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Abstract

Controlling harmful algae blooms (HABs) using microbial algicides is cheap, efficient and environmental-friendly.
However, obtaining high yield of algicidal microbes to meet the need of field test is still a big challenge since qualitative
and quantitative analysis of algicidal compounds is difficult. In this study, we developed a protocol to increase the yield
of both biomass and algicidal compound present in a novel algicidal actinomycete Streptomyces alboflavus RPS, which
kills Phaeocystis globosa. To overcome the problem in algicidal compound quantification, we chose algicidal ratio as the
index and used artificial neural network to fit the data, which was appropriate for this nonlinear situation. In this protocol,
we firstly determined five main influencing factors through single factor experiments and generated the multifactorial
experimental groups with a U15(15

5) uniform-design-table. Then, we used the traditional quadratic polynomial stepwise
regression model and an accurate, fully optimized BP-neural network to simulate the fermentation. Optimized with
genetic algorithm and verified using experiments, we successfully increased the algicidal ratio of the fermentation broth
by 16.90% and the dry mycelial weight by 69.27%. These results suggested that this newly developed approach is a viable
and easy way to optimize the fermentation conditions for algicidal microorganisms.

Keywords: Novel algicidal actinomycete, Uniform design, Artificial neural network coupling genetic algorithm, High yield
of biomass and algicidal compound, HABs control
Background
With the increasing influence of human activity, harmful
algal blooms, also sometimes known as red tides, have
happened more frequently and severely [1-3]. The tre-
mendous accumulation of algal cells destroys the natural
harmony of the ocean environment by discoloring the
water, disrupting food-web dynamics, depleting oxygen
and even poisoning the other creatures [4,5]. Many ap-
proaches have been tried [6-8], and the limitation of
physical and chemical methods [9] has made biological
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control the research hotspot. The bacteria-algae inter-
action plays an important role in both enhancing and
decreasing algal blooms in situ [10] and, with the discov-
ery of numerous bacterial strains exhibiting strong and
specific algicidal activity, provides a potential cheap,
efficient and environmentally-friendly way to terminate
the blooms or even prevent their occurrences [11-15].
Although the discovery of algicidal bacterium could be
traced to 1925 [16], there are still few reports about
microbial control of red tides in field tests [17]. An inev-
itable problem concerns how to bring the algicidal
microbes into the application stage with the help of ma-
ture fermentation technologies.
Most algicidal microbes affect the growth of algae

through the secreted metabolites. These algicidal me-
tabolites might be proteins, peptides, amino acids, bio-
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surfactants, and antibiotics [18]. Better understandings
of the algicidal microbes require systematic studies
about the chemical nature of these compounds. How-
ever, they are often so effective that their concentra-
tions in fermentation broth might actually be quite
low. Therefore, optimizing the fermentation conditions
to obtain high yield of algicidal compound seems to be
beneficial for both theoretical and applied researches.
But incomplete information about the target chemical
becomes the biggest obstacle to a successful optimization
process, which requires reliable material quantification.
This seems to be a paradox, and it might be partially re-
sponsible for the slow development of microbial algicides.
Nevertheless, researchers have made some efforts to
optimize the yield of algicidal microorganisms. The
medium composition for the marine algicidal bacter-
ium Alteromonas sp. DH46 were optimized using uni-
form design and the bacterial dry weight successfully
increased by 107% and algicidal efficiency by nearly
10% [19]. Response surface methodology was used to
obtain the best fermentation conditions for the algi-
cidal bacterium R2, and the final cell density success-
fully increased without scarifying the algicidal rate
[20]. However, these studies initially focused on the in-
crease of biomass, which, theoretically speaking, has
no absolute correlation with the yield of algicidal me-
tabolites. The direct optimization for algicidal com-
pound could be achieved when the chemical was well
studied [21], but only few successful studies were re-
ported when the chemical was unknown [22].
In recent years, more and more newly developed

