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Abstract

Background: Green microalgae represent a renewable natural source of vitamin E. Its most bioactive form is the
naturally occurring RRR-α-tocopherol which is biosynthesized in photosynthetic organisms as a single stereoisomer.
It is noteworthy that the natural and synthetic α-tocopherols are different biomolecular entities. This article focuses
on RRR-α-tocopherol production in Stichococcus bacillaris strain siva2011 biomass in a bioreactor culture with methyl
jasmonate (MeJa) elicitor. Additionally, a nonlinear mathematical model was used to quantitatively scale-up and
predict the biomass production in a 20 L balloon bioreactor with dual variables such as time and volume.

Results: Approximately 0.6 mg/g dry weight (DW) of RRR-α-tocopherol was enhanced in S. bacillaris strain siva2011
biomass with the MeJa 50 μL/L for 24 hrs elicitations when compared to the control. The R2 value from the
nonlinear model was enhanced up to 95% when compared to the linear model which significantly improved the
accuracy for estimating S. bacillaris strain siva2011 biomass production in a balloon bioreactor.

Conclusions: S. bacillaris strain siva2011 is a new green microalga which biosynthesizes significant amounts of
RRR-α-tocopherol. Systematically validated dual variable empirical data should provide key insights to multivariable
or fourth order modeling for algal biomass scale-up. This bioprocess engineering should provide valuable
information for industrial production of RRR-α-tocopherol from green cells.
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Background
RRR-α-tocopherol is a lipid soluble small molecule and
the biologically active form of natural vitamin E. RRR-α-
tocopherol is exclusively biosynthesized by photosyn-
thetic organisms or green cells including algae, plants,
and cyanobacteria [1-3]. Plant-based products are a pri-
mary source of RRR-α-tocopherol in the human diet.
For example, hazelnut is one of the richest sources of
vitamin E [4]. It is known that vitamin E plays an im-
portant role in human nutrition as a natural antioxidant.
It was recently proposed that vitamin E is active against
oxidative stress-related diseases [5]. Reportedly, it sup-
presses telomerase activity in ovarian cancer cells [6].
Vitamin E enhances IL-2 production, gene expression,
and is an effective therapeutic adjuvant [7]. Vitamin E
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deficiency affects both T and B immune cell functions
[8], the α-tocopherol transfer protein (α-TTP) gene, and
neurologic dysfunctions. In animal models, vitamin E
mixtures inhibit colon, lung, mammary, and prostate
carcinogenesis [9], as well as prevent diabetes [10]. Cos-
metic industries also extensively use vitamin E in skin
care products. In addition, RRR-α-tocopherol prolongs the
shelf life of meat [11]. Thus, the use of RRR-α-tocopherol
continues to increase in nutraceuticals [12].
Bioreactor technology is the key component for the

