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Biofertilizers function as key player in sustainable
agriculture by improving soil fertility, plant
tolerance and crop productivity
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Abstract

Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a
serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become
paramount importance in agriculture sector for their potential role in food safety and sustainable crop production.
The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs),
endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved
nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted
biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense
and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling
network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from
the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable
agriculture in reducing problems associated with the use of chemicals fertilizers.
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Introduction
Conventional agriculture plays a significant role in meet-
ing the food demands of a growing human population,
which has also led to an increasing dependence on chem-
ical Fertilizers and pesticides [1]. Chemical fertilizers are
industrially manipulated, substances composed of known
quantities of nitrogen, phosphorus and potassium, and
their exploitation causes air and ground water pollution
by eutrophication of water bodies [2]. In this regard, re-
cent efforts have been channelized more towards the pro-
duction of ‘nutrient rich high quality food’ in sustainable
comportment to ensure bio-safety. The innovative view of
farm production attracts the growing demand of bio-
logical based organic fertilizers exclusive of alternative to
agro-chemicals [3]. In agriculture, encourage alternate
means of soil fertilization relies on organic inputs to im-
prove nutrient supply and conserve the field management
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[4]. Organic farming is one of such strategies that not only
ensures food safety but also adds to the biodiversity of soil
[5]. The additional advantages of biofertilizers include lon-
ger shelf life causing no adverse effects to ecosystem [6].
Organic farming is mostly dependent on the natural

microflora of the soil which constitutes all kinds of useful
bacteria and fungi including the arbuscular mycorrhiza
fungi (AMF) called plant growth promoting rhizobacteria
(PGPR). Biofertilizers keep the soil environment rich in all
kinds of micro- and macro-nutrients via nitrogen fixation,
phosphate and potassium solubalisation or mineralization,
release of plant growth regulating substances, production
of antibiotics and biodegradation of organic matter in
the soil [7]. When biofertilizers are applied as seed or
soil inoculants, they multiply and participate in nutrient
cycling and benefit crop productivity [8]. In general,
60% to 90% of the total applied fertilizer is lost and the
remaining 10% to 40% is taken up by plants. In this re-
gard, microbial inoculants have paramount significance
in integrated nutrient management systems to sustain
agricultural productivity and healthy environment [9].
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The PGPR or co-inoculants of PGPR and AMF can ad-
vance the nutrient use efficiency of fertilizers. A syner-
gistic interaction of PGPR and AMF was better suited
to 70% fertilizer plus AMF and PGPR for P uptake.
Similar trend were also reflected in N uptake on a
whole-tissue basis which shows that 75%, 80%, or 90%
fertilizer plus inoculants were significantly comparable
to 100% fertilizer [10]. This review is intended to cater to
the needs of agriculturists and plant biologists whose work
focuses on creating clean and efficient means to improve
the quality of soil by nourishing and maintaining the use-
ful and natural flora of microorganisms or PGPRs. Fur-
ther, it presents recent developments in the area of field
management that reveals the potential application of bio-
fertilizers and increased nutrient profiles, plant growth
and productivity, and improved tolerance to environmen-
tal stress with a particular emphasis on mechanism of the
feat of biofertilizers.

The microbiome: potential significance of beneficial
microbes in sustainable agriculture
The rhizosphere, which is the narrow zone of soil sur-
rounding plant roots, can comprise up to 1011 microbial
cells per gram of root [11] and above 30,000 prokaryotic
species [12] that in general, improve plant productivity
[12]. The collective genome of rhizosphere microbial
community enveloping plant roots is larger compared to
that of plants and is referred as microbiome [13], whose
interactions determine crop health in natural agro-
ecosystem by providing numerous services to crop plants
viz., organic matter decomposition, nutrient acquisition,
water absorption, nutrient recycling, weed control and
bio-control [14]. The metagenomic study provides the
individual the core rhizosphere and endophytic micro-
biomes activity in Arabidopsis thaliana using 454 se-
quencing (Roche) of 16S rRNA gene amplicons [15]. It
has been proposed that exploiting tailor-made core
microbiome transfer therapy in agriculture can be a po-
tential approach in managing plant diseases for different
crops [16]. Rhizosphere microbial communities an alter-
native for chemical fertilizers has become a subject of
great interest in sustainable agriculture and bio-safety
programme.
A major focus in the coming decades would be on safe