optimization strategies have been used in the fermenta-
tion industry. And the problems in optimizing the yield
of algicidal compound seems solvable though the ad-
vanced artificial intelligence techniques with high effi-
ciency and extensive application scope. One of these
promising methods combines the use of artificial neural
networks (ANNs) with genetic algorithms (GAs). An
ANN is a computational model inspired by nervous sys-
tems and is capable of machine learning and output
value prediction [23]. Its high accuracy in multi-factorial
and nonlinear analysis makes it a good tool to simulate
fermentation results. The GA is an optimization algo-
rithm based on Darwinian evolution and Mendelism in
order to carry out random, adaptive and parallel global
searches [24]. Fully understanding the advantages of
these two computational methods, many researchers
couple GA with ANN to optimize fermentation conditions
and obtain significant results [25]. Considering algicidal ra-
tio shows positive but nonlinear correlation with the con-
tent of algicidal compound, ANN and GA seems to be the
excellent tools to analyze and fit the data. However, there
are still no reports concerning applying this method in the
fermentation optimization of algicidal microorganisms.
An actinomycete strain Streptomyces alboflavus RPS
[15], which was isolated from the sediment sample of
Fujian Zhangjiangkou Mangrove National Nature Re-
serve, China, showed high algicidal activity against a
typical harmful alga, Phaeocystis globosa. RPS lysed the
algal cell by releasing an extracellular compound and the
mycelial pellets were also capable of inhibiting algal
growth in a seawater environment. To better understand
its algicidal properties and prepare for the possible field
test in future, we firstly tried to increase the production
of mycelia and concentration of algicidal compound. In
this new developed optimization protocol, we preferred
to simplify the measurement of indexes, which took the
dry mycelial weight as the biomass and algicidal ratio as
the concentration of algicidal compound, to avoid un-
necessary experimental errors. With the data obtained
from single factor experiments and uniform design, we
fully took the advantages of ANN and GA to fit the data
and obtain the optimal medium compositions and culti-
vation conditions. And we finally verified the optimal
fermentation conditions and compared the GA-ANN
method with the traditional regression model.
Results and discussion
The effects of different nutrients and cultivation
conditions on the growth of RPS
In order to optimize the fermentation conditions to in-
crease the production of RPS, we should first under-
stand which were the major influencing factors. More
practically speaking, we should found out changing
which nutrients or cultivation conditions would lead to
an increased yield of biomass and algicidal compounds
compared to the original fermentation conditions. There-
fore, we set the control group as the baseline in order to
make the changes caused by different nutrients and cultiva-
tion conditions more clearly comparable.
Carbon and nitrogen sources are essential for the growth

of microorganisms. Many microbes can utilize various car-
bon or nitrogen sources, but the morphologies and metab-
olites might be expressed in all sorts of ways. Based on the
biomass results in Figures 1 (i) and (ii), we can see that even
though all the carbon and nitrogen sources could support
the growth of RPS, preferences for starch and NaNO3

showed clearly. The differences in the production of
algicidal compounds were even more dramatic. The
fermentation broth made up with glucose, maltose,
tryptophan and methionine showed no algicidal activ-
ity, but on the contrary promoted the growth of algae.
In summary, starch and NaNO3 were the most fit car-
bon and nitrogen sources for RPS fermentation, either
in terms of biomass or algicidal activity. However, the
most appropriate concentrations of these two nutrients
require further studies.



