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Abstract

Background: L-ascorbic acid (L-AA) is naturally synthesized in plants from D-glucose by 10 steps pathway. The
pathway branch to synthesize L-galactose, the key intermediate for L-ascorbic acid biosynthesis, has been recently
elucidated. Budding yeast produces an 5-carbon ascorbic acid analogue Dehydro-D-arabinono 1,4-lactone (D-DAL),
which is synthesized from D-arabinose. Yeast is able to synthesize L-ascorbic acid only if it is cultivated in the
presence of one of its precursors: L-galactose, L-galactono 1,4-lactone, or L-gulono 1,4-lactone extracted from plants
or animals. To avoid feeding the yeast culture with this “L” enantiomer, we engineered Kluyveromyces lactis with
L-galactose biosynthesis pathway genes: GDP-mannose 3,5-epimerase (GME), GDP-L-galactose phosphorylase (VTC2)
and L-galactose-1-phosphate phosphatase (VTC4) isolated from Arabidopsis thaliana.

Results: Plasmids were constructed and modified such that the cloned plant genes were targeted to the K. lactis
LAC4 Locus by homologous recombination and that the expression was associated to the growth on D-galactose
or lactose. Upon K lactis transformation, GME was under the control of the native LAC4 promoter whereas VTC2
and VTC4 were expressed from the S. cerevisiae promoters GPD1 and ADH1 respectively. The expression in K lactis,
of the L-galactose biosynthesis genes was determined by Reverse Transcriptase-PCR and western blotting. The
recombinant yeasts were capable to produce about 30 mg.L™" of L-ascorbic acid in 48 hours of cultivation when
cultured on rich medium with 2% (w/v) D-galactose. We also evaluated the L-AA production culturing recombinant
recombinant strains in cheese whey, a waste product during cheese production, as an alternative source of lactose.

Conclusions: This work is the first attempt to engineer K. lactis cells for L-ascorbic acid biosynthesis by a fermentation
process without any trace of “L" isomers precursors in the culture medium. We have engineered K. lactis strains capable
of converting lactose and D-galactose into L-galactose, by the integration of the genes from the A. thaliana |-galactose

pathway. L-galactose is a rare sugar, which is one of the main precursors for L-AA production.

Keywords: Kluyveromyces lactis, L-ascorbic acid, L-galactose, Metabolic engineering

Background

The enediol ascorbate or L-ascorbic acid (L-AA), known
as Vitamin C, is an important metabolite in many or-
ganisms. In eukaryotes, L-AA is essential for a variety of
cellular functions [1], acting as I) a scavenger of free
radicals [2]; ii) a reducing agent [3], iii) a cofactor for
enzyme activity [4,5] iv) an intermediate for catechol-
amines biosynthesis, and v) a limiting growth factor in
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plant development [6]. Most of the commercially available
vitamin C is synthetically synthesized by the Reichstein
process, using D-glucose as start material [7].

L-AA is naturally produced in plants where its bio-
synthetic pathway has been completely elucidated [8,9]. In
most cases, GDP-D-mannose is converted into L-galactose,
which is further converted into L-AA [10]. Although there
may exist alternative routes [11,12] this pathway is recog-
nized as the main route for L-AA biosynthesis [13,14].
There are three enzymes required for the conversion of
GDP-D-mannose into L-galactose. The GDP-mannose 3,5-
epimerase (GME) catalyzes the conversion of GDP-D-man-
nose to GDP-L-gulose or to GDP-L-galactose, depending
whether the epimerization occurs on 5- carbon or on both
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3- and 5- carbon of GDP-D-mannose respectively [15].
GDP-L-gulose seems to represent the minor part of the
products (around 25% under equilibrium) and can also be
converted to L-AA [16]. The epimerization of D to L-
substrates, which is rare in nature, is a crucial step to gener-
ate the galactose enantiomer in the L-AA pathway. GDP-L-
galactose is then converted to L-galactose 1-phosphate by
GDP-L-galactose phosphorylase, encoded by the VTC2
gene [17]. This gene encodes a member of the GalT/Apal
branch of the histidine triad protein superfamily that cata-
lyzes the conversion of GDP-L-galactose to L-galactose
1-phosphate in a reaction that consumes inorganic
phosphate and produces GDP [9]. Miller-Moulé [18]
constructed the VTC2:YFP fusion protein and unexpect-
edly this protein was found not only in the cytosol, but
also in the nucleus, which suggests that GDP-L-Galactose
phosphorylase/L-Galactose guanylyltransferase might be a
dual-function protein, which has both enzymatic and
regulatory function in the L-AA biosynthesis pathway in
A. thaliana. The third enzyme is L-galactose 1-phosphate
phosphatase, encoded by the VTC4 gene [19], which is a
bifunctional enzyme that plays a role in both ascorbate as
well as myoinositol biosynthetic pathways, although it
shows selective preference for L-galactose 1-phosphate
[20]. The resulting L-galactose is then the main precursor
for L-AA biosynthesis.