industrial scale production of bioactive small molecules
for pharmaceutical applications. For instance, bioreactor
technology was successfully developed and scaled-up to
10,000 L for commercial-scale production of ginseng roots
used for human health-related applications [13,14]. This
reactor configuration has also been tested for RRR-α-
tocopherol production in lab-scale photosynthetic hazel-
nut root culture [15]. However, knowledge regarding the
bioprocessing of green algal cells for production of RRR-
tral Ltd. This is an Open Access article distributed under the terms of the
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α-tocopherol in balloon bioreactors is limited. Previously,
Stichococcus bacillaris strain siva2011 biomass was scaled-
up in a lab-scale balloon bioreactor (4 L - 8 L), and a lin-
ear fitting model for predicting scale-up was proposed
[16]. The S. bacillaris strain siva2011 has unique lipid
(Figure 1) [16] and vitamin E metabolisms to lead to bio-
active RRR-α-tocopherol production. A nonlinear model
enables more accurate estimates and should provide
insight for quantitatively predicating algal biomass accu-
mulation in a large volume bioreactor. The objectives of
this study were to: 1) evaluate RRR-α-tocopherol content
from S. bacillaris strain siva2011 biomass with MeJa elicit-
ation; 2) quantitatively predict S. bacillaris strain siva2011
DW in a 20 L bioreactor with simplified stepwise dual var-
iables (time and volume) from 4 L and 8 L data using non-
linear regression. This systematic study could provide
insight regarding stepwise nonlinear scale-up of S. bacil-
laris strain siva2011 biomass for RRR-α-tocopherol pro-
duction in a balloon bioreactor.
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Figure 1 Gas chromatography mass spectrometry profile of fatty acid
20 L bioreactor, working volume 8 L with 0.2% CO2 on day 6. Methyl
(C18:1), methyl linoleate (C18:2), and methyl linolenate (C18:3).
Results and discussions
Natural vitamin E occurs in two general forms, namely
the tocopherols and tocotrienols, which are collectively
called tocochromanols. Each has four distinct isoforms
having α, β, γ, or δ substitution on the chromanol. The
natural α-tocopherol contains three methyl groups on
the chromanol moiety at positions 5, 7, and 8. The phy-
tyl or saturated side chain is attached to the C-2 position
of the chromanol ring which has three chiral centers
with a single RRR stereoisomer (Figure 2). The chroma-
nol groups have two fused rings, a phenol and a tetrahy-
dropyran, sharing a 2 carbon bridge [17]. These rings
are moderately polar, giving them an affinity for the cel-
lular membrane surface while the phytyl tail is hydro-
phobic and normally associated with membrane lipids
[18]. These structural features of RRR-α-tocopherol are
efficiently acted on by the human hepatic α-TTP which
is responsible for maintaining plasma α-tocopherol con-
centrations [19].
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methyl esters from S. bacillaris strain siva2011, biomass from
palmitate (C16:0), methyl hexadecatrienoate (C16:3), methyl oleate
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Figure 2 Chemical structure of RRR-α-tocopherol.
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The synthetic α-tocopherol called all-racemic-α-tocopherol
is not identical to RRR-α-tocopherol. It is an equimolar
mixture of eight stereoisomers which possess three
chiral centers at positions 2’, 4’, and 8’, giving rise to four
diastereoisomeric pairs of enantiomers such as RRR,
RSR, RRS, RSS, SRR, SSR, SRS, and SSS [20]. Moreover,
α-TTP has a high affinity to RRR-α-tocopherol and has
a 3-fold greater binding half-life when compared to syn-
thetic α-tocopherol [21]. Thus, the bioactivity and the
relative safety are different. Human proteins such as en-
zymes and receptors usually exhibit high stereospecificity
[20]. Therefore, the natural RRR-α-tocopherol is more bio-
active than the synthetic form.
RRR-α-tocopherol plays a major role as an antioxidant

which prevents lipid peroxidation. In the photosynthetic
cells, it may protect photosystem II during photoinhibi-
tion and repair chloroplast mechanisms [18]. This is due
to the hydroxyl group on the C-6 position which is the
active site that donates a hydrogen atom. The phenolic
hydrogen atom is capable of scavenging lipid peroxy radi-
cals and quenching singlet oxygen [22]. RRR-α-tocopherol
is recycled in the photosynthetic cell by cytosolic ascor-
bate which oxidizes one-electron from the tocopheroxyl
radical thus regenerating vitamin E [23]. This mechanism
might protect the cell membranes.
RRR-α-tocopherol is biosynthesized in photosynthetic

cells via two different pathways [24]. The phytyl domain
precursor comes from an isoprenoid pathway, and the
chromanol domain precursor comes from an alternative
shikimate pathway homogentisic acid via complex en-
zymatic reactions [25]. RRR-α-tocopherol is found in the
chloroplast envelope, thylakoids, and plastoglobuli of the
plastid. The vitamin E biosynthetic pathway has been
elucidated in Arabidopsis [26]. The genes associated
with vitamin E biosynthesis in photosynthetic organisms
have been well described in literature [3,27]. A signifi-
cant metabolic engineering effort has been made to im-
prove vitamin E content both in plants [28] and in
cyanobacteria [29,30]. Moreover, tocopherol production
in plant green callus [31], cell [32], and root cultures
[15] have also been reported.

