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Abstract

This paper discusses the use of *C-based metabolism analysis for the assessment of intrinsic product yields — the
actual carbon contribution from a single carbon substrate to the final product via a specific biosynthesis route — in
the following four cases. First, undefined nutrients (such as yeast extract) in fermentation may contribute
significantly to product synthesis, which can be quantified through an isotopic dilution method. Second, product
and biomass synthesis may be dependent on the co-metabolism of multiple-carbon sources. '*C labeling experiments
can track the fate of each carbon substrate in the cell metabolism and identify which substrate plays a main role in
product synthesis. Third, '*C labeling can validate and quantify the contribution of the engineered pathway (versus
the native pathway) to the product synthesis. Fourth, the loss of catabolic energy due to cell maintenance (energy
used for functions other than production of new cell components) and low P/O ratio (Phosphate/Oxygen Ratio)
significantly reduces product yields. Therefore, '*C-metabolic flux analysis is needed to assess the influence of
suboptimal energy metabolism on microbial productivity, and determine how ATP/NAD(P)H are partitioned
among various cellular functions. Since product yield is a major determining factor in the commercialization of a
microbial cell factory, we foresee that '*C-isotopic labeling experiments, even without performing extensive flux

calculations, can play a valuable role in the development and verification of microbial cell factories.
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Introduction

Recent advances in metabolic engineering have enabled
us to engineer microbial cell factories for the efficient
synthesis of diverse products, including bulk chemicals,
pharmaceutical drugs and biofuels [1,2]. For example,
advanced biofuels produced by engineered microorgan-
isms with properties similar to that of petroleum-based
fuels, have been reported extensively [3-7]. The emergence
of systems biology and synthetic biology has greatly in-
creased the potential of microbial cell factories towards
the production of value-added chemicals [8-10]. For
economically viable manufacture of bulk and commod-
ity chemicals [11], the product yield is an important
consideration. Researchers often include either rich
medium or multiple feedstocks in microbial fermenta-
tions. Thereby, estimation of the intrinsic product yield
is difficult since undefined nutrients may also contrib-
ute to the product synthesis (Figure 1). Additionally,
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new enzymes are often employed to improve microbial
productivity [4,12-14], and the separate contributions of
the heterologous and native pathways to product syn-
thesis needs further validation. Finally, the synthesis of
high-energy products (such as biofuels) requires a large
amount of ATP and NAD(P)H. Due to suboptimal en-
ergy metabolism (e.g., cell maintenance cost), the actual
bacterial biosynthesis is often at least three-fold lower
than the amount that would be predicted from reaction
stoichiometry [15].

Therefore, '*C-analysis is the recommended method to
track the in vivo carbon fluxes from specific substrates
to final products. Feeding microbial cultures with '>C-
substrates results in unique isotopic patterns amongst
the cell metabolites (13C-fingerprints) [16] to delineate
metabolic pathways [17]. Integration of '*C-fingerprints
with metabolic modeling can elucidate the intracellular
metabolic fluxes (i.e., ">C-MFA). In the biotechnology
field, *>C-MFA can reveal metabolic responses of micro-
bial hosts to product synthesis and growth conditions
[18-20], identify the rigid metabolic nodes that cause
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Figure 1 Schematic description of microbial metabolism. Microbes have the ability to co-metabolize diverse feedstock. Dark circles indicate
labeled carbon. The enrichment of labeling in the product acts as an indicator for the relative uptake of sugars.
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bottlenecks for further rational pathway engineering
[21], and perform characterization of novel microbial
physiologies [22-25]. In addition to these applications,
13C-MFA may reveal the effect of suboptimal energy
metabolism on intrinsic product yields.

Product yield using rich medium

Engineered microbes have many metabolic burdens that
can inhibit both biomass growth and product synthesis.
Since rich media includes both primary carbon substrates
(e.g., sugars) and large amounts of nutrients (such as yeast
extract), it is commonly used in fermentations to provide
diverse nutrients for cell growth and stabilize the produc-
tion performance of microbes [9,10]. This reduces the cul-
ture lag phase and promotes their productivity. Multiple
studies have revealed that supplementing culture medium
with yeast extract or terrific broth — a highly enriched
medium that contains yeast extract, tryptone and glycerol
as carbon sources — to engineered microbes significantly
improves their final biosynthesis yields [26,27]. Since nu-
trient supplements can provide undefined building blocks
for both biomass and product synthesis, it is difficult
to precisely calculate the intrinsic product yield from
rich-medium fermentation. To overcome this problem,
!3C-analysis can gain insights into the carbon contribu-
tion from the nutrients to product biosynthesis.

