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Abstract

Background: Science-based recombinant bioprocess designs as well as the design of statistical experimental plans
for process optimization (Design of Experiments, DoE) demand information on physiological bioprocess boundaries,
such as the onset of acetate production, adaptation times, mixed feed metabolic capabilities or induced state
maximum metabolic rates as at the desired cultivation temperature. Dynamic methods provide experimental
alternatives to determine this information in a fast and efficient way. Information on maximum metabolic
capabilities as a function of temperature is needed in case a reduced cultivation temperature is desirable (e.g. to
avoid inclusion body formation) and an appropriate feeding profile is to be designed.

Results: Here, we present a novel dynamic method for the determination of the specific growth rate as a function
of temperature for induced recombinant bacterial bioprocesses. The method is based on the control of the residual
substrate concentration at non-limiting conditions with dynamic changes in cultivation temperature. The presented
method was automated in respect to information extraction and closed loop control by means of in-line Fourier
Transformation Infrared Spectroscopy (FTIR) residual substrate measurements and on-line first principle rate-based
soft-sensors. Maximum induced state metabolic capabilities as a function of temperature were successfully
extracted for a recombinant E. coli C41 fed-batch bioprocess without the need for sampling in a time frame of
20 hours.

Conclusions: The presented method was concluded to allow the fast and automated extraction of maximum
metabolic capabilities (specific growth rate) as a function of temperature. This complements the dynamic toolset
necessary for science-based recombinant bacterial bioprocess design and DoE design.
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Background
Today, biopharmaceuticals are the principal driver of
innovation in the pharmaceutical industry [1,2]. Fuelled
by regulatory initiatives [3] as well as the emerging focus
on biosimilars (follow-on biologics), novel strategies
for the science and risk based development of efficient
pharmaceutical bioprocesses are needed.
Bioprocess development aims at the identification and

quantification of the interactions of process parameters
with productivity and product quality related attributes,
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typically with the goal of process optimization. Enhanced
bioprocess development approaches following quality by
design (QbD) principles additionally aim at the demon-
stration of process understanding. Following a science
and risk based approach, the impact of parameters crit-
ical in respect to final product quality (critical process
parameters, CPPs) on attributes in relation to final prod-
uct quality (critical quality attributes, CQAs) is systemat-
ically analyzed, providing a high degree of insight in the
process under investigation. The scientifically developed
process understanding can then be communicated to the
regulatory authorities with the benefit of increased
manufacturing flexibility [3].
The basic toolset for QbD driven process development

as discussed by several recent contributions [4-10] and
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covered in recent text books [4,11] includes following
elements:

1) Risk assessment approaches for the identification of
possible CPPs and CQAs

2) Process analytical technology (PAT) methodologies
that allow to “design, analyze and control
manufacturing through timely measurements”

3) Design of experiments (DoE), a statistical approach
aiming at the systematic and efficient investigation
of the input factors’ (for example CPPs) impact on
defined responses (for example CQAs).

Specific growth rate μ and cultivation temperature:
Key parameters governing bioprocessing efficiencies
Product formation rates in fed-batch processes are pri-
mary determined by the specific growth rate (μ) [12-17]
or respectively the specific substrate uptake rate qs
[18-20], which are therefore of primary interest for the
design and investigation of recombinant bioprocesses. Both
variables are typically controlled via open loop feeding
trajectories (exponential feeding), or closed-loop feedback
controllers [21,22] and are directly interlinked via the bio-
mass yield coefficient.
Next to the specific growth rate μ, cultivation temp-

erature has been in primary focus of bioprocess develop-
ment. Rationales for including temperature as factor are
to increase the yield of active recombinant protein
through the increase of solubility [23-25], more efficient
folding through slower protein expression [26,27], less
self-association of recombinant products [28], decrease
of protease activity [29] as well as the possible impact of
temperature on plasmid stability [30].
Due to the importance of cultivation temperature as

well as specific growth rate μ in respect to productivity
and product quality, these factors are of primary interest
for basic bioprocess design as well as bioprocess opti-
mization. In order to do so, information on physiological
boundaries is necessary: The maximum specific growth
rate at a given temperature is not to be exceeded; other-
wise experimental plans fail (desired growth rate is not
achieved) and substrate accumulates. Hence, information
on the maximum growth rate μ as a function of temp-
erature is needed for basic process design and DoE de-
sign purposes.
Dynamic fed-batch experimentation refers to the dy-

namic deflection of (physiological) process states for the
fast extraction of physiological information such as i) infor-
mation on overflow metabolism [22,31], ii) adaptation to
novel substrates [32] and iii) maximum metabolic capabil-
ities of the system under investigation and even iv) produc-
tivities in dependence to physiological states. Dynamic
methods for bioprocess design were reviewed recently
by Spadiut et al. [33]. However, to the authors’ knowledge
there has been no dynamic study so far dealing with the
determination of the temperature dependency of the spe-
cific growth rate.
Temperature adaptation of E. coli is reported to be

very fast [34]. Therefore, quasi steady states in fed-batch
experiments can be assumed and the application of dy-
namic ramp methods is appropriate. Hence, the application
of dynamic experiments to determine the relationship of μ
and temperature should be feasible.