RRR-α-tocopherol production in S. bacillaris strain
siva2011
Photosynthetic algae are a potential alternative for pro-
duction because they biosynthesize an abundance of
RRR-α-tocopherol. For instance, freshwater Euglena gra-
cilis [33], marine Dunaliella tertiolecta and Tetraselmis
suecica [34], model system Chlamydomonas reinhardtii
[35], and commercial algae Spirulina platensis [36] have
been used to biosynthesize RRR-α-tocopherol. The new
green alga, S. bacillaris strain siva2011 [16], produces
significant amounts of RRR-α-tocopherol. This microalga
has efficient photosynthetic mechanisms which facilitate
the quick biosynthesis of vitamin E.
Tocopherol production can be enhanced by molecular

elicitation which is non-transgenic. MeJa is a plant stress
volatile signaling molecule which up-regulates several
defense-related genes [37]. In plants, jasmonates are bio-
synthesized via the octadecanoid pathway; exogenous
MeJa treatment is up-regulating secondary metabolic
pathway genes especially those encoding for stress pro-
tection [38]. Therefore, it is used as one of the potential
molecular elicitors in plant root culture to enhance sev-
eral pharmaceutical molecule productions [15]. For in-
stance, MeJa elicitation increases the activity of tyrosine
aminotransferase in plant green cell culture which is one
of the initial step enzymes involved in tocopherol bio-
synthesis [31,39]. To increase RRR-α-tocopherol content
in S. bacillaris strain siva2011, MeJa elicitation was also
used. The S. bacillaris strain siva2011 characteristics, cul-
ture conditions, and bioreactor experimental designs were
previously reported for lipid production [16].
Figure 3 illustrates the RRR-α-tocopherol content of S.

bacillaris strain siva2011 biomass under elicitation with
various concentrations of MeJa. The unelicited culture



Figure 3 RRR-α-tocopherol content in S. bacillaris strain siva2011, unelicited and methyl jasmonate elicited culture on day 4, 5, and 6.
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accumulated 0.7 mg/g DW of RRR-α-tocopherol which
was detected starting during the early exponential growth
phase. The lower concentration of MeJa, 50 μL/L, after
24 hrs elicitation, enhanced the production of RRR-α-
tocopherol to the highest concentration, 1.3 mg/g DW.
The higher MeJa concentrations or longer elicitation pe-
riods were inhibiting both to the biomass growth and the
resultant RRR-α-tocopherol production. MeJa can diffuse
to cells either by intercellular migration or while in the
vapor phase [40]. In plants, MeJa can transport from
leaves to roots [41]. The vapor signaling can be trans-
ported to distal plants via air, and the intercellular sig-
naling can be transported via vascular process [42]. For
instance, in an in vitro root culture the MeJa elicitation
could trigger the defensive molecules accumulation via
intercellular transport [13-15], whereas in in vivo plants
during herbivore attack it can act as a volatile signal
[42]. In the algal culture, MeJa elicitation could trigger
the RRR-α-tocopherol production by either intercellular
signaling or both. The optimum concentration can up-
regulate the tocopherol biosynthetic pathway enzymes in
S. bacillaris strain siva2011 which could increase the anti-
oxidant. MeJa elicitation rapidly activates the defensive
genes which also down regulates the photosynthetic sys-
tem genes [38]. In addition, MeJa induces reactive oxygen
species (ROS) which alter the mitochondrial and chloro-
plast dynamics [43]. Thus, the higher MeJa concentrations
or longer elicitation periods can produce uncontrolled
ROS which can precede chloroplast or photosynthetic
dysfunctions which could be inhibiting the tocopherol
biosynthesis and biomass accumulation in S. bacillaris
strain siva2011. In green cells, chloroplasts are an essential
organelle for energy capture and transduction; a decline in
photosynthetic activity is closely related to the decrease in
the biomass. The typical MeJa elicited cells’ symptoms
were loss of chlorophyll, which causes the decline in
the net photosynthetic rate, and degradation of
ribulose bisphosphate carboxylase, etc. [44]. For in-
stance, 100 μL MeJa at 9 hrs elicitation altered chloroplast
morphology and function which is associated with cell
death [43]. Even though RRR-α-tocopherol indirectly reg-
ulates the amounts of jasmonic acid [18], the decline in
chloroplast efficiency could down regulate the RRR-α-toc-
opherol metabolism. This suggests that higher MeJa con-
centrations or longer elicitation could be cytotoxic beyond
what was studied.