For example, two E. coli strains engineered for isobu-
tanol production (i.e., a low performance strain with an
Ehrlich pathway [28] and a high performance JCL260
strain with overexpression of both the keto-acid pathway
and the Ehrlich pathway [29]) display an increase in isobu-
tanol titer with the inclusion of yeast extract in their cul-
ture medium. Using fully labeled glucose and non-labeled
yeast extract as carbon sources, '*C-experiments revealed
that the low-performance strain derived ~50% of the car-
bons in the produced isobutanol from yeast extract

(Figure 2). On the other hand, JCL260 synthesized isobu-
tanol solely from *C-glucose and used yeast extract
mainly for biomass growth [28]. This observation confirms
that overexpression of the keto-acid pathway overcomes
bottleneck in the synthesis of isobutanol and effectively
pulls the carbon flow from glucose to product. In another
work, an E. coli strain was engineered for the conversion
of acetate into free fatty acids via the overexpression of
both acetyl-coA synthetase and the fatty acid pathways.
During acetate fermentation, yeast extract significantly
promoted fatty acid productivity, resulting in 1 g/L fatty
acids from ~10 g/L acetate [30]. **C-analysis of the culture
with fully labeled acetate and yeast extract has shown
that ~63% carbons in the free fatty acids were synthe-
sized from '*C-acetate (Figure 2). Thereby, the intrinsic
product yield from a primary substrate in a rich medium
could be correctly estimated based on isotopomer
analysis.

Product yield during co-metabolism of multiple carbon
substrates

Algal species are able to utilize both CO, and organic
carbon substrates. Such mixotrophic metabolisms can
alleviate the dependence of algal hosts on light and CO,
limitations, and thus enable them to achieve high bio-
mass growth rate and product titer [31]. 13C-metabolite
analysis has been used to track their photomixotrophic
metabolisms in different scenarios. For example, Syne-
chocystis sp. PCC 6803 (blue-green algae) is capable of
performing photomixotrophic growth. '>C-MFA has
shown that CO, contributes to 25% of Synechocystis bio-
mass yield during its mixotrophic growth with **C-glucose
and '2CO, [32]. On the other hand, '*C-analysis has
tracked D-lactate synthesis in an engineered Synechocystis
6803 [33]. In that study, the lactate production increased
substantially during the co-metabolism of both CO, and
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Figure 2 Schematic examples to demonstrate the use of '>C-analysis in elucidating the contributions of various carbon substrates
towards the final product synthesis. (A) Biosynthesis yield analyzed by feeding cells with '*C-substrates (such as fully labeled glucose and
acetate). Abbreviations: GAP, Glyceraldehyde-3-phosphate; PYR, pyruvate; KIV, ketoisovalerate. (B) Relative product yields from a primary substrate

JCL260; bb - valine from glucose in JCL260) [28]; ¢ - Free fatty acids from acetate in an E. coli strain [30]; d - biomass from glucose in wild type
Synechocystis 6803 [32]; e - D-lactate from acetate in engineered Synechocystis 6803 [33]).

Isotopomer analysis

glucose in a low performance strain; b — Isobutanol from glucose in

acetate. Experiments with fully labeled acetate and *CO,
determined that nearly all of the lactate molecules were
non-labeled and that only the acetyl-CoA-derived protei-
nogenic amino acids (leucine, glutamate and glutamine)
were '3C-labeled. This observation suggests that acetate
entered into TCA cycle and was involved only in biomass
growth, while the yield of D-lactate was completely de-
rived from CO, (Figure 2). This result further indicates
that acetate could inhibit the pyruvate decarboxylation
reaction and thus direct more carbon flux from pyru-
vate to lactate. The above study shows the value of *C-
analysis in improving our understanding of pathway
regulations for product synthesis. Since many microbial
platforms (including both algal species and heterotrophs)
may co-metabolize multiple carbon substrates simultan-
eously, isotopomer feeding can reveal the contributions of
each substrate to the corresponding metabolite pools, and
thus predict the potential bottlenecks in biomass or prod-
uct formations.

Product yield from alternative pathways

13C-analysis can decipher the yield of products with
multiple biosynthesis routes. For example, the acetogenic
bacterium Clostridium carboxidivorans uses syngas (Ha,
CO and CO,) to generate various chemicals (e.g., acetate,
ethanol, butanol, and butyrate) [34]. It contains several
routes for CO, fixation, which includes the Wood-
Ljungdahl pathway, the anaplerotic pathways, and the
pyruvate synthase reactions. '>C-experiments can iden-
tify the relative contribution of each CO, fixation

pathways towards product synthesis. As a demonstra-
tion, cultivation of Clostridium with labeled *CO, and
2CO has been shown in Figure 3A. Analysis of the label-
ing patterns in either alanine or pyruvate could reveal the
relative contributions of the different CO, assimilation
reactions to biomass and product synthesis.

