold-
ing process as previously suggested [21]. Also, the specific
activity of inclusion body VP1LAC is surprisingly higher
than that of denaturated -galactosidase, only when DnaK
is present (Table 2). This intriguing observation indicates
an enrichment of inclusion body active species in which
DnaK might have a positive role. It cannot be discarded
that DnakK, acting as a disaggregase at inclusion body's sur-
face [37], could selectively remove inactive (misfolded)
protein. Alternatively, DnaK could preferentially prevent
the incorporation of inactive protein into inclusion bod-
ies. In the case of B-galactosidase, the presence of DnaK
modulates the deposition of the enzyme under heat stress,
as shown by the nine fold increase of B-galactosidase in
the aggregated fraction in the absence of this chaperone.
The low activity and amount of B-galactosidase in thermal
aggregates suggest that they are formed by highly aggrega-
tion-prone protein conformations which escape DnaK
control. In a DnaK- background, this control does not
longer exist and a more heterogeneous set of polypeptide
conformations, including some functional or partially
functional ones, can aggregate as thermal deposits. This is
in accordance both with the higher conformational heter-
ogeneity, as seen by FTIR, and the higher activity of ther-
mal aggregates in the absence of DnaK.

Altogether, these observations point out significant differ-
ences between inclusion body formation and in vivo ther-
mal aggregation, as revealed by a convenient comparative
expression system. While both types of aggregates are con-
trolled by the quality cell system, inclusion bodies are
homogeneous and highly organized structures progres-
sively enriched in properly folded versions of the main
protein component.
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Conclusion

The formation of both protein deposits induced in bacte-
ria by heat shock and inclusion bodies is negatively con-
trolled by DnakK, and both type of aggregates efficiently
disintegrate when the conformational stress is over.
Despite such similarities, inclusion bodies are more
homogeneous in composition and result progressively
enriched in native-like forms of the target protein during
their construction, what results in a detectable evolution
of the global secondary structure of the embedded pro-
teins. In this regard, precipitation as inclusion bodies
keeps the target protein in a more functional form than in
thermal aggregates, but only when DnaK is present. Inter-
estingly, the biological activity of the soluble counterparts
is especially poor when inclusion bodies are more active,
suggesting that active polypeptides from the soluble cell
fraction are used for inclusion body construction. There-
fore, this particular chaperone is important to ensure the
biological activities of inclusion body polypeptides that
are not conserved in other aggregation conditions, by con-
trolling the distribution of functional protein species
between soluble and insoluble cell fractions. Protein
packaging as bacterial inclusion bodies is then a cell
driven deposition process.

Methods

Bacterial strains, plasmids, proteins and gene expression
conditions

Recombinant proteins were produced in Escherichia coli
MC4100 araD139 A(argF-lac) U169 1psL150 relAl
flbB5301 deoC1 ptsF25 rbsR, and their derivatives GroEL44
groEL44 zdj::Tn10 zje::kan (BB4565) and DnaK- dnaK
thr::Tn10 (JTG20). Plasmid pJCO46 encodes a soluble,
pseudo-wild type E. coli B-galactosidase, and the closely
related pJVP1LAC, a derivative B-galactosidase fusion pro-
tein containing the aggregation-prone VP1 capsid protein
of foot-and-mouth disease virus joined at the amino ter-
minus [22]. The presence of the viral protein segment pro-
motes aggregation of the whole fusion and under our gene
expression conditions, approximately 50% of VP1LAC is
found as cytoplasmic inclusion bodies. Both lacZ and
VPILAC genes are under the control of tandem lambda
p.Pg lytic promoters and repressed by a plasmid-encoded
and constitutively expressed temperature-sensitive CI857
repressor. Bacterial cells were cultured in shake flasks up
an ODs;, of 0.3, in Luria-Bertani (LB) rich medium [38]
with 100 pug/ml ampicillin. Then, the expression of both
lacZ and VPILAC genes was triggered by temperature up-
shift from 28 to 42°C. When required, protein synthesis
was arrested by adding chloramphenicol at 200 pug/mL
and the cultures were further incubated at 28°C. Usually,
data were obtained from three or more independent
experiments.

http://www.microbialcellfactories.com/content/5/1/26

Quantitative protein analysis

Samples of bacterial cultures (10 ml) were low-speed cen-
trifuged (15 min at 12000 g) and cell pellets resuspended
in denaturing buffer. For the analysis of soluble and insol-
uble cell fractions, samples were resuspended in 500 pl of
Z buffer without B-mercaptoethanol [39] with one tablet
of protease inhibitor cocktail (Roche, ref. 1 836 170) per
10 ml buffer. Such mixtures, once jacketed in ice, were
sonicated for a minimum of 5 min at 50 W under 0.5 s
cycles, and centrifuged for 15 min at 12000 g. Soluble and
insoluble fractions were separately resuspended in dena-
turing buffer [40] for Western Blot and Coomassie blue
staining. After boiling for 20 min, small sample volumes
were loaded onto gels. For Western blot, a rabbit anti -
galactosidase sera was used to immunodetect both B-
galactosidase and VP1LAC proteins. Full-length forms of
VP1LAC and its major proteolysis fragments (both know
to be functional) were considered in the analysis. Dried
gels and blots were scanned at high resolution and bands
quantified by using the Quantity One software of Bio Rad.
All determinations were done at least in quadruplicate.

Conformational analysis by ATR-FTIR spectroscopy

For ATR-FTIR spectroscopy analysis, inclusion bodies and
thermal aggregates were purified from cell extracts by
repeated detergent washing as described [41]. Then, both
kinds of aggregates were dried for two hours in a Seed-Vac
system before analysis to reduce water interference in the
infrared spectra. A Bruker Tensor 27 FI-IR Spectrometer
(Broker Optics Inc.) with a Golden Gate MKII ATR acces-
sory (Specac) was employed for ATR FT-IR experiments.
Each spectrum comprises 16 scans measured at a spectral
resolution of 4 cm! in the 4000-600 cm-! range. Spectral
data were acquired with OPUS MIR Tensor 27 software
version 4.0 (Broker Optics Inc.). All the absorbance spec-
tra were normalized to correct for concentration depend-
ent effects and the second derivatives of the amide I band
spectra were used to determine the frequencies at which
the different spectral components were located.

Determination of the specific activity

To determine the specific activity of both soluble and
aggregated [-galactosidase and VP1LAC proteins, 2.5 ml
culture samples were disrupted by sonication as described
[42] and centrifuged for 15 min at 15000 g. The soluble
fraction was directly used for the analysis, and inclusion
bodies and thermal aggregates were purified from cell
extracts by repeated detergent washing [41]. Substrate
hydrolysis was quantified espectrophotometrically as
described [21] and the amounts of recombinant protein
either soluble or within the aggregates, was specifically
determined by Western blot as indicated above, by using
serial dilutions of a commercial 3-galactosidase of known
concentration as pattern. All determinations were done in
triplicate.
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Abbreviations
ATR Attenuated total reflection

FTIR Fourier transformed infrared
LB Luria-Bertani
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