Yeasts are known to produce the 5-carbon ascorbic
acid analogue, Dehydro-D-arabinono 1,4-lactone (D-DAL),
which is synthesized from D-arabinose. Although D-DAL
does not show any anti-scurvy activity, its physiochemical
properties and biological activities are quite similar to those
of L-AA. For this reason D-DAL can replace L-AA in some
industrial applications [21,22]. The structural motifs of the
enzymes involved in the D-DAL biosynthetic pathway in
yeast resemble those of the pathway in plants that converts
L-galactose into L-AA. D-DAL pathway enzymes from
Candida albicans and Saccharomyces cerevisiae have
shown to be able to convert a broad range of substrates
besides D-arabinose including L-galactose into their
respective galactonic acids in vitro [23,24]. Furthermore,
L-AA production in yeasts was achieved when appropriate
precursors such as L-galactose, L-galactono 1,4-Lactone,
L-gulono 1,4-lactone were exogenously supplied in the
growth medium [25]. Thus, isolation of genes involved in
L-galactose production in plants provides biochemical
support to guide the metabolic capacity of industrial mi-
croorganisms to produce L-AA by fermentation [7].

Attempts have been made to synthesize L-AA in genet-
ically modified microorganisms. Sauer et al. [25] observed
a high production of vitamin C in the culture supernatant
of S. cerevisiae cells expressing the L-galactose dehy-
drogenase (LDGH) and D-arabinose 1,4-lactone oxidase
(ALO1) from yeast or the L-galactono-1, 4-lactone de-
hydrogenase (AGD) from Arabidopsis thaliana, when
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cultivated in a medium containing 250 mg.L ™" L-galactose.
Further, Branduardi et al. [26] have engineered this strain
with GME and VTC4 from A. thaliana and also with L-
fucose guanylyltransferase from Rattus norvegicus FGT in
order to convert D-glucose to L-AA completing the L-AA
pathway in S. cerevisiae. The L-AA production conferred an
increased stress tolerance under oxidative stress conditions.

Kluyveromyces lactis is one of the most important
non-Saccharomyces yeast species used as an eukaryotic
model and tool for biotechnological applications includ-
ing an alternative host for heterologous gene expression.
K. lactis has the ability of growing, by respiration, on a
wide range of substrates, including lactose with low glu-
cose repression [27]. The genome has been completely
sequenced and the Lac-Gal regulon, with the induced
genes for lactose transport and hydrolysis, has been ex-
tensively studied [28]. Many heterologous expression
systems have been developed, based on the LAC4
promoter with the production of lysozyme [29], serum
albumin [30], thermostable bacterial xylanase [31] and
heparin sulfate sulphotransferase [32] as examples. The
potential use of K. lactis as a host for protein expression
associated to its physiological properties suggests that
this yeast could also be used for large-scale protein
production in the food and pharmaceutical industry.
Furthermore, its ability to express and process heterol-
ogous proteins makes this yeast well suited for multiple
proteins expression such as the enzymes involved in L-
galactose metabolism from plants.

Considering the high costs of using non-physiological
substrates in the L enantiomer form for industrial appli-
cations, herein, we report the construction of K. lactis
strains capable to convert D-galactose or lactose into L-
galactose, the main intermediate metabolite of the L-AA
pathway in plants, and its subsequent conversion into
L-ascorbic acid.

Results

Isolation and cloning of the L-ascorbic acid pathway
genes from Arabidopsis thaliana

A cDNA library from Arabidopsis thaliana leaves was
used as template to amplify the three genes of the L-
ascorbic acid (L-AA) pathway required for L-galactose
synthesis in K. lactis (see Materials and Methods). The
amino acid sequences encoded by the corresponding
amplified genes GME, VTC2, VIC4 were determined
and verified to be the same as those in the Arabidopsis
genome database. The three genes were cloned in K
lactis expression vectors (Figure 1). The codons of the
plant genes were not optimized for expressing in K
lactis. Carbone et al. (2003) [33] reported that Saccharo-
myces sp. and plants shared the same preferred codons,
supporting K. lactis as a host for unmodified plant genes
expression.
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Figure 1 Maps of the plasmid vectors used for L-AA genes expression. pKIJC/GME (B) and pKIVTc (C) vectors are derived from pKLACT (A).
The vectors contain the 5" and 3" ends of the LAC4 promoter separated by DNA encoding R-lactamase (Amp") and the pMB1 origin (ori). Plasmid
pKIVTc contains a construct where the yeast ADHT promoter drives expression of an acetamidase selectable marker gene (amds), which is flanked
by hisG direct repeats. ADH1 and GPD1 promoters from Saccharomyces cerevesiae drive the transcription of AtVTC4 and AtVTC2 respectively.
Plasmid pKLJC/GME contains the LoxP-KanMX-LoxP cassette that confers resistance to geneticin.

Kluyveromyces lactis strains expressing L-AA genes

To obtain strains producing L-AA, K. lactis CBS2359
cells were transformed with Sac II linearized pKLJC/
GME and pKIVTc vectors constructed in this work
(Figure 1). Strain JVC1-5 was obtained by transform-
ation of K. lactis CBS2359 cells with the pKLJC/GME
vector. The strains JVC1-51, JVC1-53, and JVC1-56 were
derived from JVC1-5 by transformation with pKIVtc vec-
tor containing the VTC4 and VTC2 expression cassette.
The JVC3-18 strain was generated through single-step
transformation of K. lactis CBS2359 with both plasmids.
The JVC2-1 and JVC2-2 strains were constructed by
transformation of the K. lactis CBS2359 cells with the

pKIVTc vector. All yeast strains used in this work are
listed in Table 1. The selection of K lactis cells
transformed with pKIVtc was achieved by growth on YCB
agar medium containing 5 mM acetamide. The vector
harbors the amDs marker which has been reported to
favor transformants with more than one integration event
into the genome [34]. Correct integration into the K. lactis
LAC4 locus was confirmed by PCR analysis using the
primers P1, P2, P3 and P4 (Table 2). Figure 2 provides a
schematic overview of the resulting genomic organization
of the integrated plasmids at the K. lactis LAC4 chromo-
somal locus. Primer P1 was designed to anneal at the
chromosomal LAC4 promoter upstream of the vector
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Table 1 Yeasts strains used in this study