and eco-friendly methods by exploiting the beneficial
micro-organisms in sustainable crop production [17].
Such microorganisms, in general, consist of diverse natur-
ally occurring microbes whose inoculation to the soil eco-
system advances soil physicochemical properties, soil
microbes biodiversity, soil health, plant growth and devel-
opment and crop productivity [18]. The agriculturally use-
ful microbial populations cover plant growth promoting
rhizobacteria, N2-fixing cyanobacteria, mycorrhiza, plant
disease suppressive beneficial bacteria, stress tolerance
endophytes and bio-degrading microbes [8]. Biofertili-
zers are a supplementary component to soil and crop
management traditions viz., crop rotation, organic ad-
justments, tillage maintenance, recycling of crop resi-
due, soil fertility renovation and the biocontrol of
pathogens and insect pests, which operation can signifi-
cantly be useful in maintaining the sustainability of vari-
ous crop productions [19]. Azotobacter, Azospirillum,
Rhizobium, cyanobacteria, phosphorus and potassium
solubilising microorganisms and mycorrhizae are some of
the PGPRs that were found to increase in the soil under
no tillage or minimum tillage treatment [20,21]. Efficient
strains of Azotobacter, Azospirillum, Phosphobacter and
Rhizobacter can provide significant amount of nitrogen to
Helianthus annus and to increase the plant height, number
of leaves, stem diameter percentage of seed filling and seed
dry weight [22]. Similarly, in rice, addition of Azotobacter,
Azospirillum and Rhizobium promotes the physiology and
improves the root morphology [23].
Azotobacter plays an important role in the nitrogen