Figure 1 The effects of different nutrients on the growth of RPS. (i) Carbon sources. (ii) Nitrogen sources. (iii) Inorganic nutrients content. a)
0.5 g/L K2HPO4, 0.5 g/L MgSO4•7H2O, b) 0.75 g/L K2HPO4, 0.5 g/L MgSO4•7H2O, c) 0.25 g/L K2HPO4, 0.5 g/L MgSO4•7H2O, d) 0.5 g/L K2HPO4,
0.75 g/L MgSO4•7H2O, e) 0.5 g/L K2HPO4, 0.25 g/L MgSO4•7H2O.
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Inorganic minerals also play a critical role in the life-
cycle of microorganisms, although the requirement is
much lower than that for a carbon and nitrogen source.
In this study, we briefly tested the influence of different
inorganic nutrient content on RPS. Judging by the bio-
mass in Figure 1 (iii), the concentration of K2HPO4 and
MgSO4 did not affect the growth of RPS very much, ex-
cept for a 71.2% decrease caused by low MgSO4 content.
Considering the algicidal activity, the distinctions were
more minor, even the low biomass in the low MgSO4

situation only reduced the algicidal ratio by 18.9%. Inter-
estingly, the middle inorganic concentration (0.5 g/L
K2HPO4, 0.5 g/LMgSO4•7H2O), which acted as the con-
trol group, showed the highest biomass and algicidal ac-
tivity, suggesting the importance of correct content of
inorganics. Since the changes of these two inorganic
minerals did not bring about higher yield of neither bio-
mass nor algicidal compound, we would not take more
Figure 2 The effects of different cultivation conditions inoculum size
volume. (iv) Salinity values. (v) Fermentation time.
effort to optimizing the inorganic mineral content for
the moment.
Every microbe has an optimum pH range. Most

microorganisms are suited by a neutral environment
while some are acidophilic or basophilic. The effect of
initial pH on the fungus Ganoderma lucidum, which
can produce simultaneously ganoderic acid and a poly-
saccharide, has been studied [26]. And the authors find
that the maximum biomass and production of ganode-
ric acid is obtained at an initial pH of 6.5. However, the
production of extracellular and intracellular polysac-
charides becomes higher when the initial pH drops to
3.5. RPS lived better under a meta-acid environment
(Figure 2 (i)). A low initial pH of 5 significantly in-
creased the biomass and algicidal activity by 22.5% and
43.8%, respectively. This large improvement with low
initial pH suggested that more thorough studies should
be conducted.
on the growth of RPS. (i) Initial pH. (ii) Inoculum size. (iii) Loaded
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Inoculum size strongly affected the growth rate of the
strain. High inoculum size could bring forward the sta-
tionary phase and the synthesis of metabolites, therefore
also decrease the possibility of contamination. However,
too high an inoculum size might also reduce the yield of
products owing to the high consumption of oxygen. In
Figure 2 (ii), the biomass had a positive correlation with
inoculum size while the algicidal activity stayed at a high
level even with the lowest inoculum size of 1%. Interest-
ingly, the 10% inoculum size raised the biomass by
28.7%, but the algicidal activity decreased by 26.6%
under the same inoculum size. This could be explained
by the early coming of the late stationary phase blocking
the synthesis of algicidal compounds. Thus, further
optimization seemed to be necessary.
In most cases, the loaded volume affected the fermen-

tation process owing to its association with dissolved
oxygen. Lower loaded volume led to a higher oxygen
transfer coefficient under the same shaking speed. In
Figure 2 (iii), the biomass and algicidal activity is raised
along with the volume up to 75 mL, and no huge gap is
seen between 75, 100 and 125 mL. This result indicated
that the high oxygen level might be a restricting factor
to the growth of RPS.
RPS was isolated from the sediment sample of an estu-

arine area, which explained why its biomass could reach
a peak value at a salinity of 20 (124.8% compared to the
control group in Figure 2 (iv)). However, the algicidal ac-
tivity showed a different pattern. Only salinity levels of 0
and 10 induced the production of algicidal compounds,
compared to the most fit salinity of 20 for mycelia
growth. A good fermentation result under 0 salinity was
beneficial for future large-scale production since high
salinity has a strong corrosion effect on steel fermenta-
tion tanks.
Fermentation time can characterize the growth rate