Real-time bioprocess monitoring
Information on chemical, biological and physiological
process variability is highly desired for bioprocess ana-
lysis (identify and allocate sources of variation), meas-
urement of CPPs and CQAs, real-time event detection
(e.g. depletion of a carbon source) and bioprocess con-
trol. Preferably, this information should be extracted in
an automated fashion without manual user interaction
in real-time. Examples for the applications of real-time
automated bioprocess monitoring include the monitor-
ing and control of glucose and glutamine concentrations
using online HPLC [35] and the simultaneous measure-
ment of glucose, glycerol, ethanol, acetate, phosphate
and ammonium using an online enzymatic robot [36]. Al-
though very powerful, these methods require an automated
bioreactor sampling port which constitutes a potential ster-
ility hazard since these methods are invasive. Furthermore,
constant withdrawal of on-line samples is a potential issue
for small scale reactors in process development.
Real-time bioprocess monitoring devices based on

spectroscopic methods, for example near infrared, mid-
infrared and RAMAN, can be placed in-situ (inside the
bioreactor). They offer the possibility of simultaneous
and high frequency measurement of multiple compo-
nents without constant withdrawal of on-line samples.
However, the use of spectroscopic methods typically re-
quires the use of chemometric tools for the establishment
of robust calibration models. Bioreactor monitoring using
spectroscopic methods and the processing of spectral data
using chemometric methods is reviewed elsewhere [37].
Fourier transformation mid infrared spectroscopy

(FT-IR) using an attenuated total reflection (ATR) inter-
face is able to measure in the fingerprint region (1800-
900 cm-1) of the mid-infrared range providing chemical
information on many relevant molecules (e.g.: carbonic
acids, sugars, alcohols etc.). It was successfully applied
in bioprocessing for the measurement of carbon sources
(arabinose, fructose, glucose, glycerol, methanol) and
bioprocess metabolites (acetate and ethanol) [38-41]. ATR-
FT-IR provides the advantages of fast (time range of
2 minutes) measurements of multiple components at a
time. However, to extract quantitative information typically
chemometric methods are required. For a thorough review
see also [37].
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Soft sensors for bioprocess development
Software sensors or short “soft sensors” are mathematical
tools that process readily available process signals to calcu-
late unknown process variables. Roughly, they can be char-
acterized in first-principle soft sensors that rely on first-
principle relationships such as mass balancing and data
driven approaches that demand experimentally obtained
training data sets. The latter are mainly used for manufac-
turing where sufficient training data sets are available. In
contrast, first-principle soft sensors demand little prior
knowledge and no training data sets. Therefore, they in-
creasingly find attention for process development purposes.
First principle soft sensors on the basis of mass balances
allow the real-time extraction of physiological information
such as specific rates and yield coefficients without the need
for off-line sampling, as demonstrated elsewhere [31,42,43].
This is especially important for bioprocess development in
an industrial environment, where in contrast to universities
frequent sampling intervals are typically not feasible.

Aim of the contribution
This contribution aims at the presentation of a novel
dynamic fed-batch method for the physiological in-
vestigation of microbial systems. The method allows the
extraction of the relationship of the specific growth rate
μ and temperature in induced conditions. This informa-
tion is necessary for the science based basic design of re-
combinant bioprocesses. In order to comply with process
developments’ demands for highly automated methods
with little user interaction, the method was designed to
allow real-time extraction of physiological information
using a first-principle soft-sensor. Furthermore, a simple,
but highly efficient PID control strategy for the control of
residual substrate concentrations in fed-batch experi-
ments based on simple process information is presented.

Goals
Presentation of a novel method for the efficient and
highly automated extraction of strain specific informa-
tion through soft-sensors. Presentation of a novel and
simple to be implemented control strategy for the con-
trol of residual substrate concentrations in fed-batch
processes.

Results
The determination of the temperature dependency of
the specific growth rate (μ) was carried out in an efficient
manner via a dynamic ramp experiment. The applicability
of the method is demonstrated on a recombinant E. coli
C41 bioprocess. In a second step, the method was auto-
mated by substituting at-line enzymatic glucose measure-
ments by in-line ATR-FTIR measurements and the use of
first-principle soft-sensors for the real-time extraction of
physiological information. Prerequisite of the method is
the control of the residual substrate concentration under
non-limiting conditions. The design and in-silico testing of
the developed control methodology to achieve this task is
described in the following section.

Design and in-silico performance of the PID control strategy
Control of the residual glucose concentration was achieved
via a PID control strategy. Due to the non-linearity of
bioprocesses PID controllers are typically not considered the
first choice for bioprocess control applications. To overcome
these limitations and avoid the re-adjustment of PID para-
meters, the control problem was approached as follows:
Glucose consumption in fed-batch processes is proportional
to base consumption, carbon dioxide evolution rate or other
signals reflecting the total metabolic activity. The propor-
tionality coefficient P of glucose consumption and the
respective signal (actually a yield coefficient Yrs/ry, whereas rS
is the glucose consumption rate and ry is the signal rate) can
change over time due to physiological changes of the host
organisms, e.g. due to the consequences of metabolic load
[44] and is typically unknown in early stages of process
development. PID controllers aiming at the control of
residual substrates typically act directly on the feed rate F
for the control of the residual substrate concentration.
Here, the PID control algorithm was designed to act on
the proportionality coefficient P(t) instead of directly on
the feed-rate. The feed rate F(t) is then calculated as
product of the calculated proportionality coefficient and
the proportionality signal S (Equation 2).

P tð Þ ¼ Kp ⋅ e tð Þ þ Kp ∫
t
0 e tð Þ dt þ Kd⋅

d
dt

e tð Þ

Equation 1: PID algorithm for the proportionality coef-
ficient P(t)

F tð Þ ¼ P tð Þ⋅ S

Equation 2: Calculation of the feed rate as a function
of signal S and the proportionality factor P(t).