cycle in nature as it possesses a variety of metabolic
functions [18]. Besides playing role in nitrogen fixation,
Azotobacter has the capacity to produce vitamins such
as thiamine and riboflavin [24], and plant hormones viz.,
indole acetic acid (IAA), gibberellins (GA) and cytoki-
nins (CK) [25]. A. chroococcum improves the plant
growth by enhancing seed germination and advancing
the root architecture [26] by inhibiting pathogenic mi-
croorganisms around the root systems of crop plants
[27]. This genus includes diverse species, namely, A.
chroococcum, A.vinelandii, A. beijerinckii, A. nigricans,
A. armeniacus and A. paspali. It is used as a biofertilizer
for different crops viz., wheat, oat, barley mustard, sea-
sum, rice, linseeds, sunflower, castor, maize, sorghum,
cotton, jute, sugar beets, tobacco, tea, coffee, rubber and
coconuts [28]. Azospirillum is another free-living, motile,
gram variable and aerobic bacterium that can thrive in
flooded conditions [6] and promotes various aspects of
plant growth and development [29]. Azospirillum was
shown to exert beneficial effects on plant growth and
crop yields both in greenhouse and in field trials [30].
Diverse species of the genus Azospirillum including A.
lipoferum, A. brasilense, A. amazonense, A. halopraeferens
and A. irakense have been reported to improve productiv-
ity of various crops [6]. Interestingly, it was observed that
Azospirillum inoculation can change the root morphology
via producing plant growth regulating substances [31] via
siderophore production [6]. It also increases the number
of lateral roots and enhances root hairs formation to pro-
vide more root surface area to absorb sufficient nutrients
[32]. This improves the water status of plant and aids the
nutrient profile in the advancement of plant growth and
development [33,34]. Co-inoculation of Azospirillium bra-
silense and Rhizobium meliloti plus 2,4D posed positive
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effect on grain yield and N,P,K content of Triticum aesti-
vum [35]. Rhizobium has been used as an efficient nitro-
gen fixer for many years. It plays an important role in
increasing yield by converting atmospheric nitrogen into
usable forms [36]. Being resistant to different temperature
ranges Rhizobium normally enters the root hairs, multi-
plies there and forms nodules [37]. Rhizobium inoculants
in different locations and soil types were reported to sig-
nificantly increase the grain yields of bengal gram [38],
lentil [39], pea, alfalfa and sugar beet rhizosphere [40],
berseem [41], ground nut [36] and soybean [42]. These
Rhizobium isolates obtained from wild rice have been re-
ported to supply nitrogen to the rice plant to promote
growth and development [43]. One of the species of
Rhizobium, Sinorhizobium meliloti 1021 infects plants
other than leguminous plants like rice to promote
growth by enhancing endogenous level of plant hor-
mone and photosynthesis performance to confer plant
tolerance to stress [44]. In groundnut, IRC-6 strain of
Rhizobium has resulted in the enhancement of several
useful traits such as increased number of pink coloured
nodules, nitrate reductase activity and leghaemoglobin
content in 50 DAI (days after inoculation) [36]. Rhizo-
bial symbiosis provides defence to plants against patho-
gens and herbivores, such as example, Mexican bean
beetle [45] and the green house whitefy Trialeurodes
vaporariorum [46] (Figure 1).
Figure 1 Potential use of soil microbes in sustainable crop production
biofertilizers [19] or symbiont [17]. They perform nutrient solubilisation whi
the plant growth by advancing the root architecture [26]. Their activity pro
and nitrate reductase activity and [36]. Efficient strains of Azotobacter, Azosp
of available nitrogen through nitrogen cycling [22]. The biofertilizers produ
(GA) and cytokinins (CK) [25,44]. Biofertilizers improve photosynthesis perfo
resistance to pathogens [45] thereby resulting in crop improvement [18].
Biofertlizers exploitation and nutrients profile of crops
A key advantage of beneficial microorganisms is to as-
similate phosphorus for their own requirement, which in
turn available as its soluble form in sufficient quantities
in soil. Pseudomonas, Bacillus, Micrococcus, Flavobacter-
ium, Fusarium, Sclerotium, Aspergillus and Penicillium
have been reported to be active in the solubilisation
process [47]. A phosphate-solubilizing bacterial strain
NII-0909 of Micrococcus sp. has polyvalent properties in-
cluding phosphate solubilisation and siderophore pro-
duction [48]. Similarly, two fungi Aspergillus fumigatus
and A. Niger were isolated from decaying cassava peels
were found to convert cassava wastes by the semi-solid
fermentation technique to phosphate biofertilizers [49].
Burkholderia vietnamiensis, stress tolerant bacteria, pro-
duces gluconic and 2-ketogluconic acids, which involved
in phosphate solubilisation [50]. Enterobacter and Bur-
kholderia that were isolated from the rhizosphere of sun-
flower were found to produce siderophores and indolic
compounds (ICs) which can solubilize phosphate [51]. Po-
tassium solubilising microorganisms (KSM) such as genus
Aspergillus, Bacillus and Clostridium are found to be effi-
cient in potassium solubilisation in the soil and mobilize in
different crops [52]. Mycorrhizal mutualistic symbiosis with
plant roots satisfies the plant nutrients demand [53], which
leads to enhance plant growth and development, and pro-
tect plants from pathogens attack and environmental stress
. The beneficial soil micro-organisms sustain crop production either as
ch facilitate nutrient availability and thereby uptake [20,21]. It improves
vides several useful traits to plants such as increased root hairs, nodules
irillum, Phosphobacter and Rhizobacter can provide significant amount
ced plant hormones, which include indole acetic acid (IAA), gibberellins
rmance to confer plant tolerance to stress [44] and increase
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[54]. It leads to the absorption of phosphate by the hy-
phae from outside to internal cortical mycelia, which fi-
nally transfer phosphate to the cortical root cells [55].
Nitrogen fixing cyanobacteria such as Aulosira, Tolypo-
thrix, Scytonema, Nostoc, Anabaena and Plectonema are
commonly used as biofertilizers [56,57]. Besides the
contribution of nitrogen, growth-promoting substances
and vitamins liberated by these algae Cylindrospermum
musicola increase the root growth and yield of rice
plants [58]. Interestingly, genetic engineering was used
to improve the nitrogen fixing potential of Anabaena
sp. strain PCC7120 [59]. Constitutive expression of the
hetR gene driven by a light-inducible promoter en-
hanced HetR protein expression, leading to higher ni-
trogenase activity in Anabaena sp. strain PCC7120 as
compared with the wild-type strain. This in turn caused
better growth of paddy when applied to the fields [60].