of a strain, and RPS was a relatively slow-growing mi-
crobe (Figure 2 (v)). The biomass continued to increase
even after 8d, but the algicidal compounds were se-
creted only after 6d, which might mark the beginning
of the stationary phase. The slight decrease of the algi-
cidal ratio at 10d also confirmed the situation in the
case of high inoculum size, suggesting the importance
of harvesting the fermentation broth at an appropriate
growth phase in order to maximize the yield of algi-
cidal compounds.
In summary, there were five factors that increased the

production of RPS. Two of them (salinity and loaded
volume) were not suitable for future large-scale fermen-
tation conditions. Considering the importance of carbon
and nitrogen content, five factors were used for the
more detailed multi-factorial optimization: starch con-
tent, sodium nitrate content, inoculum size, initial pH
and fermentation time.
Uniform design and regression model
A uniform design seeks design points that are representa-
tive and uniformly scattered on the domain [27]. Therefore,
we could achieve the same goal as other statistical design
methods, such as orthogonal design, with fewer experimen-
tal groups [19,24]. Here we used the Data Processing
System (Version 7.05) for the experimental design and sub-
sequent data analysis along with the generation of regres-
sion models. The results from the different experimental
groups are presented in Table 1.
Based on the results of dry mycelial weight, a multiple

regression equation was generated: Y2 = -0.543313758 +
0.022952473674X1 + 0.05158971648X3 + 0.08619420430
X4-0.0013331394535X5-0.0004410784967X1*X1-0.0013
657027343X3*X3-0.004819912252X4*X4-0.00163019147
50X1*X3 + 0.00030259683893X1*X4 + 0.0000303184098
39X1*X5-0.004189833135X3*X4 + 0.00020227979933X3*
X5 + 0.000021989005098X4*X5. The correlation indexes
were as follows: R = 1.0000, F value =38461.4808, p =
0.0040, Durbin-Watson value =2.17768003. The optimal
fermentation conditions for a maximum biomass of
0.2598 g/100 mL were: 16.31 g/L starch, 0.52 g/L NaNO3,
inoculum size 10.5%, initial pH 5.41, and fermentation
time 228 h.
Also, based on the results of the algicidal ratio,

another multiple regression equation was generated:
Y1 = -3.97848306 + 0.31068222407X1 + 0.6327387394X
4 + 0.006103641490X5-0.005977938516X1*X1 + 0.0021
886562363X2*X2-0.022509013327X4*X4-0.000031536
339359X5*X5-0.0019135332295X1*X3-0.020236820212X1*
X4 + 0.00015411255817X1*X5-0.0027135967924X3*X4 + 0.
00030307344603X3*X5-0.00006432940808X4*X5. The
correlation indexes were as follows: R = 1.0000, F value =
38461.4808, p =0.0040, and Durbin-Watson value =
1.87922745. The optimal fermentation conditions for
highest algicidal activity of 103% were: 18.07 g/L starch,
1.7 g/L NaNO3, inoculum size 3.5%, initial pH 5.50, and
fermentation time 152 h.

Determination of the structure of artificial neural
networks
The first step to build a neural network is to determine
its structure, including the input neurons, the output
neurons, the hidden neurons, and the training algo-
rithm. The input and output neurons were consistent
with the original experimental data. We also chose a
back-propagation algorithm, which is commonly used
in the fermentation industry, to train the network.
However, the number of neurons in the hidden layer
requires more calculation to minimize the error. Too
few hidden neurons would lower the precision of the
neural network, but too many might deviate the model
from the real circumstance so wing to counting in
some data undulation caused by experimental error.