Yield of a product form a biosynthesis pathway may
suffer losses from side reactions and intermediate
degradation/secretion. A statistical analysis on previ-
ous metabolic engineering works observed 20% ~ 30%
yield reduction per engineered enzymatic reaction step
(“Rule of Thumb”) [26,27]. To reduce the carbon loss,
novel pathways are constantly proposed and engineered
into microbial hosts to create a “short-cut” or carbon ef-
ficient route from the feedstock to the final product.
Whenever heterologous pathways are engineered into a
microbe, the actual contribution to the final product of
the new pathway versus the native pathway is often
difficult to be estimated [35]. In the following example,
we demonstrate that '*C-experiments can determine
the relative fluxes through multiple pathways by meas-
uring product labeling. Specifically, 1-butanol could be
produced simultaneously from a threonine pathway and
a citramalate pathway (a short-cut keto acid-mediated
pathway) in E. coli [36]. If 1st position *C-pyruvate and
'*C-bicarbonate were fed to 1-butanol producing cul-
tures, labeling patterns in 1-butanol can reveal the fluxes
through both the routes (Figure 3B). Recently, a non-
oxidative glycolytic cycle (NOG) was designed to increase
biofuel yield [12]. This NOG pathway starts with fructose
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Figure 3 Schematic examples illustrate that '3C-analysis can be utilized to determine the contributions of various biosynthetic pathways
towards final product yield. (A) '°C analysis to study the carbon assimilation during syngas fermentation ('*CO,, '>CO and H-). Analysis of metabolite
labeling patterns can determine CO, and CO utilization for pyruvate production. The isotopomer data of pyruvate was used as a demonstration of '*C
applications for product yield calculations. (B) Threonine and citramalate pathway for the synthesis of 1-butanol. The carbon rearrangement network
shows the labeling of 1-butanol from the two biosynthesis pathways, when fed with 1-">C pyruvate and '*C bicarbonate.

6-phosphate and undergoes three metabolic cycles to gen-
erate acetyl-CoA without losing any carbon. To probe the
contribution of NOG pathway to overall cell metabolism,
this study has presented a carbon rearrangement map for
13C-analysis of the NOG pathway function. These exam-
ples illustrate the potential of *C-analysis to examine the
in vivo activity of various novel pathways towards product
synthesis.

Product yield influenced by bioenergetic efficiency

The theoretical product yield is generally calculated
based on the stoichiometry of product synthesis from a
carbon substrate. However, microbial energy metabolism
also affects product yield because the synthesis of high-
energy chemicals is energetically expensive, consuming
large amounts of ATP/NAD(P)H. Cell maintenance (i.e.,
energy consumed for functions other than the production
of new cell material) strongly competes for energy mol-
ecules and limits product synthesis. The maintenance
energy involves regeneration of macromolecules, futile
metabolic cycles, energy spilling reactions, proofread-
ing, cell motility, preservation of chemical gradients,
and repairing of cell damage caused by environmental
stresses [37,38]. For example, non-growth-associated
maintenance in wild type E. coli consumes 7.6 mmol of
ATP per gram dry weight per hour [39]. Moreover,
oxidative phosphorylation of NADH is a major source
for ATP generation (theoretical maximum P/O ratio: 1
NADH = 3 ATPs) [40]. Cytochrome oxidase is trans-
membrane protein complex that transfers electrons to
O, and translocate protons across the membrane to
establish a proton gradient to power ATP synthase.
However, proton translocation through membrane is

not always coupled with electron transfer from NADH
to O,, which reduces the contribution of oxidative
phosphorylation to the establishment of the proton
motive force for ATP synthesis [41,42]. Thereby, the
actual P/O ratio, which is still in debate, is observed to
be below 2.5 [43]. Under metabolic stresses, the respir-
ation efficiency can be further reduced because trans-
membrane proton gradients for ATP synthesis leak over
time, resulting in loss of catabolic energy capture [37,44].
For example, the riboflavin producing Bacillus subtilis has
a P/O ratio of 1.3, and a small increase in P/O ratio (from
1.3 to 1.5) could increase riboflavin yields by 20% [45].