Page 4 of 13

Strains Markers Cassette expression Plasmids Reference
CBS 2359 Wild type - - Genolevures consortium’
vC1-5 Kan® AtGME pKLIC/GME This study
JVC1-51 Kan® amDs AtGME, AtVTC2, AtVTC4 pKLJC/GME, pKIVTc This study
JvC1-53 Kan®, amDs AtGME, AtVTC2, AtVTC4 pKLIC/GME, pKIVTc This study
JVC1-56 Kan® amDs AtGME, AtVTC2, AtVTC4 pKLIC/GME, pKIVTc This study
JVC2-1 amDs AtVTC2, AtVTC4 pKIVTc This study
Jvcz-2 amDs AWVTC2, AtVTC4 pKIVTc This study
JVC3-18 Kan® amDs AtGME, AtVTC2, AtVTC4 pKLIC/GME, pKIVTc This study

Kan® cassette conferring resistance to Geneticin.
amDs acetamidase marker.

*Kluyveromyces lactis strain used for Genome sequencing by the Génolures consortium (www.genolevures.org).

integration site and the reverse primers P2 and P4 anneal
to pKIVIc and pKLJC/GME expression cassettes se-
quence respectively. When multiple copies of the cassette
were integrated in tandem at the same locus, a 2.3 kb frag-
ment was then amplified by using the forward primer P3
in combination with either reverse primers P2 or P4 for
each vector. Single and multiple insertions from each

Table 2 List of primers used on this study

cassette were detected by the presence of 2.4 kb and
2.3 kb amplicons respectively. The insertion of the cassette
into the LAC4 locus by homologous recombination dupli-
cates the LAC4 promoter region so that it can be targeted
by another cassette resulting in multiple copies inte-
gration. However, this analysis does not indicate the num-
ber of integrated copies; we determined the exact copy

Name Sequence Restriction site
GME-F 5'CTCGAGATGGGAACTACCAATGGAACAGS' Xhol
GME-RFlag 5'CCCGGCGGCCGTCACTTGTCATCGTCATCCTTGTAATCCTCTTTTCCATCAGCCGCGS' Notl
VTC2-F 5'GCGGCCGCATGTTGAAAATCAAAAGAGTTCCGACC3' Notl
VTC2-RFlag 5'AGGCCTTCACTTGTCATCGTCATCCTTGTAATCCTGAAGGACAAGGCACTCGGCGGC3' Stul
VTC4-F 5'CTCGAGATGGCGGACAATGATTCTCTAGS' Xhol
VTC4-RFlag 5'AGGCCTTCACTTGTCATCGTCATCCTTGTAATCTGCCCCTGTAAGCCGCS Stul

VT4-F 5'CGACTCGGTACCATGGCGGACAATGATTCTCTAGS Kpnl
VT4-R 5'CGACTCGAATTCTCACTTGTCATCGTCATCCTTG3' EcoRl

hisG | - F 5TGTACACCAGTGGTGCATGAACGC3' BsrGl

hisG | - R 5'ACATGTCTAGGGATAACAGGGTAATATAGACATGG3' BsrGl

hisG Il - F 5'CGACTCCCCGGGCCAGTGGTGCATGAACGC3' Xmal/Smal
hisG Il - R 5'CGACTCCTGCAGCTAGGGATAACAGGGTAATATAGACATGGS' Pstl
KanMX-F 5'CGACTCTGTACACTGAAGCTTCGTACGCTGCA3' BsrGl
KanMX-R 5'CGACTCCCCGGGATCACCTAATAACTTCGTATAGCATACATTATACS Smal
GPDADH1-F 5'CGACTCCATATG GCGGCCGCGTCGAAACTAAGTTCTTGGTGTTTTAAAACT3' Ndel /Notl
GPDADH1-R 5'CGACTCGACGTC AAGCTTGGCATGCGAAGGAAAATGAGAS' Aatll / Hindlll
KIACT1-F 5'ATGGATTCTGAGGTCGCTGC3!

KIACT1-R 5TTAGAAACACTTCAAGTGAACGATGGS'

P1 5'ACACACGTAAACGCGCTCGGT3'

P2 5'ATCATCCTTGTCAGCGAAAGC3'

P3 5'ACCTGAAGATAGAGCTTCTAA3!

P4 5'GGTACCCCTAGGAGATCTAGCTC3'

Underlined are shown the Flag Tag sequence.
In bold are represented the restriction site.
In grey, the stop codon.
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Figure 2 Genomic organization of Sacll linearized vectors into the K. lactis LAC4 locus upon transformation. (A) Scheme of single and
multiple copies of integrated GME cassettes detected by PCR using primers P1 and P3 (2.4 kb) or P3 and P4 (2.3 kb) respectively; (B) Scheme of
single and multiple copies of AtVTC2 and AtVTC4 cassettes detected by PCR using primers P1 and P2 (2.4 kb) or P3 and P2 (2.3 kb) respectively.

number of each cassette integrated into K. lactis genome
by absolute quantification. The results are shown in
Table 3. Most of the recombinant strains harbor at least
more than one copy of the cassette except the strain
JVC1-51. The JVC1-56 strain carries four copies of the
GME gene integrated in tandem at the LAC4 locus.