Table 1 Uniform-design-table and the results

Exp. no. Factors Indexes

X1 X2 X3 X4 X5 Y1 Y2

Starch (g/L) NaNO3 (g/L) Inoculum
size (%)

Initial pH Time (h) Algicidal
ratio (%)

Dry mycelial weight
(g/100mL broth)

N1 16 0.3 4.5 5 108 89.5686% 0.05715

N2 17 1.4 10.5 9 168 76.9796% 0.1079

N3 11 0.4 7.5 10 204 81.6116% 0.08085

N4 19 1.5 8 4 96 81.0957% 0.05875

N5 12 1.7 7 5.5 192 79.7349% 0.12175

N6 15 1 9.5 4.5 228 84.5514% 0.2283

N7 20 0.9 6.5 9.5 60 8.3172% 0.03545

N8 9 0.8 6 3.5 156 12.5545% 0.0001

N9 18 0.7 3.5 8 180 86.3218% 0.11275

N10 8 1.1 8.5 8.5 120 84.6537% 0.0412

N11 14 1.6 5 10.5 132 76.7769% 0.04345

N12 21 1.2 5.5 7 216 74.7522% 0.1718

N13 10 1.3 4 6.5 72 67.7670% 0.02315

N14 13 0.6 10 7.5 84 77.7472% 0.04345

N15 22 0.5 9 6 144 80.3603% 0.12165
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Therefore, we determined the appropriate number of
hidden neurons firstly (Table 2). In the case of dry my-
celial weight, the training error dropped to a relatively
low level when the number of hidden neurons reached
nine. Even though the prediction error did not show a
similar pattern, we could easily see that nine hidden
neurons had the highest prediction accuracy. Thus, we
determined the structure of the neural network for dry
mycelial weight as 5-9-1. In the case of the algicidal ra-
tio, a number of hidden neurons above nine also de-
creased the training error to a low level. However, the
minimum prediction error appeared only after the
number of hidden neurons was 12, and so the structure
Table 2 Error of the artificial neural network with different nu

Number of
hidden neurons

Dry mycelial weight

Training error Prediction

3 0.011 0.05911

4 0.0024 0.08869

5 0.00212 0.05847

6 0.00414 0.06218

7 0.00438 0.06918

8 0.00377 0.06369

9 0.0018 0.05719

10 0.00186 0.06579

11 0.00216 0.07613

12 0.002 0.07142
of the neural network for algicidal ratio was deter-
mined as 5-12-1.

Optimization of artificial neural networks using the
genetic algorithm
The precision of an ANN is greatly affected by the initial
weights and thresholds of the network, and so we applied
the GA, which used the sum of training error as the fitness,
to seek the best weights and thresholds. The processes of
optimization and the precision of the optimized neural net-
works are shown in Additional file 1: Figures S1 and S2.
There is no doubt that the high accuracy of these neural
networks promised good simulation of fermentation and
mbers of hidden neurons

Algicidal ratio

error Training error Prediction error

0.08859 0.53504

0.02129 0.66232

0.00561 0.6092

0.00556 0.50672

0.00523 0.40763

0.01004 0.54822

0.00412 0.40388

0.0047 0.44591

0.00467 0.46936

0.00448 0.31169
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therefore increased the possibility of gathering convincing
results by further optimization.

Genetic algorithm for best fermentation conditions
One of the advantages of GA is that it does not require a
specific objective function, which expands its applications
largely, and so we used it again to obtain the best medium
composition and cultivation conditions based on the neural
networks. Figure 3 shows the optimization processes for
each neural network. The optimal fermentation conditions
were as follows: 19.93 g/L starch, 0.66 g/L NaNO3, inocu-
lum size 9.2%, initial pH 5.20, and fermentation time 216 h
for a maximum dry mycelial weight of 0.2283 g/100 mL;
17.76 g/L starch, 1.59 g/L NaNO3, inoculum size 8.1%,
initial pH 5.23, and fermentation time 185 h for the highest
algicidal ratio of 90.5%.

Verification experiments
No matter how wonderful the results for the mathematic
models are, experimental results are the final judges.
As shown in Table 3, the optimization effects of both
models were quite similar, which was not a big surprise
because of the similar biases of nitrogen source, initial
pH and fermentation time. The optimal fermentation
conditions greatly increased the RPS biomass by 66.30%
Figure 3 Fitness curves for the optimization of neural networks. (a) O
for uniform design and 69.27% for the GA-ANN
method. The algicidal activity was also enhanced,
although the degrees of growth were much smaller
because of the high algicidal ratio of the original. How-
ever, the neural networks showed their improvement
for a much higher prediction accuracy than the regres-
sion models (1.79 to 16.27%, and 5.54 to 22.14%).
Moreover, the extremes that came up with the regression
model (inoculum size and fermentation time) implied
its limited ability of optimization under complicated
circumstances.