An in-silico fed-batch model was used for the testing
of the developed control strategy for the control of the
residual substrate concentration. The model was run
with a specific growth rate of 0.1 h-1 from biomass con-
centration 2 g/l to 50 g/l. 5% random noise was added to
the “in-silico” glucose measurements (every 0.5 h), which
served as the basis of the PID control strategy aiming at
the control of the residual glucose concentration at
20 g/l. The base flow rate was chosen as proportionality
signal. PID parameters were determined empirically and
then held constant for all simulations.
Since the proportionality coefficient P (here: the yield

coefficient substrate consumption per base consumption
because the base flow rate was chosen as proportionality
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signal) is not known prior to fermentation, the con-
troller was tested for different initial values: 10%, 50%
100% -50% -100% (Figure 1). In general, the built-up re-
sponse of the controller is equal to a typical PID con-
troller. In case the initial proportionality constant is off by
10% (Figure 1, Case A), the controller efficiently controls
the residual substrate concentration efficiently at 20 ± 3 g/l.
Higher deviations from the true value (Cases B to E) show
higher deviations from the set-points and a slower build up
response.
On the basis of the in-silico results (initial transient

behaviour for the case of an unknown yield coefficient,
long-term stability) it was concluded that the presented
formulation of a PID control strategy is applicable for
the control of residual substrate concentrations in case a
reference measurement (e.g. at-line enzymatic analysis
or in-line spectrometric measurement) is available and a
good initial proportionality factor (less than 50% devi-
ation from the true value) can be delivered to the PID
controller. Tuning of PID parameters can be efficiently
done via in-silico simulation.

Performance of the presented method: E. coli C41
pBMPpeT- non-induced conditions
The bioreactor containing 4 liters batch medium (20 g/l
glucose) was inoculated with 100 ml preculture and grown
for 8 hours at 35°C to obtain a quantifiable amount of bio-
mass and biologic activity. Subsequently, the PID control
strategy with the base feed rate as proportionality factor
was started to control the residual substrate concentration
Figure 1 Build up response of the presented PID control strategy.
at 20 g/l, as described in the previous section. Initial pro-
portionality coefficient was estimated from batch data
(proportionality coefficient of base and feed flow rate).
Sampling intervals were chosen according to Equation 4
and adapted as a function of the estimated specific growth
rate. Residual glucose concentrations were measured en-
zymatically at-line and provided immediately to the PID
controller. The temperature changed dynamically in a
range from 35 to 15°C within a total time of 20 hours (see
Figure 2). Biomass dry cell weight estimation from 2 to
10 g/l was done via OD correlation. Biomass dry cell
weight was determined gravimetrically in a range from 10
to 70 g/l. Between temperature set-points the temperature
was changed transiently, allowing for the extraction of the
information μ f(T) at the temperature set-points as well as
for the temperature transients. Residual glucose was suc-
cessfully controlled at non-limiting conditions during the
whole process.
Specific growth rates were calculated on the basis of

biomass dry cell weight measurements and found to de-
crease linearly as a function of temperature as illustrated in
Figure 3A. Specific growth rates calculated for temperature
set-points were averaged and linearly regressed to find the
strain specific function μ f(T) for the strain under investi-
gation (Figure 3B).

FTIR assisted control and soft sensor assisted real-time
extraction of information in induced conditions
The method described in in the previous section is heavily
dependent upon frequent off-line sampling and therefore



Figure 2 Dynamic investigation of the specific growth rate as a function of temperature. Residual glucose was controlled at 20 g/l using
at-line enzymatic measurements. The culture was submitted to dynamic ramps in temperature. Biomass growth was monitored through
off-line sampling.
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difficult to be applicable in a pharmaceutical bioprocess de-
velopment environment where a high degree of automa-
tion and little manual interaction is necessary for cost
efficiency. Hence, the method was automated in respect to
control via the use of in-line ATR-FTIR spectroscopy to
substitute the at-line measurement of residual glucose,
as well as in respect to information extraction via the
use of a first principle soft sensor for the estimation of
Figure 3 Specific growth rate as a function of temperature in non-ind
were used for the calculation of the specific growth rate μ (A). μ was foun
fermentation process. The function μ f(T) was obtained via linear regression
the specific growth rate (desired information) as well the
biomass concentration.
Results are depicted in Figure 4. The culture was

grown to 5 g/l and subsequently induced by 10 mM
IPTG. Glucose concentrations were controlled at non-
limiting conditions. Residual glucose concentrations pre-
dicted via in-line FTIR measurements showed a maximum
deviation of ±5 g/l. A first-principle rate based soft sensor
uced conditions. Off-line biomass dry cell weight concentrations
d to correlate with cultivation temperature (T) throughout the whole
(B).



Figure 4 Dynamic investigation of the specific growth rate as a function of temperature for induced process conditions and automated
extraction of information. Residual glucose was controlled at 20 g/l via an in-line FTIR control strategy and cross checked by off-line enzymatic
measurements. The culture was submitted to dynamic ramps in temperature. Biomass growth was monitored through off-line sampling and
estimated via the soft sensor.
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was used for the estimation of the biomass formation rate
as well as specific rates and yield coefficients. The
temperature was changed dynamically in a range of 35°C
to 20°C. Estimated biomass concentrations and measured
biomass concentrations (biomass dry cell weight) are
depicted in Figure 4.
Specific growth rates automatically estimated from the

soft-sensor without the need for off-line measurements are
Figure 5 Specific growth rate as a function of temperature in induced
specific growth rate μ (A). μ was found to correlate with cultivation tempe
of the specific growth rate as a function of temperature can be read from
depicted in Figure 5A. From this information, the strain
specific function μ f(T) can be extracted (Figure 5B).