Nonlinear regression
Compared to green adventitious roots, photosynthetic algae
have a higher ability to biosynthesize RRR-α-tocopherol in
bioreactor cultures. The balloon bioreactor is a liquid-phase
reactor with enhanced geometry and efficient fluid flow
dynamics which could help provide higher mass transfer
efficiency [14]. When compared to other photobioreac-
tors, the balloon bioreactor had a larger headspace which
efficiently captured light and enhanced photosynthesis
[16]. Thus, S. bacillaris strain siva2011 was scaled-up in a
balloon bioreactor (Figure 4) to investigate enhanced bio-
mass accumulation. Of the four concentrations of CO2

tested, 0.2% yielded the highest biomass of 3.45 g/L in 4 L
and 3.79 g/L (DW) in 8 L on day 6 [16]. The RRR-α-toc-
opherol production was unchanged by the 0.2% CO2 (data
not shown).
To quantitatively predict larger-scale algal biomass

production based on lab-scale test data, the following
stepwise structured approach was proposed [45,46]: 1)
to set up the simplest model to linearize with dual vari-
ables; 2) to model a nonlinear regression with dual vari-
ables; and 3) to demonstrate multiple variables based
on a nonlinear regression. Although scale-up predication



Figure 4 Biomass production of S. bacillaris strain siva2011 in 5 L balloon type bioreactors (working volume 4 L).
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requires multiple variables, the 6 days algal culture does
not significantly utilize all the media components. There-
fore, selection of important dual variables can give insight
on the efficiency of parameter selection for lab-scale valid-
ation and initial scale-up prediction. In addition, the mul-
tiple linear regression models might not incorporate the
underlying nonlinear relationships [47]. So, in this study
the second systematic approach was conducted to evalu-
ate nonlinear modeling for scale-up prediction in a 20 L
Figure 5 Nonlinear modeling for nondimensionalized dry weight from
balloon reactor using dual variables. Nonlinear regres-
sion models are more important tools than linear
models because they provide better parsimony, inter-
pretability, and prediction [48]. Figure 5 illustrates non-
linear modeling of predicted S. bacillaris strain siva2011
biomass accumulation in a 20 L balloon bioreactor with
0.2% CO2. This model was generated using 4 L to 8 L
data of S. bacillaris strain siva2011 and shows only small
discrepancies between measured and predicted data. The
4 L to 20 L.
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nondimensional DW* can be converted into dimensional
DW in g/L by multiplying by the maximum DW experi-
mentally obtained from the baseline test which in this case
is 4 L. The nonlinear modeling agrees with measured data
both qualitatively and quantitatively, where the modeling
has enhanced the R2 value up to 95% compared to the lin-
ear model value 87.4% [16]. This suggests that the nonlin-
ear regression approach enhances accuracy of modeling
which provides key scale-up informations of S. bacillaris
strain siva2011 biomass for RRR-α-tocopherol production.
In this study, the significance of this empirical approach
provides insights into the application of a nonlinear re-
gression model that increases the R2 value and enhances
the quantitative predication of S. bacillaris strain siva2011
scaled-up in a 20 L bioreactor. This allows for the sys-
tematic understanding and design of a multi-variable
nonlinear regression experiment for significant biomass
production.

Conclusions
Photosynthetic microalgae are rich in RRR-α-tocopherol
and a potential source for this natural antioxidant which
is an essential human micronutrient. A significant ad-
vantage of this natural source is the maintenance of the
specific bioactive form needed for nutrition and the
elimination of possible issues with potential unknown
or unexpected toxicities from the synthetic conforma-
tions. S. bacillaris strain siva2011 has a unique vitamin
E biosynthetic mechanism capable of sustaining high
levels of production, including inducible enhanced pro-
duction which could provide a possible production plat-
form of RRR-α-tocopherol for pharmaceutical industries.
A nonlinear mathematical model was developed to model
scale-up to production in 20 L reactors using an approach
with a higher accuracy based on the dual variables tested
in 4 L and 8 L reactors. The R2 value from this study dem-
onstrates that this nonlinear approach significantly im-
proves estimation of S. bacillaris strain siva2011 biomass
production in the bioreactor than does the linear model.
Additional studies with progressively larger reactors (and
models) will be needed to bridge the gap between labora-
tory and industrial scale. Nevertheless, this data provides
enhanced bioprocess engineering information in the pro-
gression towards large-scale pharmaceutical RRR-α-tocoph-
erol production from S. bacillaris strain siva2011 biomass.