Conclusions
In this study, we innovatively combined the use of uni-
form design with ANN coupling GA in the optimization
of the fermentation conditions of an algicidal actinomy-
cete, and reflected the efficiency of uniform design, the
‘eurytopicity’ and accuracy of GA and BP-neural network,
which overcame the quantitative problem of algicidal com-
pound. The further application of algicidal microorganisms
also became more plausible. Despite the fact that more and
more researchers focus on various genetic modification
methods to boost the productivity of microorganisms, fully
developing the potential of the original strain by optimizing
the fermentation conditions is still a more economic, fast
ptimization for algicidal ratio. (b) Optimization for dry mycelial weight.



Table 3 Verification of optimal fermentation conditions

Indexes Regression model GA-ANN method Control

Algicidal ratio Experimental results 88.59 ± 3.46% 92.15 ± 1.12% 78.83 ± 2.76%

Improvement compared to control 12.38% 16.90% /

Prediction 103.00% 90.50% /

Prediction error 16.27% 1.79% /

Dry mycelial weight Experimental results 0.2127 ± 0.0191 g 0.2165 ± 0.072 g 0.1279 ± 0.0116 g

Improvement compared to control 66.30% 69.27% /

Prediction 0.2598 g 0.2283 g /

Prediction error 22.14% 5.45% /
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and environmentally safe way especially in the field of algi-
cidal preparations that require more thorough theoretical
studies.
In many studies, multi-factorial analysis was used in

the optimization of medium composition. However, the
importance of some nutrients might not be well quanti-
fied because of their concentrations (such as K2HPO4 in
this study), while cultivation conditions (such as inocu-
lum size, initial pH and fermentation time in this study)
can play more critical roles and also interact with the
medium composition. For example, inoculum size affects
the growth rate of the strain, which is important to some
slow-growing microorganisms and also directly con-
nected to the consumption rate of the nutrients. Thus,
in our opinion, applying single factor experiments to de-
cide the important factors was necessary before proceed-
ing to multifactorial optimization.
Wisely applying these multi-factorial analytical methods

was even more important. In this study, we successfully
saved the use of many experimental groups, thanks to the
advantages of uniform design. Nevertheless, the traditional
quadratic polynomial stepwise regression method showed
its limitations in simulating the fermentation, the result
of which were even absurd in the case of the algicidal ra-
tio with nonlinear variation(>100%). The ANN and GA
seemed to be much more convincing based on our final
verification experiments. However, it is undeniable that
such great outcomes were based on the brilliant experi-
mental sets coming from uniform design, and we should
rationally choose and combine the algorithms, and then
use their advantages to achieve our goals.
Beside the challenges during the development of micro-

bial algicides, establishing a comprehensive theoretical sys-
tem to guide the application of algicidal microorganisms is
another difficulty that we have to face. In recent years,
more and more researchers focused on the interaction
mechanism between algae and microorganisms. Just like
RPS, many algicidal microbes inhibit the growth of harmful
algae or cause the lysis of algal cells by secreting some bio-
logical active compounds, which shares quite a lot of simi-
larities with alleopathy. Many studies revealed the fact that
these compounds would lyse the cells by inducing oxidative
stress and destroying the photosynthetic system [2,28]. An-
other important red tide control microbial factor is virus.
Early in 1963, algal viruses had been isolated and identified
[29]. With the gradual understanding of the crucial roles
that algal virus plays in marine environment [30], virus also
becomes a potential candidate for algal bloom control
owing to their high efficiency and species-specificity. Except
for the viruses, a newly found pathogen, which was identi-
fied as the protist Pseudobodo sp. and could directly attack
the algal cells, largely expanded our research and applica-
tion prospect for algicidal microorganisms [31]. There is no
doubt that microorganisms will be the key players in future
red tide control [32], and the ongoing theoretical researches
will serve the mature of field applications.
In a word, this study provided a clear way to optimize

the fermentation conditions of a novel algicidal actino-
mycete, and also laid the foundation for the develop-
ment of algicidal preparations in the future.