Discussion
Induced state specific growth rates
The investigation of the dependency of the specific growth
rate μ on parameters such as the cultivation temperature
has been a primary interest of microbial research [45-48].
conditions. The soft sensor was used for the estimation of the
rature (T) throughout the whole fermentation process. The relationship
the plot μ versus temperature (B).
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The reduction of the specific growth rate μ as a results of
recombinant protein expression due to metabolic load is
discussed in several contributions [44,49]. Recombinant
systems are prone to energy/precursor drain due to recom-
binant protein expression, a phenomenon often referred to
as “metabolic load” or “metabolic burden” [49,50].
As expected, in the presented study the temperature

dependency of the specific growth rate was found to dif-
fer strongly under induced and non-induced conditions
(see Figure 3 and Figure 5). This can be attributed to the
effect of metabolic load due to recombinant protein pro-
duction. This underpins that repetitive batch experimen-
tation, chemostat and shake flask experimention running
under non-induced conditions are not applicable for
the physiological investigation of induced recombin-
ant bioprocesses. In the presented method, cultivation
temperature was varied from high to low set-points. Con-
sequently, specific growth rates were also varied from high
to low values. Hence, high specific growth rates were run
at low biomass concentrations in the beginning of the ex-
periments and low specific growth rates were run in the
end of the experiment where biomass concentrations are
high. This has advantages in respect to avoiding to exceed
the maximum oxygen transfer rate, the maximum heat
transfer rate and the accumulation of overflow metabolites,
as also discussed elsewhere [22].

Maximum induced state metabolic capabilities as
prerequisite for bioprocess design and DoE based
bioprocess optimization
The presented method allows to determine the strain
specific function μmax f(T) in the induced state in an au-
tomated and efficient way. The area under the function
μ f(T) highlighted in Figure 3, B and Figure 5, B spans
the space of process parameters that are feasible from an
physiological point of view. The respective function can
be considered a bioprocess design boundary: Exceeding
the maximum specific growth rate would lead to uncon-
trolled accumulation of substrate. This is especially import-
ant in multivariate studies aiming at the investigation of
the impact of temperature and specific growth rates on
process performance.

Measurement and control of residual substrate
concentrations in fed-batch processes
In this study, a combination of a first-principle soft-
sensor with spectroscopic estimation of glucose was
used to control glucose at a non-limiting level. A very
simple linear calibration model based on a single band
in the mid IR spectrum was used for the estimation of
the glucose concentration, since within the early stages
of process development there is typically insufficient
data for multivariate calibration models [41,51]. Such
models are often more capable of quantifying multiple
components at once, with a lower error of prediction,
compared to the simple model used within this contri-
bution. For the task in this contribution (control residual
substrate concentration at non-limiting conditions), the
linear calibration models turned out to be sufficient.
However, a considerable improvement of residual glu-
cose estimation can be expected by the use of multivari-
ate calibration models. Furthermore, the use of spectra
libraries [52] can be a promising alternative.
Within this contribution the control of the residual

substrate concentration was achieved using a simple PID
control strategy in combination with ATR-FTIR mea-
surements of residual glucose. In contrast to traditional
approaches where the PID controller acts directly on the
feed-rate, it was designed to act on a proportionality fac-
tor (P) as described in Equation 2. P can be interpreted
as the yield coefficient of carbon source conversion in
respect to the ammonia conversion. This is to our know-
ledge a novel approach which was proven that it is ap-
plicable to be applicable both in in-silico simulations
(Figure 1) as well as in real E. coli bioprocesses (Figure 2
and Figure 4).
In general, the control of the glucose concentration in

bacterial fed-batch processes is a highly challenging task
due to high glucose conversion rates and high process
dynamics. This control approach is atypical for bacterial
fed-batch fermentations, since they are generally run
under substrate limitation. However, control of the re-
sidual substrate concentration is desired in recombinant
mammalian cell cultures since the glucose concentration
affects the glycosylation pattern of the recombinant prod-
ucts [35,53]. Proportional integral (PI) or proportional in-
tegral derivative (PID) controllers are simple and easily
implementable algorithms for linear systems [54]. How-
ever, bioprocesses are highly non-linear by nature and
show high process dynamics, typically discarding PI or
PID approaches. Therefore, control challenges such as the
control of residual glucose concentrations in fed-batch ex-
periments are typically approached by more sophisticated
controllers such as adaptive controllers, Kalman Filters or
Neural Network or Fuzzy control approaches [35,55].
However, the necessity for process models or training data
sets discards these control approaches for process devel-
opment purposes, where the necessary information basis
(e.g.: a suitable process model) is typically not available.
The presented approach using a PID controller to act
indirectly on the feed rate can be considered a promising
alternative for applications where no or little prior know-
ledge on the system is available.

Process development using a toolset of dynamic
methods, soft-sensors and parallel bioprocessing
We anticipate that soft-sensors, soft-sensor assisted
bioprocess control strategies and the use of advanced
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on-line analytics will play key roles for the acceleration of
bioprocess development as required by the biotech in-
dustry. We believe these methods are especially powerful
in combination with parallel processing [56,57]. Within
this contribution, we demonstrate the benefits of the
combined use of advanced process analytics (ATR-FTIR),
first-principle soft sensing and dynamic experimentation,
aiming at the fast and automated extraction of physio-
logical information. Furthermore, due to limited user
interaction and a high degree of automation, the method
can be used for multiple bioreactors simultaneously, as
required for parallel bioprocessing applications.
The presented method complements the toolset of dy-

namic experiments available and sets directions for future
progress in the field efficient bioprocess development.

Conclusions
Dynamic methods provide fast and efficient alternatives
to classical chemostat-, shake flask and repetitive batch
driven physiological investigation of microbial systems.
In order to apply dynamic methods in industrial process

development, process automation in respect to information
extraction and process control is necessary.
First-principle soft sensors are efficient tools for the

extraction of strain specific parameters from dynamic
bioprocesses and can be used to reduce manual sam-
pling effort.
The presented method allows the investigation of the

relationship of the specific growth rate as a function of
the temperature in an efficient and automated fashion
without the need for sampling both for induced and non-
induced bioprocesses.