The GME gene is under the control of the inducible
LAC4 promoter upon integration by homologous re-
combination. The strong constitutive S. cerevisiae pro-
moters GPDI and ADHI drive the transcription of the
VTC2 and VTC4 respectively. The expression analysis
of L-AA pathway plant genes in K. lactis recombinant

cells was achieved by Reverse Transcriptase-PCR and
the flag-tagged proteins from total protein extract were
immunoprecipitated before SDS-PAGE, blotted and
detected using monoclonal anti-Flag antibodies (Figure 3).
All JVC1-5 derived strains, JVC1-51, JVC1-53 and JVC1-
56, are expressing the L-galactose pathway genes, GME,
VTC2, VIC4. The JVC1-5 only expresses GME and the
JVC2-1 and JVC2-2 strains are the control strains for
VTC2 and VTC4 expression.

Simultaneous expression of the proteins GME (43.8 kDa),
VTC2 (49 kDa), and VTC4 (30 kDa) in the engineered
JVC3-18 and JVC1-5 derived strains should result in the
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Table 3 Estimated copy number (ENC) of AtGME and AtVTC genes by absolute quantification
Strains G Copies (Copies.uL™) ENC

ACT1 GME VTC ACT1 GME VTC GME VTC
JVC1-51 2043 +037 2152+043 2019123 2.95E+ 04 4.35E+03 1.61E+04 1 1
JVC1-53 1892 +0.61 1952+ 1.69 20.01 £0.08 1.34E + 04 4.26E+04 1.14E + 04 3 1
JVC1-56 1588 +£2.28 1543 +£198 16.72+£032 1.06E + 05 4.02E+ 05 1.70E + 05 4 2
JVC3-18 1868 £0.35 2041+0.17 14.88 £0.95 8.21E+04 1.58E + 04 2.98E+05 1 4

“average * SD.

production of L-galactose, when lactose or D-galactose are
used as the carbon source in the growth medium. To ad-
dress whether the plant genes integrated into the K. lactis
genome would allow the cells to produce L-galactose from
GDP- mannose, we analyzed the L-galactose content in the
recombinant strains grown in YP medium supplemented
with 2% (w/v) D-galactose and in YP medium with 2% (w/v)
lactose for 24 hours at 30°C, 200 rpm. Since we could not
detect intracellular L/D-Galactose production through
HPLC analysis, we believe that the expression, as shown by
western blot analysis, of the GME, VTC2, and VTC4 in K.
lactis cells did not result in any measurable L/D-galactose
biosynthesis (data not shown). Perhaps, the L-galactose
synthesized was immediately converted into L-AA by the
D-DAL enzymes thereby preventing its intracellular accu-
mulation. Hence, the recombinant strains were screened
for L-AA production. They were grown for 48 hours in
YP or in YNB medium supplemented with 2% (w/v)
D-galactose or lactose before the level of L-AA was deter-
mined. Figure 4 shows the intracellular L-AA levels pro-
duced by the K lactis strains that we engineered in
this study. The L-AA assay depends on the ability of
ascorbate-like compounds to reduce Fe**. The accumula-
tion of intracellular ascorbate-like compounds in JVC1-5
derived strains or in the JVC3-18 strain was 2 to 3 times
higher, but only when cultivated in YP medium and not in
minimal medium with D-galactose as carbon source

(Figure 4A). When cells were cultivated in both YP and
YNB medium with lactose as the sole carbon source, the
accumulation was lower, but a two-fold increase was still
present in the JVC1-56 and JVC3-18 strains. We also eval-
uated the ascorbate-like compounds production by cultur-
ing recombinant strains in cheese whey, which is the
waste product during cheese production, as an alternative
lactose source. However, when cheese whey was used as
substrate, all recombinant strains showed low intracellular
ascorbate-like compounds accumulation. In the untrans-
formed strain, low levels of L-AA/D-DAL could be mea-
sured in either minimal or rich medium supplemented
with D-galactose. Since this method cannot distinguish
between introduced L-AA and the endogenous D-DAL,
we identified and measured the L-AA in the recombinant
strains by HPLC analysis. Considering their quite similar
physical and chemical properties, the L-AA and D-DAL
presented a different retention time with about 11.175 and
12.003 min respectively. The strains JVC1-56 and JVC3-18
resulted in higher L-AA production 14.4 and 7.73 mgL™
respectively when cultivated on YP medium supplemented
with 2% (w/v) galactose (Figure 4B).

Discussion

In Figure 5 we present an overview of the L-AA pathway
as we have engineered it in K. lactis. The insertion of the
L-AA pathway plant genes into the K lactis genome

o
H N A G L e &
C L LT L xex & > o> ®
D R R R S o R T e A S N
- & §geEeEegge
— ———— b GME | GakDa s
———— . e O VTC) | 51300 e e
— — — vTC2
— - ~ GME
———————— - i 39kDa .,
- - vica
o ———— T e :