Methods
Algal culture and evaluation of algal biomass
The Phaeocystis globosa culture was obtained from the
State Key Laboratory of Marine Environmental Science
(Xiamen University). The culture was maintained in ster-
ilized f/2 medium under a 12 h: 12 h light-dark cycle with a
light intensity of 4000 lx at 20 ± 1°C. When evaluating algal
biomass, the P. globosa culture was transferred to a 24-well
cell plate and the fluorescent intensity (RFU) measured
under an excitation wavelength of 440 nm and emission
wavelength of 680 nm (Spectra max M2, Molecular Devices
Corporation). Earlier study has confirmed that this is a con-
venient and accurate method to evaluate biomass [33].

Isolation and cultivation of Streptomyces alboflavus RPS
The strain was isolated from a sediment sample in the
Fujian Zhangjiangkou Mangrove National Nature Reserve,
China, through the dilution plating procedure with modi-
fied Gause medium (soluble starch 15 g/L, NaNO3 1 g/L,
K2HPO4 0.5 g/L, MgSO4•7H2O 0.5 g/L, FeSO4•7H2O
0.01 g/L, dissolved in natural seawater for agar plates, but
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dissolved in deionized water for liquid fermentation). The
colony was then purified several times and identified as
Streptomyces alboflavus based on its physiological and bio-
chemical characteristics and 16S rDNA sequencing. The
strain was stored at -80°C in 10% (v/v) glycerol and inocu-
lated into liquid medium (5%, v/v) for further study in a ro-
tary shaker (28°C, 200 rpm) for 6d until the mycelia turned
yellow-red. The growth of RPS was estimated using bio-
mass and algicidal activity. The mycelia were collected by
filtered and dried for 3 d to a constant weight as the bio-
mass, and algicidal activity was evaluated by inoculating
200 μL of RPS culture into 1.8 mL of logarithmic phase
algal culture (RFU ≈ 300, 2.42 × 106 cells/mL), while 200 μL
of fresh medium was added to the algal culture as a control.
The algicidal ratio was then calculated using the following
formula:

Algicidal ratio %ð Þ ¼ F0‐Ft
F0

� 100;

where Ft is the fluorescent intensity of the treated algal
culture, and F0 the fluorescent intensity of the control
group.
All shaken flask experiments included at least two par-

allel samples.

The effects of different nutrients and cultivation
conditions on the growth of RPS
We used single factor experiments, meaning only one of
the nutrients or cultivation conditions was changed in
each experimental group and the other influencing fac-
tors remained the same as the original. The setups of
each experimental group were shown below.

Carbon source: starch, glucose, sucrose, maltose and
glycerol.
Nitrogen source: tryptophan, methionine, sodium
nitrate, and ammonium sulfate.
Inorganic content: a) 0.5 g/L K2HPO4,
0.5 g/L MgSO4•7H2O, b) 0.75 g/L K2HPO4,
0.5 g/L MgSO4•7H2O, c) 0.25 g/L K2HPO4,
0.5 g/L MgSO4•7H2O, d) 0.5 g/L K2HPO4,
0.75 g/L MgSO4•7H2O, e) 0.5 g/L K2HPO4,
0.25 g/L MgSO4•7H2O.
Initial pH: 5, 6, 7, 8 and 9.
Inoculum size: 1, 3, 5, 7 and 10%, v/v.
Loaded volume: 25, 50, 75, 100 and 125 mL in 250 mL
flasks. The biomasses were converted into 100 mL for
comparison.
Salinity: 0, 10, 20, 30 and 40‰.
Fermentation time: 2, 4, 6, 8 and 10 d.