Methods
Strain
E. coli C41 (F– ompT hsdSB (rB- mB-) gal dcm (DE3);
Lucigene, Middleton, WI, USA) with the plasmid
phBMPpET encoding for human bone morphogenetic
protein 2 (rhBMP-2) was used. Strains and plasmids
were gratefully provided by BIRD-C GmbH & Co KG,
Kritzendorf, Austria and Morphoplant GmbH, Bochum,
Germany.

Media
A defined minimal medium with D-glucose as main car-
bon source (batch medium glucose concentration: 20 g/l;
fed-batch medium glucose concentration 400 g/l) as de-
scribed in detail elsewhere [58] was used.

Bioreactor setup
A Techfors-S bioreactor (Infors, Bottmingen, Switzerland)
with 10 l working volume was used. For gravimetric
flow quantification, feed and base bottles were placed
on scales (Sartorius, Göttingen, Germany). A Techfors-S
integrated analogue pump was used for the addition of
glucose. The bioreactor was equipped with probes for the
measurement of dissolved oxygen (Hamilton, Reno, USA),
pH (Hamilton, Reno, USA) and head pressure (Keller,
Winterthur, Switzerland). CO2 and O2 in the off-gas were
measured by a gas analyzer (Müller Systems AG, Egg,
Switzerland), based on non-dispersive infra-red (CO2) and
paramagnetic (O2) principle. All signals were collected
by the process information management system (PIMS)
Lucullus (Secure Cell, Schlieren, Switzerland).

Fermentation parameters
Dissolved oxygen levels (DO2) were kept above 40% sat-
uration (100% saturation were set before inoculation at
35°C, 0.3 bar gauge, pH 7.2). The pH was kept constant
at 7.2 by adding 12.5% NH4OH, which also served as ni-
trogen source. Dynamic temperature ramps and feeding
profiles are described in the results section.

Biomass dry weight concentration
2 ml of the cell suspension were centrifuged (RZB 5171,
10 min, 4°C) in pre-weighted glass tubes, washed twice
using distilled water and dried at 105°C for 72 hours.
The biomass dry weight concentration (BDW) was de-
termined in duplicate.

Metabolite concentrations
Cell-free supernatant samples for the determination of
residual substrate concentrations were taken from the
vessel using an in-line ceramic 0.2 μm filtration probe
(IBA, Heiligenstadt, Germany). Off-line and at-line con-
centrations in the supernatant were measured enzymati-
cally using a photometric robot (CuBiAn XC; Opto-Cell,
Germany).

Soft sensor rate calculation, reconciliation, biomass
estimation, in-silico simulations
A first principle soft sensor designed for process de-
velopment as described in detail elsewhere [31,43]
was used within this contribution. The soft-sensing con-
cept is illustrated in Figure 6. In short, the soft-sensor uses
inputs from the process such as offgas O2 and CO2 con-
centrations using off-gas analysis, in-flows quantification
using mass flow controllers, residual substrate measure-
ments using FT-IR and a set of constants to calculate con-
version rates of substrate (rs), carbon dioxide (rCO2), and
oxygen (rO2). Changes in the residual substrate concen-
tration as measured via on-line FTIR were made available
to the soft-sensor. The unknown conversion rate of the
biomass formation (rx) was estimated using the carbon
and degree of reduction (DoR) balance as linear constraints
as described elsewhere [59]. The biomass concentration is
obtained via integration of the estimated biomass forma-
tion rate with time. Subsequently, the specific growth rate



Figure 6 Illustration of the soft-sensing strategy to extract automatically information in the form of specific rates (specific growth rates).
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(see Equation 3), specific substrate uptake rates of carbon
sources as well as yield coefficients can be calculated as de-
scribed in detail elsewhere [31].

μ ¼ rx
x

Equation 3: Calculation of the specific growth (μ) rate as
a function of the estimated biomass formation rate (rx)
and the estimated biomass concentration (x) using the soft
sensor.
Numerical simulations of the PID control strategy were

carried out with MATLAB 2012a (Mathworks, Natick,
Massachusetts, USA) and Excel (Microsoft, Redmond,
Washington). The in-silico model was adapted from
Wechelberger et al. (2013) [60].
In-line residual substrate measurement
An ATR-FTIR spectrometer (ReactIR, Columbus, Ohio,
USA) interfaced with the bioreactor via a 25 mm Ingold
nozzle was used. Infrared spectra (256 scans) were mea-
sured in intervals of 2 min and used for the estimation
of residual glucose concentrations via a simple linear
calibration model using a main absorption band of glu-
cose (1036 cm-1) in the mid infrared range. To account
for baseline drifts, the spectra where off-set corrected at
1807 cm-1, since there were no components with ab-
sorption at this wave number in the culture broth. Cali-
bration spectra are displayed in Additional file 1.
Real-time data processing
IC Quant (Mettler Toledo, Columbus, Ohio, USA) was
used for the real time computation of spectra for the esti-
mation of the residual glucose concentration. Glucose con-
centrations were imported to Lucullus PIMS as text files
(Secure Cell, Schlieren, Switzerland) and delivered to the
soft-sensor. The soft-sensor was implemented using the
Sim-Fit tool of the Lucullus PIMS (Secure Cell, Schlieren,
Switzerland).

Definition of sampling intervals
The signal to noise ratio of timely resolved rate-based
information (e.g. the specific growth rate μ) calculated
from off-line data is dependent upon the error on the
respective offline measurement, the variation (signal)
as well as the time window [60]. To achieve comparable
signal to noise ratios from off-line data in all process
phases, sampling intervals were calculated according to
Equation 4 [60] with a desired signal to noise ratio
(SNR) of 12 and an expected error (BM) on the biomass
measurements of 1%.

Sampling Interval ¼ SNR � error BMð Þ
μ � 67

Equation 4: Estimation of the sampling interval based
on signal to noise ratio (SNR), the specific growth
rate μ and the expected error (BM) on the biomass
measurements.