Figure 3 Expression analyses of L-AA pathway plant genes by recombinant K. lactis cells. (A) RT-PCR using cDNA from K. lactis cells
transformed with three early L-AA pathway plant genes from Arabidopsis thaliana. C + — the cDNA from A. thaliana leaves and plasmids
harboring the corresponding genes were used as controls for RT-PCR analysis. KIACT1 gene from K. lactis CBS2359 was used as a control for RNA
quality. (B) — Western blotting of flag-tagged immunoprecipitated proteins from K. lactis recombinant cells using monoclonal anti-flag antibody.
K. lactis CBS2359 strain was used as negative control. The RNA extraction and total protein extraction were carried out from cells grown in YP
medium with 2% (w/v) D-Galactose after 24 hours incubation at 30°C, 200 rpm.
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creates an alternative route to metabolize GDP-mannose,
which is naturally produced in yeasts for cell wall con-
struction [35]. Three other pathways for L-AA production
in plants have been described [36]: the L-Gulose pathway
[15], the D-Galacturonic acid pathway [11], and the
Mpyoinositol pathway [12], but these seem to be of minor
importance. GDP-mannose undergoes epimerization to
GDP-L-galactose by GME activity. VIC2 and VTC4
convert GDP-L-galactose in L-galactose that can be

used as substrate for L-AA biosynthesis by D-DAL path-
way enzymes. The D-DAL pathway is the only known
route which contains enzymes able to metabolize
non-physiological substrates such as L-galactose [7].
Considering cofactor enzymes requirements, the new
GDP-mannose branched pathway apparently does not
affect the cell redox balance. The overall GME reaction is
redox neutral and uses bound NADP to aid the internal
redox reactions needed for the epimerization reactions.

D-Galactose

{1+

Figure 5 L-AA pathway engineered in K. lactis cells using D-galactose or lactose as substrate. Lactose is first hydrolyzed by the

Cell wall
glycoproteins

B-galactosidase enzyme into D-Glucose and D-galactose which are promptly metabolized. A- hexokinase, B - glucose-6-phosphate isomerase,

C - mannose-6-phosphate isomerase, D — phosphomannomutase, E - mannose-1-phosphate guanyltransferase, F — Galactokinase, G — galactose-
1-phosphate urydyltransferase, H — phosphoglucomutase, | — UDP-galactose-1-epimerase, GME- GDP-mannose 3,5 epimerase, VTC2 — GDP-L-galactose
phosphorylase, VTC4- L-Galactose 1-phosphate phosphatase, M — D-arabinose dehydrogenase, N — D-arabinono 1,4 lactone oxydase.
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Besides the Glutathione/Thioredoxin reductase system,
two alternative dehydrogenases in the external mitochon-
drial membrane (NDE1 and NDE2) are the main source of
cytosolic NADPH reoxidation in K. lactis cells [37].
NADPH reoxidation is extremely important to maintain
the pentose phosphate pathway which has been reported
more active in K. lactis compared to S. cerevisiae [38].

Lactose and galactose metabolism seem to have differ-
ent effects on this branched pathway. Probably, glucose
released from lactose hydrolysis by [p-galactosidase activ-
ity, may somehow affect the activity of the L-galactose
pathway enzymes. When lactose was utilized as carbon
source there was a higher ascorbate-like background in
K. lactis CBS2359 cells (Figure 4A). Although there is no
evidence of enzyme activity and metabolites detection,
we believe that this background in K lactis CBS2359 is
due to D-DAL naturally occurring in this yeast, which is
much higher than in S. cerevisiae. This idea is also sup-
ported by Porro & Sauer, 2003 [39].

Cheese whey represents 85-95% of the milk volume
retaining about 85% of milk nutrients such as lactose,
soluble proteins, lipids and minerals. It also contains ap-
preciable quantities of lactic and citric acids, non-
protein nitrogen compounds (urea and uric acid) and
B-group vitamins [40]. The first reaction catalyzed by
GMEp for GDP-L-galactose biosynthesis competes for
the GDP-mannose with the cell wall glycoproteins path-
way enzymes. We suggest that rich medium can provide
intermediate metabolites that could be promptly assimi-
lated reducing metabolic flux towards biosynthetic
pathways such as cell wall biosynthesis. Likely, the YP
medium might enhance the flux of GDP-mannose to-
wards L-galactose formation and its subsequent conver-
sion into L-AA. The HPLC analysis confirmed the L-AA
production by the recombinant strains. JVC1-56 resulted
in higher L-AA accumulation (14.40 mg.L™) followed by
JVC3-18 (7.73 mg.L™"). The total L-AA production from
all strains obtained in this study was about 30 mg.mL™.
Porro et al., 2004 [25] have reported the production
of 100 mg.L" L-AA by recombinant S. cerevisiae cells.
However, this 3-times higher production was achieved
by overexpressing the endogenous D-arabinono-1.4-
lactone oxidase gene as well as L-galactose dehydrogen-
ase in the presence of 250 mg.L™' of L-galactose, the
main L-AA precursor, in the growth medium. Herein,
we report for the first time the production of L-AA in
the absence of any L-AA precursors such as L-galactose,
L-galactono-1,4-lactone, or L-gulono-1,4-lactone interme-
diates in the growth medium. The K. lactis recombinant
strains were able to intracellularly produce L-galactose
and convert it into a significant L-AA content without any
overexpression of endogenous gene.