To better quantify the influence of each factor and elimin-
ate the minor errors caused by different experiment batches,
we normalized the experimental results of the control group
(which used the same cultivation conditions as in the origin
experiment) to 1 and the experimental results of the other
groups were compared to that of the control group to show
the differences.

Uniform design for multifactor optimization
Based on the single factor experiments above, we
brought the five main influencing factors, which were
starch content, sodium nitrate content, inoculum size,
initial pH and fermentation time, to the next step -
multifactor optimization. The Data Processing System
(DPS Version 7.05) was used to generate the experi-
mental design, statistical analysis and regression model
using the quadratic polynomial stepwise regression
method. Based on the uniform design table U15(15

5),
15 experimental groups with the five independent vari-
ables (X1, X2, X3, X4 and X5) were set for testing the
two dependent variables, Y1 (algicidal ratio) and Y2
(dry mycelial weight). Details concerning the experimental
design and results are shown in Table 1. Two regression
models were obtained for Y1 and Y2, followed by the acqui-
sition of the optimal combination of cultivation conditions
for the growth of RPS.

Combination of the artificial neural network and the
genetic algorithm
The Matlab R2013a software was used for ANN model-
ing and GA optimization. In this study, two separate
neural network models were constructed to model the
fermentation process and predict the biomass and algi-
cidal activity. We used the data from uniform design as
the training samples. Thus, each neural network con-
sisted of five input neurons (starch content, sodium ni-
trate content, inoculum size, initial pH and fermentation
time) and a single output neuron (dry mycelial weight or
algicidal ratio). The optimization process was made up
of three steps.
1) We tested the error with different neurons in a hid-

den layer to determine the best structure of the neural
network. Based on experience and literature [34,35], we
primarily chose three to 12 hidden neurons to conduct
the error calculation. The number of neurons in the hid-
den layer was determined taking into account of two
types of error, training error and prediction error. The
program randomly picked up 13 experimental groups as
the training samples, and the other two groups as the
test samples. The neural networks were trained with
different numbers of hidden neurons and the simulated
results were compared to training and test samples and
the 2-norm of training and prediction errors further
worked out. Considering the influence of initial weights
and thresholds in the neural network and the experi-
mental error of the samples, we replicated the calcula-
tion 10 times.
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2) We applied the GA to optimize the weights and
thresholds of back-propagation (BP)-neural networks to
increase their accuracy. To fully simulate the fermenta-
tion process, we used all 15 experimental samples to
train the ANN. The max epoch was set as 2000 and the
training goal was 1 × 10-6. In the GA, the sum of training
errors of each sample (absolute value) was defined as the
fitness. The program sought the minimum fitness using
the procedure of selection, crossover and mutation. The
other parameter settings were as follows: maxgen = 50,
sizepop = 20, Pcross = 0.8, Pmutation = 0.05.
3) With the optimal neural networks, we applied the

GA again to seek the best fermentation conditions for
RPS. In this step, the simulation result of the neural net-
work was defined as the fitness. The algorithm sought
the maximum fitness with the following parameter settings:
maxgen = 100, sizepop = 80, Pcross = 0.4, Pmutation = 0.05.

Verification experiments
Finally, we verified the four groups of optimal fermenta-
tion conditions through experiments and compared the
final results and accuracy of the two prediction models
(regression model and neural network model).

Additional files

Additional file 1: Figure S1. Optimization of neural network for dry
mycelial weight using a genetic algorithm. (a) Fitness curve of the
genetic algorithm. (b) Prediction error of the network for each training
sample. Figure S2. Optimization of the neural network for the algicidal
ratio using a genetic algorithm. (a) Fitness curve of the genetic algorithm.
(b) Prediction error of the network for each training sample.
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