Sagmeister et al. Microbial Cell Factories 2013, 12:94 Page 10 of 11
http://www.microbialcellfactories.com/content/12/1/94
Additional file

Additional file 1: Fourier Transformation Infrared Spectra.

Abbreviations
μ: Specific growth rate [h-1]; T: Temperature [°C]; FTIR: Fourier transformation
infrared; CPP: Critical process parameter; CQA: Critical quality attribute;
PAT: Process analytical technology; qs: Specific substrate uptake rate [g/(gh)];
SNR: Signal to noise ratio; error (BM): Error in biomass quantification [%];
DOE: Design of experiments; Y(x/s).: Biomass yield coefficient [g/g]; rs: Substrate
converstion rate [g/(lh)]; rx: Biomass formation rate [g/(lh)]; P: Proportionality
factor; E: Control deviation; t: Time; PID: Proportional integral derivative;
K: Coefficient of PID controller; F: Flow rate [g/h]; S: Signal as basis of control
strategy; BDW: Biomass dry cell weight [g/l].

Competing interest
The authors declare that they have no competing interests.

Authors’ contributions
PS and CH jointly conceived the study. PS designed the experiments, drafted
the manuscript and conducted data analysis and data interpretation. TL
participated in the design and coordination of the study and helped to draft
the manuscript. PW participated in the design and application of the soft
sensing strategy. AM conceived and performed the analytical concept. All
authors read and approved the final manuscript.

Acknowledgements
This project was supported by FFG, Land Steiermark, SFG, BIRD-C GmbH &
Co KG, Kritzendorf and Morphoplant GmbH, Bochum. Strains and plasmids
were gratefully provided by BIRD-C GmbH & Co KG, Kritzendorf and
Morphoplant GmbH, Bochum. We acknowledge the help of Eva Holl with
the workings on the bioreactor.

Author details
1Institute of Biochemical Engineering, Vienna University of Technology,
Vienna, Austria. 2Research Center of Pharmaceutical Engineering (RCPE)
GmbH, Graz, Austria. 3BIRD-C GmbH, Kritzendorf, Austria. 4CD Laboratory for
Mechanistic and Physiological Methods for Improved Bioprocesses, Vienna,
Austria.

Received: 11 June 2013 Accepted: 27 September 2013
Published: 15 October 2013

References
1. Lawrence S: Billion dollar babies–biotech drugs as blockbusters.

Nat Biotechnol 2007, 25:380–382.
2. Walsh G: Biopharmaceutical benchmarks 2010. Nat Biotechnol 2010,

28:917–924.
3. U.S. Food and Drug Administration (FDA): Pharmaceutical cGMPs for the 21st

Century- A Risk-Based Approach; 2004.
4. Rathore AS, Branning R, Cecchini D: Quality: Design Space for Biotech

Products. BioPharm Int 2007, 4.
5. Harms J, Wang X, Kim T, Yang X, Rathore AS: Defining process design

space for biotech products: case study of Pichia pastoris fermentation.
Biotechnol Prog 2008, 24:655–662.

6. Huang J, Kaul G, Cai C, Chatlapalli R, Hernandez-Abad P, Ghosh K, Nagi A:
Quality by design case study: an integrated multivariate approach to
drug product and process development. Int J Pharm 2009, 382:23–32.

7. Mandenius C-F, Graumann K, Schultz TW, Premstaller A, Olsson I-M, Petiot E,
Clemens C, Welin M: Quality-by-design for biotechnology-related
pharmaceuticals. Biotechnol J 2009, 4:600–609.

8. Rathore AS, Yu M, Yeboah S, Sharma A: Case study and application of
process analytical technology (PAT) towards bioprocessing: Use of
on-line high-performance liquid chromatography (HPLC) for making
real-time pooling decisions for process chromatography. Biotechnol Bioeng
2008, 100:306–316.

9. Woelbeling C: Creating Quality by Design/Process Analytical Technology
Management (PAT/QbD) Management Awareness. Pharm Eng 2008,
28(3):36–49.
10. Yu L: Pharmaceutical quality by design: product and process
development, understanding, and control. Pharm Res 2008, 25:781–791.

11. Undey C, Low D, Menezes JMCD: Pat applied in biopharmaceutical process
development and manufacturing: an enabling tool for quality-by-design. Boca
Raton, Fla.: CRC Press; 2012.

12. Babaeipour V, Shojaosadati SA, Robatjazi SM, Khalilzadeh R, Maghsoudi N:
Over-production of human interferon-γ by HCDC of recombinant
Escherichia coli. Process Biochem 2007, 42(1):112–117.

13. Hellwig S, Emde F, Raven NP, Henke M, van Der Logt P, Fischer R: Analysis
of single-chain antibody production in Pichia pastoris using on-line
methanol control in fed-batch and mixed-feed fermentations.
Biotechnol Bioeng 2001, 74:344–352.

14. Min C-K, Lee J-W, Chung K-H, Park H-W: Control of specific growth rate to
enhance the production of a novel disintegrin, saxatilin, in recombinant
Pichia pastoris. J Biosci Bioeng 2010, 110:314–319.

15. Priego-Jimenéz R, Peña C, Ramírez OT, Galindo E: Specific growth rate
determines the molecular mass of the alginate produced by Azotobacter
vinelandii. Biochem Eng J 2005, 25:187–193.

16. Puertas J-M, Ruiz J, de la Vega MR, Lorenzo J, Caminal G, González G:
Influence of specific growth rate over the secretory expression of
recombinant potato carboxypeptidase inhibitor in fed-batch cultures of
Escherichia coli. Process Biochem 2010, 45:1334–1341.