The absolute quantification of each cassette into LAC4
promoter locus revealed that the strain JVC1-56 harbors
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four copies of the GME gene. GME encodes the GDP-
mannose 3,5- epimerase that catalyzes the conversion of
GDP-mannose into GDP-L-Galactose, the first reaction
which competes for GDP-mannose with cell wall glyco-
protein biosynthesis. Thus, the high expression level of
GMEp ensures the metabolic flow throughout the L-AA
biosynthetic engineered pathway. Cheese whey repre-
sents an environmental problem due to its high volumes
produced. In addition, the high organic matter content,
mainly lactose, exhibits a biochemical oxygen demand
(BOD) of 30-50 gL' and a chemical oxygen demand
(COD) of 60 — 80 g.L’1 [40,41]. As cheese whey perme-
ate is not as rich as supposed once it loses most of the
whey protein at ultrafiltration process, the ascorbate-like
compounds accumulation was lower when the cells were
grown in this medium. Nevertheless, the recombinant K.
lactis strains can still convert lactose from whey to valu-
able compounds such as L-AA based on their fermenta-
tion capacity. Moreover, since L-AA acid-producing
yeast strains have an improved stress resistance and ro-
bustness [26], these strains may also be used as host for
producing heterologous proteins with industrial interest
in biotechnological processes, in case it is shown that
our recombinant K. lactis strain is also more tolerant to
these conditions.

The downstream L-galactose metabolism could be
the bottleneck for L-AA biosynthesis throughout this
engineered pathway since D-DAL enzymes regulation in
yeast has not extensively been elucidated. The D-DAL
production is observed when yeasts are grown on some
sources of D-aldoses such as D-glucose, D-galactose, D-
mannose or D-arabinose [42]. The kinetic parameters of
D-arabinose dehydrogenase (Ara2) and D-arabinono-1,
4 lactone oxydase (Alol) have been determined in vitro
and the results have demonstrated low substrate specifi-
city [43]. The Alol enzyme has a putative domain for
the covalent FAD molecule similar to the domain found
in oxygen-dependent oxidoreductases. Spickett et al.
(2000) [44] found that the production of L-AA ana-
logues is strongly influenced by the aeration of the cul-
ture. Probably the key regulatory enzyme, Alolp, may
be dependent on the dissolved oxygen levels. Besides,
this enzyme seems to play a role in oxidative stress re-
sponse. When the S. cerevisiae alolA strain was grown
in the presence of H,O,, cells were more sensitive while
the overexpression leads to resistance. However no
changes in the transcription levels of the ALO1l gene
were observed under the same conditions. Thus, tran-
scriptional and post translation regulation of the genes
from D-DAL pathway in yeast must be considered in
this process. Thus, a better understanding about the
regulation and functionality of the D-DAL biosynthetic
genes in K. lactis, might be the main target in order to
improve L-AA biosynthesis.
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Conclusions

This work is the first attempt of engineering K. lactis cells
for L-ascorbic acid biosynthesis by fermentation taking
advantage of its natural ability to grow on lactose and
without any exogenously addition of its precursors in the
growth medium. By the insertion of the L-galactose
pathway genes from A. thaliana, we engineered K. lactis
strains capable of converting lactose and D-galactose into
L-galactose, a rare sugar which is one of the main precur-
sors for L-AA production.

Methods

Strains and growth conditions

Escherichia coli TOP10 cells [F- mcrA A(mrr-hsdRMS-
mcrBC) ¢80lacZAM15 AlacX74 nupG recAl araD139
A(ara-leu)7697 galE15 galK16 rpsL(Str™) endA1 1] were
used to amplify the plasmids. E. coli cells were grown on
Luria Bertani (LB) medium (10 gL' tryptone, 5 gL
yeast extract, 10 g.L”' NaCl, pH 7.5) with or without
100 pgmL™' ampicillin at 37°C. E. coli TOP10 cells
harboring the vector pGEM T easy were grown on solid
LB medium supplemented with 1 mM isopropyl B-D-
thiogalactopyranoside (IPTG) and 40 pg.mL™ 5-bromo-
4-chloro-3-indolyl- beta-D-galactopyranoside (X-Gal).
Kluyveromyces lactis CBS2359 strain was used as host for
protein expression on this work. YPD medium (20 g.L"'pep-
tone, 10 gL' Yeast extract, 20 gL 'Dextrose) or YPGal
(20 g.L"'peptone, 10 g.L ™' Yeast extract, 20 g.L™' Galactose)
were routinely used for obtaining biomass of the recombin-
ant and parental yeast strains at 30°C. For solid medium
20 g.L"" agar was added. YCB (Yeast Carbon Base - Sigma)
medium supplemented with 5 mM acetamide and YPD
containing 200 pg.mL" geneticin were used to select K.
lactis cells transformed with the vectors constructed on this
work. Cheese whey, YNB (Yeast Nitrogen Base - Sigma) or
YP medium supplemented with 20 g. L™ galactose or lactose
was used to grow the cells for ascorbate-like compounds
and L-AA measurements.

L-ascorbic acid pathway genes amplification

L-AA pathway genes from Arabidopsis thaliana, GDP-
D-Mannose 3',5'-Epimerase [GME (E.C. 5.1.3.18)], GDP-
L-Galactose Phosphorylase [VTC2(E.C.2.7.7.220], L-
Galactose-1-Phosphate Phosphatase [VTC4 ( E.C. 3.1.3.23)
were amplified using A. thaliana cDNA, kindly provided by
Dr. Filip Rolland (K.U. Leuven, Belgium), as a template.
Phusion High Fidelity DNA polymerase was used for PCR
amplification and primers are listed in Table 2. Ampli-
fication cycles comprised 5 minutes 95°C, 1 minute 95°C,
30 seconds Tm*, 90 seconds 72°C, 5 minutes 72°C. Tm"
was 58°C for GME, 66°C for VTC2 and 60°C for VTC4
amplification. L-AA pathway genes were tagged with the
Flag Tag (Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys) by adding
the corresponding DNA sequence in each primer (Table 2).
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Construction of expression cassettes