Biofertilizers relevance and plant tolerance to
environmental stress
Abiotic and biotic stresses are the major constraints that
are affecting the productivity of the crops. Many tools of
modern science have been extensively applied for crop
improvement under stress, of which PGPRs role as bio
protectants has become paramount importance in this re-
gard [61]. Rhizobium trifolii inoculated with Trifolium
alexandrinum showed higher biomass and increased
number of nodulation under salinity stress condition
[41,62]. Pseudomonas aeruginosa has been shown to with-
stand biotic and abiotic stresses [63]. Paul and Nair [64]
found that P. fluorescens MSP-393 produces osmolytes
and salt-stress induced proteins that overcome the nega-
tive effects of salt. P. putida Rs-198 enhanced germination
rate and several growth parameters viz., plant height, fresh
weight and dry weight of cotton under condition of alka-
line and high salt via increasing the rate of uptake of K+,
Mg2+ and Ca2+, and by decreasing the absorption of Na+

[65]. Few strains of Pseudomonas conferred plant toler-
ance via 2,4-diacetylphloroglucinol (DAPG) [66]. Interest-
ingly, systemic response was found to be induced against
P. syringae in Arabidopsis thaliana by P. fluorescens
DAPG [67]. Calcisol produced by PGPRs viz., P. alcali-
genes PsA15, Bacillus polymyxa BcP26 and Mycobacter-
ium phlei MbP18 provides tolerance to high temperatures
and salinity stress [68]. It has been demonstrated that in-
oculation of plant with AM fungi also improves plant
growth under salt stress [69]. Achromobacter piechaudii
was also shown to increase the biomass of tomato and
pepper plants under 172 mM NaCl and water stress [70].
Interestingly, a root endophytic fungus Piriformospora
indica was found to defend host plant against salt stress
[69]. In one of the studies it was found that inoculation of
PGPR alone or along with AM like Glomus intraradices
or G. mosseae resulted in the better nutrient uptake and
improvement in normal physiological processes in Lac-
tuca sativa under stress conditions. The same plant
treated with P. mendocina increased shoot biomass under
salt stress [71]. Mechanisms involved in osmotic stress tol-
erance employing transcriptomic and microscopic strat-
egies revealed a considerable change in the transcriptome
of Stenotrophomonas rhizophila DSM14405T in response
to salt stress [72]. Combination of AM fungi and N2-fixing
bacteria helped the legume plants in overcoming drought
stress [73]. Effect of A.brasilense along with AM can be
seen in other crops such as tomato, maize and cassava
[74-76]. A. brasilense and AM combination improved
plant tolerance to various abiotic stresses [77]. The addi-
tive effect of Pseudomonas putida or Bacillus megaterium
and AM fungi was effective in alleviating drought stress
[78]. Application of Pseudomonades sp. under water stress
improved the antioxidant and photosynthetic pigments in
basil plants. Interestingly, combination of three bacterial
species caused the highest CAT, GPX and APX activity
and chlorophyll content in leaves under water stress [79].
Pseudomonas spp. was found to cause positive affect on
the seedling growth and seed germination of A. officinalis
L. under water stress [80]. Photosynthetic efficiency and
the antioxidative response of rice plants subjected to
drought stress were found to increase after inoculation of
arbuscular mycorrhiza [81]. The beneficial effects of
mycorrhizae have also been reported under both the
drought and saline conditions [82]. Heavy metals such as
cadmium, lead, mercury from hospital and factory waste
accumulate in the soil and enter plants through roots [83].
Azospirillium spp, Phosphobacteria spp and Glucanaceto-
bacter spp. isolated from rhizosphere of rice field and
mangroves were found to be more tolerant to heavy metal
specially iron [83,84]. P. potida strain 11 (P.p.11), P.
potida strain 4 (P.p.4) and P. fluorescens strain 169 (P.
f.169) can protect canola and barley plants from the in-
hibitory effects of cadmium via IAA, siderophore and 1-
aminocyclopropane-1-carboxylate deaminase (ACCD)
[85]. It was reported that rhizoremediation of petroleum
contaminated soil can be expedited by adding microbes in
the form of effective microbial agent (EMA) to the differ-
ent plant species such as cotton, ryegrass, tall fescue, and
alfalfa [86].
PGPRs as biological agents proved to be one of the al-