17. Sanden AM, Prytz I, Tubulekas I, Forberg C, Le H, Hektor A, Neubauer P,
Pragai Z, Harwood C, Ward A, Picon A, de Mattos JT, Postma P, Farewell A,
Nystrom T, Reeh S, Pedersen S, Larsson G: Limiting factors in Escherichia
coli fed-batch production of recombinant proteins. Biotechnol Bioeng
2003, 81:158–166.

18. Dietzsch C, Spadiut O, Herwig C: A dynamic method based on the specific
substrate uptake rate to set up a feeding strategy for Pichia pastoris.
Micro Cell Fact 2011, 10:14.

19. Wechselberger P, Sagmeister P, Engelking H, Schmidt T, Wenger J, Herwig C:
Efficient feeding profile optimization for recombinant protein production
using physiological information. Bioprocess Biosyst Eng 2012, 35(9):1637–1649.

20. Zalai D, Dietzsch C, Herwig C, Spadiut O: A dynamic fed batch strategy for
a Pichia pastoris mixed feed system to increase process understanding.
Biotechnol Prog 2012, 28:878–886.

21. Jenzsch M, Simutis R, Luebbert A: Generic model control of the specific
growth rate in recombinant Escherichia coli cultivations. J Biotechnol
2006, 122:483–493.

22. Sagmeister P, Wechselberger P, Jazini M, Meitz A, Langemann T: Soft sensor
assisted dynamic bioprocess control: Efficient tools for bioprocess
development. Chem Eng Sci 2013, 96:190–198.

23. Li P, Anumanthan A, Gao X-G, Ilangovan K, Suzara VV, Düzgüneş N,
Renugopalakrishnan V: Expression of recombinant proteins in Pichia
pastoris. Appl Biochem Biotechnol 2007, 142:105–124.

24. Noguère C, Larsson AM, Guyot J-C, Bignon C: Fractional factorial approach
combining 4 Escherichia coli strains, 3 culture media, 3 expression
temperatures and 5 N-terminal fusion tags for screening the soluble
expression of recombinant proteins. Protein Expr Purif 2012, 84:204–213.

25. Vigentini I, Merico A, Tutino ML, Compagno C, Marino G: Optimization of
recombinant human nerve growth factor production in the psychrophilic
Pseudoalteromonas haloplanktis. J Biotechnol 2006, 127:141–150.

26. Bird PI, Pak SC, Worrall DM, Bottomley SP: Production of recombinant
serpins in Escherichia coli. Methods 2004, 32:169–176.

27. Song JM, An YJ, Kang MH, Lee Y-H, Cha S-S: Cultivation at 6-10°C is an
effective strategy to overcome the insolubility of recombinant proteins
in Escherichia coli. Protein Expr Purif 2012, 82:297–301.

28. Georgiou G, Valax P: Expression of correctly folded proteins in Escherichia
coli. Curr Opin Biotechnol 1996, 7:190–197.

29. Yang M, Johnson SC, Murthy PPN: Enhancement of alkaline phytase
production in Pichia pastoris: influence of gene dosage, sequence
optimization and expression temperature. Protein Expr Purif 2012,
84:247–254.

30. Rodríguez-Carmona E, Cano-Garrido O, Dragosits M, Maurer M, Mader A,
Kunert R, Mattanovich D, Villaverde A, Vázquez F: Recombinant Fab expression
and secretion in Escherichia coli continuous culture at medium cell
densities: influence of temperature. Process Biochem 2012, 47:446–452.

31. Jobé AM, Herwig C, Surzyn M, Walker B, Marison I, von Stockar U:
Generally applicable fed-batch culture concept based on the
detection of metabolic state by on-line balancing. Biotechnol Bioeng
2003, 82:627–639.

http://www.biomedcentral.com/content/supplementary/1475-2859-12-94-S1.pdf


Sagmeister et al. Microbial Cell Factories 2013, 12:94 Page 11 of 11
http://www.microbialcellfactories.com/content/12/1/94
32. Dietzsch C, Spadiut O, Herwig C: A fast approach to determine a fed
batch feeding profile for recombinant Pichia pastoris strains. Microb Cell
Fact 2011, 10:85.

33. Spadiut O, Rittmann S, Dietzsch C, Herwig C: Dynamic process conditions
in bioprocess development. Eng Life Sci 2013, 13:88–101.

34. Zwietering MH, De Wit JC, Cuppers HGAM, Van Riet ‘t K: Modeling of
bacterial growth with shifts in temperature. Appl Environ Microbiol 1994,
60:204–213.

35. Kurokawa H, Park YS, Iijima S, Kobayashi T: Growth characteristics in
fed-batch culture of hybridoma cells with control of glucose and glutamine
concentrations. Biotechnol Bioeng 1994, 44:95–103.

36. Dietzsch C, Spadiut O, Herwig C: On-line multiple component analysis for
efficient quantitative bioprocess development. J Biotechnol 2013,
163:362–370.

37. Lourenço ND, Lopes JA, Almeida CF, Sarraguça MC, Pinheiro HM: Bioreactor
monitoring with spectroscopy and chemometrics: a review. Anal Bioanal
Chem 2012, 404:1211–1237.

38. Schenk J, Marison IW, von Stockar U: A simple method to monitor and
control methanol feeding of Pichia pastoris fermentations using mid-IR
spectroscopy. J Biotechnol 2007, 128:344–353.

39. Dabros M, Amrhein M, Bonvin D, Marison IW, von Stockar U: Data
reconciliation of concentration estimates from mid-infrared and
dielectric spectral measurements for improved on-line monitoring of
bioprocesses. Biotechnol Progr 2009, 25:578–588.

40. Kornmann H, Valentinotti S, Duboc P, Marison I, von Stockar U: Monitoring
and control of Gluconacetobacter xylinus fed-batch cultures using in situ
mid-IR spectroscopy. J Biotechnol 2004, 113:231–245.