Methods
Bioreactor culture, elicitation and analytics
S. bacillaris strain siva2011 cells were cultured in a balloon
type bioreactor (4 L and 8 L). The bioreactor experimen-
tal design and the biomass harvesting were performed
as described by Sivakumar et al. [16]. For elicitation,
three concentrations of filter sterilized MeJa 50, 100,
and 200 μL/L were added to the S. bacillaris strain
siva2011 culture on the 3rd day. MeJa dissolved in etha-
nol and MeJa not dissolved in ethanol were tested, and
both had a similar effect. Elicitations were carried out
for 24, 48, or 72 hrs. Algal cells were harvested and
freeze-dried according to the Sivakumar et al. [16]
method. One gram of MeJa elicited and unelicited
freeze-dried algal cells were used for analysis of RRR-α-
tocopherol. RRR-α-tocopherol was processed according
to the Sivakumar et al. [4] method. The reversed phase-
high performance liquid chromatography chromato-
gram was acquired using a Dionex 3000 (LPG3400A)
system (Thermo Scientific, Sunnyvale, CA) equipped
with a thermostatted UltiMate 3000 autosampler and a
Dionex RF 2000 fluorescence detector. The system was
monitored by the software’s chromeleon (6.80) for in-
strument control and data acquisition, data reproces-
sing, and solute quantification, respectively. An Agilent
Zorbax Eclipse XDB-C8 (250 mm × 4.6 mm, mean par-
ticle size 5 μm) column or C18 (250 mm × 4.6 mm,
mean particle size 5 μm) was used to separate RRR-α-
tocopherol. The mobile phase consists of a linear gradi-
ent of 90% methanol in water. The flow rate was 1 ml/
min. The total acquisition time was 35 min. The wave-
length was set at 290 nm for excitation and 330 nm for
emission. The authenticated RRR-α-tocopherol fluores-
cence spectra and retention time was used for HPLC
confirmation of RRR-α-tocopherol in the samples. The
RRR-α-tocopherol liquid chromatography mass spec-
trometry spectrum confirmation was acquired using a
Shimadzu 8050 mass spectrometer.

Nonlinear regression
For a stepwise approach, the first phase of the nonlinear
regression method begins with the simplification from
five variables to two variables, time (t) and reactor vol-
ume (V), as shown in equation 1. The regression will be
extended to multivariables when the two variables
method is validated.

DW ¼ f yCO2; EC;OrP; pH ; t;Vð Þ≈f t;Vð Þ ð1Þ
The associated variables DW, t, and V in equation 1

are nondimensionalized into DW*, t*, and V* as shown
in equation (2) to (4).

DW � ¼ DW
DWmax

ð2Þ

t� ¼ t
tmax

ð3Þ

V � ¼ V L½ �
4L

ð4Þ

Where DWmax is the maximum DW [g/L] produced
from 4 L test under 0.02% CO2 fraction, and tmax is the
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maximum time to reach the maximum DW. In this
study, DWmax and tmax were 3.45 g/L and 6 days, respect-
ively. The volume was standardized by the baseline: 4 L in
this modeling.
A nonlinear model was assumed by combining 4th

order polynomials and the power form of the equation as
shown in equation (5) in consideration of measured data
of 4 L and 8 L.

DW � ¼ at�4 þ bt�3 þ ct�2 þ dt�2 þ et þ f
� �

V �g ð5Þ

All associated constants a, b, c, and d in equation (5)
were determined from a nonlinear regression method as
shown in equation (6).

DW � ¼
�
2:686t�4−6:942t�3 þ 5:109t�2

þ 0:127t þ 0:0184
�
V �0:151 ð6Þ

Equation (6) allows the predicting of DW in reactor
volume 20 L at 0.02% CO2 fraction from the correlation
obtained from 4 L and 8 L measured data.

Statistical analysis
Bioreactor culture, elicitations, and analytical experiments
were repeated at least three times, each with three replica-
tions. Results were expressed as the mean with standard
errors. Stepwise dual nonlinear regressions were used to
investigate the relationship between 4 L and 8 L in order
to predict 20 L bioreactor scale-up.
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