ternatives of chemical agents to provide resistance to
against various pathogen attacks [87]. Apart from acting
as growth-promoting agents they can provide resistance
against pathogens by producing metabolites [88]. Bacil-
lus subtilis GBO3 can induce defense-related pathways
viz., salicylic acid (SA) and jasmonic acid (JA) [89]. Ap-
plication of PGPR isolates viz., B. amyloliquefaciens 937b
and B. pumilus SE-34 provide immunity against tomato
mottle virus [90]. B. megaterium IISRBP 17, character-
ized from stem of black pepper, acts against Phytophthor
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capsici [91]. Bacillus subtilis N11 along with mature
composts was found to control Fusarium infestation on
banana roots [92]. Similarly, B. subtilis (UFLA285) was
found to provide resistance against R. solani and also it
induced foliar and root growth in cotton plants [93]. In
another interesting study Paenibacillus polymyxa SQR-
21 was identified as a potential agent for the bio-control
of Fusarium wilt in watermelon [94]. Further, the ex-
ploitation of PGPRs was found to be effective to manage
the spotted wilt viruses in tomato [87], cucumber mosaic
virus of tomato and pepper [90], and banana bunchy top
virus in banana [95]. In some cases it was shown that
along with bacteria, mycorrhizae can also confer resist-
ant against fungal pathogens and inhibit the growth of
many root pathogens such as R. solani, Pythium spp., F.
Oxysporum, A. obscura and H. annosum [96,97] by im-
proving plant nutrients profile and thereby productivity
[69]. For instance Glomus mosseae was effective against
Fusarium oxysporum f. sp. Basilica which causes root-rot
disease of basil plants [98]. Medicago tranculata also
showed induction of various defense-related genes with
mycorrhizal colonization [99]. It was shown that
addition of arbuscular mycorrhizal fungi and Pseudo-
monas fluorescens to the soil can reduce the develop-
ment of root-rot disease and enhance the yield of
Phaseolus vulgaris L. [100].

Mechanism of action of various biofertilizers
Mycorrhiza is the association of fungus with the roots of
higher plants. While it remains an enigma, it serves as a
model system to understand the mechanism behind
stimulation of growth in the root cells as a result of
mycorrhizal inhabitation. Genome sequencing of two
EM fungi (ectomycorrhizae), the L. bicolor 13, and T.
melanosporum (black truffle) 14, helps in the identifica-
tion of factors that regulate the development of mycor-
rhiza and its function in the plant cell [101]. Fifteen
genes that up-regulated during symbiosis were identified
as putative hexose transporters in L. bicolor. Its genome
lacked genes encoding invertases making it dependent
on plants for glucose. However, melanosporum possesses
one invertase gene, and unlike L. bicolor it can directly
use the sucrose of the host [101]. The up-regulation of
transporter genes during symbiosis indicated the action
of transportation of useful compounds like amino acids,
oligopeptides and polyamines through the symbiotic
interface from one organism to other. Free living myce-
lium can take nitrate and ammonium from the soil. Sub-
sequently, these compounds reach the mantle and hartig
net and are then transferred to the plants. Cysteine-rich
proteins (MISSP7) of fungus play an important role as
effectors and facilitators in the formation of symbiotic
interfaces [102]. Many genes related to auxin biosyn-
thesis and root morphogenesis showed up-regulation
during mycorrhizal colonization [69,103,104]. Further, G.
versiforme possesses inorganic phosphate (Pi) trans-
porters on its hyphae which help in the direct
absorption of phosphate from the soil and a glutamine
synthase gene was found in G. intraradice, which
strengthens the possibility of nitrogen metabolism in
fungal hyphe that can be transported later to the plant
[105]. Bioactive compounds called Myc factors similar to
Nod factors of Rhizobium are suggested to be secreted
by mycorrhiza and Rhizobium and perceived by host
roots for the activation of signal transduction pathway
or common symbiosis (SYM) pathway [106,107]. The
pathways that prepare plant for both AM and Rhizobium
infection have some common points. The common SYM
pathway prepares the host plant to bring about changes
at the molecular and anatomical level with the first con-
tact of fungal hyphae. So far, calcium is supposed to be
the hub of secondary messengers via Ca2+ spiking in the
nuclear region of root hairs [108]. Rhizobium legumino-
sarum biovar viciae can induce various genes in the
plants like pea, alfalfa and sugar beet as evident from the
microarray studies [40]. PGPR produce IAA which, in
turn, induces the production of nitric Oxide (NO),
which acts as a second messenger to trigger a complex
signaling network leading to improved root growth and
developmental processes [109].
Expression of ENOD11 and many defense-related