Maps of the plasmids used in this study are shown in
Figure 1. pKLAC1 plasmid [30] was used as starting
point. pMB7-A [45] was used as template for hisG frag-
ments amplification, 1 minute 94°C, 1 minute 63°C, 1 mi-
nute 68°C (34 cycles), with the primers hisGI-F and
hisGI-R, hisGII-F and hisGII-R. HisG fragments were
subcloned into pGEM T easy Vector and further trans-
ferred to pKLAC1 generating the plasmid pKLhisG2.
The repeat hisG sequences flank the amdS (acetamidase)
marker for its removal by homologous recombination in
the counterselection procedure. Bidirectional promoter
in the pBEVY-L vector [46], ScGPDI and ScADHI, and
the ADH?2 terminator sequence were amplified using the
primers GPDADHI1-F and GPDADHI-R in the following
amplification cycles: 20 sec 98°C, 20 sec 63°C, 45 sec
72°C (34 cycles). The resulting 1405 bp fragment was
subcloned into the pGEM vector linearized by Aatll and
Ndel, generating the vector pGDPADHI1. The AtVTC4
gene was inserted into pGPDADHI1 linearized by EcoRI
and Kpnl. Finally, the AtVTC4 expression cassette,
under the control of the ADH1 promoter, was cut out
from the pGPDADHI1 vector and cloned into pKLhisG2,
linearized with HindIIl and Notl. Afterwards, the
AtVTC2 gene was released from the pGEM Vector with
Notl and Stul digestion and transferred to pKLhisG2,
linearized with the same restriction sites resulting in the
vector pKIVTc. pKLACI was digested with HindIII and
Xhol, followed by treatment with Klenow enzyme and
also with T4 DNA ligase to destroy the signal secretion
sequence of the alpha mating factor. The AtGME gene
was released from the pGEM vector by cutting with
Xhol and Stul and inserted into the Sall and Stul sites
from pKLAC1 a-mating factor free vector generating
the vector pKLJC/GME. The LoxP-KanMX-LoxP cassette
was amplified by PCR using pYX012 (Novagen) as a tem-
plate and the primers KanMX-F and KanMX-R in the
following amplification cycles: 3 minutes 98°C, 20 sec
98°C, 20 sec 63°C, 45 sec 72°C (34 cycles). The cassette
was further inserted into BsrGI and Xmal site from
pKLJC/GME vector. All ligation reactions were performed
with Rapid DNA Ligation Kit from Roche®.

Yeast transformation

Kluyveromyces lactis transformation was carried out
according to Kooistra et al. 2004 [47], with some modi-
fications. Fresh CBS2359 cells were plated on YPD agar
medium and incubated overnight at 30°C. An isolated
colony was grown in 2 mL YPD culture at 30°C, 200 rpm
overnight. 50 mL YPD were inoculated with these 2 mL
pre-cultured cells to start O.Dggo 0.0025 per mL (0.1 OD).
When O.Dgoo reached approximately 1, the cells were
harvested at 3000 rpm for 5 minutes at 4°C and washed
with 25 mL sterile ice-cold electroporation buffer EB
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(10 mM Tris—HCI, pH 7.5, 270 mM sucrose and 1 mM
MgCly). 25 mL YPD medium containing 25 mM DTT and
20 mM HEPES pH 8.0 were added and further incubated
at 30°C for 30 minutes without shaking. Cells were col-
lected at 3000 rpm for 5 minutes at 4°C and washed with
10 mL sterile ice-cold EB buffer. Cells were resuspended
in 0.2 mL ice-cold EB and added to 60 pL aliquots of
competent cells. To each aliquot 50 pg Salmon Sperm
DNA (SS-DNA) plus 2 pg transforming DNA was added
and kept on ice for 15 minutes. The mixture was trans-
ferred to a chilled electroporation cuvette (2 mm) and
electroporated at 1 KV, 25 pF, and 400 Ohm. Immediately,
1 mL YPD was added and the mixture was incubated at
30°C for 3 hours, 200 rpm. The cells were harvested at
3000 rpm for 5 minutes at 4°C and washed with sterile
water. Cells were plated on selective agar plates and kept
at 30°C for 2 days.

Total DNA extraction and yeast transformants screening
Cells were grown in 2 mL YPD at 30°C to saturation. Bio-
mass was collected by centrifugation, resuspended in
0.2 mL lysis buffer (2% Triton X-100, 1% SDS, 100 mM
NaCl, 10 mM Tris pH8, 1 mM EDTA) and transferred to
a 2 mL screwcap tube. Afterwards, 0.2 mL PCI [phenol
pH 6.7- chloroform-isoamylalcohol (25:24:1)] and 0.3 g
glass beads were added. The cells were broken using the
fastprep machine, speed 6 for 20 sec followed by centrifu-
gation at 14,000 rpm for 10 minutes. The supernatant was
transferred to a new tube; 0.5 mL ethanol was added and
kept at —20°C for at least 20 minutes. The total DNA was
pelleted by centrifugation at 14,000 rpm for 10 minutes,
washed with 70% ethanol and dried at room temperature.
The DNA samples were dissolved in 30 puL nuclease-free
H,0 and kept at —-20°C. The correct cassette integration
into the LAC4 locus was confirmed by colony PCR or by
using their total DNA as template. For colony PCR, iso-
lated colonies obtained on selective media were trans-
ferred to fresh selective agar media for the isolation of
single colonies. Single colonies were picked up with a ster-
ile toothpick and dissolved in 100 pL 0.01 M NaOH and
kept at room temperature for 45 minutes. A 1.5 pL aliquot
of this sample or 1 pL from total purified DNA was used
as a template for a 50 pL PCR reaction. The specific
primers used to detect the single or multiple cassette
insertions into the LAC4 promoter locus are indicated in
Table 1. The amplification cycles comprised 5 minutes
98°C, 45 seconds 98°C, 30 seconds 58°C, 1 minute 72°C
(35 cycles), and 5 minutes 72°C.