41. Veale EL, Irudayaraj J, Demirci A: An on-line approach to monitor ethanol
fermentation using FTIR spectroscopy. Biotechnol Prog 2007, 23:494–500.

42. Herwig C, Marison I, von Stockar U: On-line stoichiometry and
identification of metabolic state under dynamic process conditions.
Biotechnol Bioeng 2001, 75:345–354.

43. Wechselberger P, Sagmeister P, Herwig C: Real-time estimation of biomass
and specific growth rate in physiologically variable recombinant fed-batch
processes. Bioprocess Biosyst Eng 2013, 36(9):1205–1218.

44. Neubauer P, Lin HY, Mathiszik B: Metabolic load of recombinant protein
production: Inhibition of cellular capacities for glucose uptake and
respiration after induction of a heterologous gene inEscherichia coli.
Biotechnol Bioeng 2003, 83:53–64.

45. Esener AA, Roels JA, Kossen NWF: The influence of temperature on the
maximum specific growth rate of Klebsiella pneumoniae. Biotechnol Bioeng
1981, 23:1401–1405.

46. Heitzer A, Kohler HP, Reichert P, Hamer G: Utility of phenomenological
models for describing temperature dependence of bacterial growth.
Appl Environ Microbiol 1991, 57:2656–2665.

47. Membré J-M, Leporq B, Vialette M, Mettler E, Perrier L, Thuault D, Zwietering M:
Temperature effect on bacterial growth rate: quantitative microbiology
approach including cardinal values and variability estimates to perform
growth simulations on/in food. Int J Food Microbiol 2005, 100:179–186.

48. Zwietering MH, de Koos JT, Hasenack BE, de Witt JC, van’t Riet K: Modeling
of bacterial growth as a function of temperature. Appl Environ Microbiol
1991, 57:1094–1101.

49. Glick BR: Metabolic load and heterologous gene expression. Biotechnol Adv
1995, 13:247–261.

50. Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS: Plasmid-encoded
protein: the principal factor in the “metabolic burden” associated with
recombinant bacteria. Biotechnol Bioeng 1990, 35:668–681.

51. Sagmeister P, Kment M, Wechselberger P, Meitz A, Langemann T, Herwig C:
Soft-sensor assisted dynamic investigation of mixed feed bioprocesses.
Process Biochem 2013. Available online 19 September 2013.

52. Schenk J, Marison IW, von Stockar U: Simplified Fourier-transform
mid-infrared spectroscopy calibration based on a spectra library for the
on-line monitoring of bioprocesses. Anal Chim Acta 2007, 591:132–140.

53. Chee Furng Wong D, Tin Kam Wong K, Tang Goh L, Kiat Heng C,
Gek Sim Yap M: Impact of dynamic online fed-batch strategies on
metabolism, productivity and N-glycosylation quality in CHO cell
cultures. Biotechnol Bioeng 2005, 89:164–177.

54. Alford JS: Bioprocess control: advances and challenges. Comput Chem Eng
2006, 30:1464–1475.

55. Nyttle VG, Chidambaram M: Fuzzy logic control of a fed-batch fermentor.
Bioprocess Eng 1993, 9:115–118.
56. Puskeiler R, Kaufmann K, Weuster-Botz D: Development, parallelization, and
automation of a gas-inducing milliliter-scale bioreactor for high-throughput
bioprocess design (HTBD). Biotechnol Bioeng 2005, 89:512–523.

57. Kusterer A, Krause C, Kaufmann K, Arnold M, Weuster-Botz D: Fully
automated single-use stirred-tank bioreactors for parallel microbial
cultivations. Bioprocess Biosyst Eng 2008, 31:207–215.

58. DeLisa MP, Li J, Rao G, Weigand WA, Bentley WE: Monitoring GFP-operon
fusion protein expression during high cell density cultivation of
Escherichia coli using an on-line optical sensor. Biotechnol Bioeng 1999,
65:54–64.

59. Van der Heijden RTJM, Heijnen JJ, Hellinga C, Romein B, Luyben KCAM:
Linear constraint relations in biochemical reaction systems: I.
Classification of the calculability and the balanceability of conversion
rates. Biotechnol Bioeng 1994, 43:3–10.

60. Wechselberger P, Sagmeister P, Herwig C: Model-based analysis on the
extractability of information from data in dynamic fed-batch
experiments. Biotechnol Prog 2013, 29:285–296.

doi:10.1186/1475-2859-12-94
Cite this article as: Sagmeister et al.: A dynamic method for the
investigation of induced state metabolic capacities as a function of
temperature. Microbial Cell Factories 2013 12:94.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Specific growth rate μ and cultivation temperature: Key parameters governing bioprocessing efficiencies
	Real-time bioprocess monitoring
	Soft sensors for bioprocess development
	Aim of the contribution
	Goals

	Results
	Design and in-silico performance of the PID control strategy
	Performance of the presented method: E. coli C41 pBMPpeT- non-induced conditions
	FTIR assisted control and soft sensor assisted real-time extraction of information in induced conditions

	Discussion
	Induced state specific growth rates
	Maximum induced state metabolic capabilities as prerequisite for bioprocess design and DoE based bioprocess optimization
	Measurement and control of residual substrate concentrations in fed-batch processes
	Process development using a toolset of dynamic methods, soft-sensors and parallel bioprocessing

	Conclusions
	Methods
	Strain
	Media
	Bioreactor setup
	Fermentation parameters
	Biomass dry weight concentration
	Metabolite concentrations
	Soft sensor rate calculation, reconciliation, biomass estimation, in-silico simulations
	In-line residual substrate measurement
	Real-time data processing
	Definition of sampling intervals

	Additional file
	Abbreviations
	Competing interest
	Authors’ contributions
	Acknowledgements
	Author details
	References