genes and root remodelling genes get up-regulated dur-
ing entry. Subsequently, this allows the formation of a
pre-penetration apparatus or PPA [110]. Though the
biology behind the development of arbuscules is un-
known, a gene called vapyrin when knocked down
causes a decline in the growth of arbuscules [111]. Many
other genes including subtilisin protease 65, phosphate
transporter 66 or two ABC transporters 67 are known to
be involved in arbuscules formation [112,113]. Nitrogen-
fixation genes are popularly used by scientists today to
create engineered plants that can fix atmospheric nitro-
gen. The induction of nif genes in case of nitrogen fixing
bacteria takes place under low concentration of nitrogen
and oxygen in the rhizosphere [1]. Interestingly, sugar-
cane plantlets inoculated with a wild strain of G. diazo-
trophicus, have demonstrated fixation of radioactive N2

when compared with the G. diazotrophicus mutant that
has mutant nif D gene which proved the significance of
nif genes. Efficiency of nitrogen fixation is dependent on
the utilization of carbon [114,115]. A bacterium like Ba-
cillus subtilis (UFLA285) can differentially induce 247
genes in cotton plant as compared to control where no
PGPR was supplied to the cotton plant [85]. Many dis-
ease resistance genes that work via jasmonate/ethylene
signaling as well as osmotic regulation via proline syn-
thesis genes were differentially expressed with UFLA285
induction [85]. Various differentially expressed genes
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were identified which include metallothionein-like pro-
tein type 1, a NOD26-like membrane integral protein,
ZmNIP2-1, a thionin family protein, an oryzain gamma
chain precursor, stress-associated protein 1 (OsISAP1),
probenazole-inducible protein PBZ1 and auxin and
ethylene-responsive genes [116]. The expression of the
defense-related proteins PBZ1 and thionins were found
to get repressed in the rice–H seropedicae association,
suggesting the modulation of plant defense responses
during colonisation [116].
Among the PGPR species, Azospirillum was suggested

to secrete gibberellins, ethylene and auxins [117]. Some
plant associated bacteria can also induce phytohormone
synthesis, for example lodgepole pine when inoculated
with Paenibacillus polymyxa had elevated levels of IAA
in the roots [118]. Rhizobium and Bacillus were found
to synthesize IAA at different cultural conditions such
as pH, temperature and in the presence of agro waste as
substrate [119]. Ethylene, unlike other phytohormones,
Figure 2 Hypothetical mechanism of action of biofertilizers in the roo
by mycorrhiza and Rhizobium were perceived by host roots to trigger the s
transduction pathway through unknown receptors (SYMRK and NORK) [101
pathway involves receptor like kinases or other kinase related proteins like
pore complex (NPC) and some of its proteins (NUP) play role in calcium sp
calcium ions inside and outside the nucleus. Several channels proteins (Ca2