The amount of energy from substrate catabolism diverted
to non-growth functions varies dramatically depending
on different organisms and growth conditions (e.g., dur-
ing E. coli growth, its energy yield of substrate catabol-
ism could be one-third of the theoretical maximum)
[37]. To illustrate the impact of energy efficiency on
product yield [46], a small-scale flux balance model re-
lated to fatty acid-overproducing strain was built exclu-
sively for this report. This small-scale model employs
eight reactions (Table 1) to demonstrates free fatty acid
production as a function of non-growth associated ATP
maintenance and P/O ratio [47]. The fluxes were resolved
by the function below:

max v(2)
such that A.v=>band Ib<v<ub,

where the objective function is to maximize v(2) (i.e., the
relative flux of fatty acid). A is the reaction stoichiometry.
Ib and ub are upper and lower bound for each reaction
flux, v(i). Figure 4A shows the relationship between

Table 1 Simplified biochemical reactions considered in the model

Flux, v Reactions Note

v(1) Glucose = 2AceCoA + 2ATP + 4NADH Glycolysis

v(2) AceCoA + 1.75NADPH + 0.875ATP => 0.125 C16:0 fatty acid Fatty acid synthesis

Vv(3) AceCoA = 2NADH + NADPH + ATP + FADH2 TCA cycle

v(4) NADH = NADPH Transhydrogenation

v(5) NADH = P/O ATP Oxidative phosphorylation

v(6) FADH2 = 0.67(P/O)ATP Oxidative phosphorylation

v(7) ATP => ATP_maintenance ATP maintenance (non-growth associated)
v(8) 6.6Glucose + 37.6ATP + 9.5NADPH + 2.5AceCoA => 39.7Biomass + 3.TNADH Biomass formation

Note: Glucose consumption for both biomass growth and product synthesis is normalized to 100. The linear optimizer ‘linprog’ function in MATLAB is used for the
optimization. The final yield (g fatty acid/g glucose) is calculated as follows: Y = (v(2)/8-256)/(100-180) g C16:0 fatty acid/g glucose.
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maximum yield, P/O ratio and ATP maintenance without
constraining biomass growth (v(8) > 0) (Table 1). A higher
P/O ratio makes the microbial system less sensitive to the
increased demand for ATP loss. When the ATP mainten-
ance is low and the P/O ratio is close to 3, the fatty acid
yield can reach the theoretical value of 0.36 g fatty acid/g
glucose (Figure 4A). In such conditions, eliminating com-
peting pathways or engineering new pathways to avoid
carbon loss may be effective to achieve a yield close to the
theoretical maximum [48-50]. When ATP consumption
for maintenance increases, cells need to use extra carbon
substrates for energy generation, thereby decreasing the
fatty acid yield significantly. Under these circumstances,
one should consider strategies that will either reduce cell
maintenance or increase the flux towards ATP synthesis.
In a recent study of an engineered E. coli for fatty acid
overproduction [47], "*C-MFA showed that the theoretical
ATP/NADPH generation (assuming P/O ratio =3) from
glucose catabolism was much higher than ATP/NADPH
consumption for biomass growth and fatty acid synthesis.
After optimization of biosynthesis pathway via ‘push-
pull-block’ strategies, this engineered strain had a fatty
acid yield of only 0.17 g fatty acid/g glucose (Figure 4B)
because a substantive fraction of energy yield from glucose
catabolism was lost due to the suboptimal energy metab-
olism. Such high cell maintenance and low P/O ratio in
the engineered E. coli are likely caused by the various
physiological stresses during biofuel overproduction (e.g.,
changed cell membrane integrity and compositions [51]).
Thereby, *C-MFA not only applies for a better under-
standing of carbon flux distribution, but also provides a
diagnostic analysis of the energy-dependent metabolic

capability for product yields. If the microbial metabolism
demands a considerable amount of ATP/NAD(P)H for
both biosynthesis and cell maintenance, optimal product
yield is unlikely to be achieved by overexpressing biosyn-
thesis pathways or by redirecting metabolic fluxes to avoid
carbon losses. A more promising approach would be to
improve energetic prosperity or respiration efficiency,
thereby allowing the cells to “burn” substrates more effi-
ciently to satisfy the energy requirement [52,53].

Conclusions

Product yield is one of the main considerations of micro-
bial cell factories [54]. Microbial productivity is not only
associated with the efficiency of biosynthesis enzymes, but
is also intertwined with the energy metabolism [55]. Sim-
ple 'C analysis can characterize the hosts’ intrinsic pro-
duction yields under different carbon sources, and
determine the contributions of the different pathways to
biosynthesis. In addition, ">*C-MFA can profile microbial
fluxomes and determine the amount of extra substrates
that the cell consumes to compensate for ATP losses
from diverse cellular processes, which is essential to
understand metabolic capability of a microbial host for
maximal product yields. In the end, '>C-analysis, using
the labeled product as internal standards, can also be
employed to correct product measurement noises in
fermentation processes due to water loss, product evap-
oration or degradation [56]. This review paper aims to
emphasize the indispensable value of *C-labeling tech-
niques to the metabolic engineering field as we foresee
an extended use of '*C-experiments for the develop-
ment of microbial cell factories.
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