transporters [108]. CCaMK is a calcium calmodulin-dependent protein kinas
activation of various genes involving formation of structures like nodule an
is responsible for the inhibition of growth of dicot plants
[69]. It was found by Glick et al. [120] that PGPR could
enhance the growth of plant by suppressing the expres-
sion of ethylene. Interestingly, a model was suggested in
which it was shown that ethylene synthesis from 1-
aminocyclopropane-1-carboxylate (ACC), an immediate
precursor of ethylene, which is hydrolyzed by bacterial
ACC-deaminase enzyme in the need of nitrogen and
carbon source is also one of the mechanisms of induc-
tion of conditions suitable for growth. ACC-deaminase
activity was also found in the bacteria such as Alcali-
genes sp., Bacillus pumilus, Pseudomonas sp. and Vario-
vorax paradoxus [69]. The involvement of ACC
deaminase in the indirect influence on the growth of
plants was proved in Canola, where mutations in ACC
deaminase gene caused the loss of effect of growth pro-
moting Pseudomonas putida [29]. Interestingly, the po-
tential of PGPRs was further enhanced by introducing
genes involved in the direct oxidation (DO) pathway and
t cell. Bioactive ligands called Myc factors and Nod factors secreted
ignal transduction pathway [106,107], which initiates further signal
] which trigger release of Ca2+ in the cytosol [108]. The whole
DMI and SYM71 to phosphorylate their substrates [123,124]. Nuclear
iking. DM1 proteins play role in maintaining periodic oscillation of
+channel proteins) also facilitate this process with the help of various
e, which phosphorylate the product of CYCLOPS protein thus initiating
d (PPA) pre-penetration apparatus [124].
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mineral phosphate solubilisation (MPS) into some useful
strains of PGPRs. Gene encoding glucose dehydrogenase
(gcd) involved in the DO pathway was cloned and char-
acterized from Acinetobacter calcoaceticus and E. coli and
Enterobacter asburiae [121]. Also a soluble form of gcd
has been cloned from Acinetobacter calcoaceticus and G.
oxydans [122]. Furthermore there are reports of site-
directed mutagenesis of glucose dehydrogenase (GDH)
and gluconate dehydrogenase (GADH) that has im-
proved the activity of this enzyme. Mere substitution of
S771M provided thermal stability to E.coli while muta-
tion of glutamate 742 to lysine improved the EDTA tol-
erance of E. coli PQQGDH. The application of this
technology was achieved by transferring genes involved
in the DO pathway viz., GDH, GADH and pyrroloquino-
line quinine (PQQ) to rhizobacteria, and phosphoenol-
pyruvate carboxylase (PPC) to P. Fluorescens, provide
the MPS trait [122] (Figure 2).

Conclusions
Environmental stresses are becoming a major problem
and productivity is declining at an unprecedented rate.
Our dependence on chemical fertilisers and pesticides has
encouraged the thriving of industries that are producing
life-threatening chemicals and which are not only hazard-
ous for human consumption but can also disturb the eco-
logical balance. Biofertilizers can help solve the problem
of feeding an increasing global population at a time when
agriculture is facing various environmental stresses. It is
important to realise the useful aspects of biofertilizers and
implement its application to modern agricultural prac-
tices. The new technology developed using the powerful
tool of molecular biotechnology can enhance the bio-
logical pathways of production of phytohormones. If
identified and transferred to the useful PGPRs, these tech-
nologies can help provide relief from environmental
stresses. However, the lack of awareness regarding im-
proved protocols of biofertiliser applications to the field is
one of the few reasons why many useful PGPRs are still
beyond the knowledge of ecologists and agriculturists.
Nevertheless, the recent progresses in technologies related
to microbial science, plant-pathogen interactions and gen-
omics will help to optimize the required protocols. The
success of the science related to biofertilizers depends on
inventions of innovative strategies related to the functions
of PGPRs and their proper application to the field of agri-
culture. The major challenge in this area of research lies
in the fact that along with the identification of various
strains of PGPRs and its properties it is essential to dissect
the actual mechanism of functioning of PGPRs for their
efficacy toward exploitation in sustainable agriculture.
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