Integrated cassette absolute quantification

The ACT1 gene, which is a single-copy gene in K. lactis
chromosomal DNA, was amplified from the K. lactis
CBS2359 strain and used as reference to normalize the
data. The PCR product was purified using the GenElute™
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PCR Clean-Up Kit (Sigma-Aldrich™) and cloned into
pGEM T Easy vector (Promega, Madison, W1, USA). The
vectors pKIJC/GME (9215 bp) and pKIVTc (13827 bp)
harboring the AtGME and AtVTC2/AtVTC4 genes re-
spectively, plus pGEM/Actl were used to construct the
standard curves for DNA absolute quantification of the
yeast transformants. Genomic DNA from each strain and
the vectors constructed in this study were quantified using
NanoDrop 2000 (Thermo Fisher Scientific Inc, USA) and
diluted to 10 ngul”. The real-time PCR analysis was
performed in 96-well optical plates in technical triplicates
with primers designed using Primer3 software [48]. 2 pl of
the diluted DNA or plasmid DNA dilutions, 0.2 uM of
forward and reverse primer, and Platinum® SYBR® Green
qPCR Super Mix-UDG (Invitrogen) in a 1 X final concen-
tration, were added for a 25 pl final volume reaction. The
CFX96™ Real-Time PCR Detection System (BioRad) was
used as follows; 2 min at 50°C, then 2 min at 95°C
followed by 40 cycles of 15 s at 95°C and 30 s at 60°C. The
conversion of mass concentration of the vector to copy
concentration was done following the equation [49]:

DNA (copy) = 6.02 x 10%*(copies mol™") x DNA amount

DNA length (bp) x 660 (g mol'lbp_l)

A tenfold serial dilution was used for all plasmids to
construct the standard curves, with pGEM/Actl ranging
from 6 x 10 to 6 x 10°® copies.ul™, pKIJC/GME ranging
from 4 x 10” to 4 x 10® copies.ul ™!, and pKIVTc ranging
from 3 x 10% to 3 x 10® copies.ul™. With these calcu-
lations, the precise number of molecules added to subse-
quent real-time PCR runs was calculated, providing a
standard for copy number quantification of AtGME and
AtVTC2/VTC4 genes. The Cr values were plotted against
the log of the number of molecules and each standard
curve was generated by a linear regression. By relating the
Cr value to a standard curve it was possible to determine
the exact copy concentration of the target gene. After
determining the standard curve, the standard plasmid di-
lutions were performed simultaneously in a run with the
total DNA samples from the yeasts transformants. The
AtGME and AtVTC2/VTC4 copy number was calculated
by dividing the copy concentration of these genes by that
of ACT1 gene. The experiments were performed in bio-
logical triplicate using three preparations of total DNA
from independent biological samples.

Total RNA extraction from yeast and RT-PCR

The cells were grown overnight in 5 mL YPGal medium at
30°C, 250 rpm. The cells were pelleted by centrifugation
and the supernatant was discarded. The total RNA from
recombinant K. lactis yeast cells was extracted using the
Trizol® method (Invitrogen). The cDNA synthesis from
the total RNA extracted was achieved using the Reverse
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Transcription System from Promega®. A 2 uL cDNA ali-
quot from each sample was used in a 50 pL PCR reaction
in order to qualitatively detect mRNA expression of the L-
AA pathway plant genes inserted into K. lactis genome.
The RT-PCR was performed using the same primers and
amplification cycles used for plant genes amplification.

Protein extraction, immunoprecipitation and western
blotting

The recombinant cells were precultured overnight in
3 mL YPGal, 20 rpm at 30°C and used to inoculate 50 mL
YPGal. When the culture reached the ODgg of 5, the cells
were pelleted by centrifugation at 3,000 rpm, 4°C for 5 mi-
nutes and washed with ice-cold Phosphate buffered saline
(PBS, 140 mM NaCl, 2.7 mM KCI, 10 mM Na,HPQO,,
1.8 mM KH,PO, at pH 7.3). Protein extraction was car-
ried out with glass beads in lysis buffer containing 1x PBS,
0.001% Triton X-100, 8.7% glycerol, 25 mM MgCl,,
10 mM EDTA (pH 7), 10 mM dithiotreitol, 100 mM NaF,
4 mM NazVO,, 1 mM B-glycerophosphate and one tablet
of Complete Protease Inhibitor Cocktail (Roche). Total
protein content was measured according to Bradford,
1975 using bovine serum albumin (BSA) as standard. An
aliquot, comprising 400 to 500 pg total protein extract,
was used for flag tagged protein immunoprecipitation with
monoclonal anti-FLAG antibodies (M2, Sigma-Aldrich) by
incubation with Protein G agarose (Roche) for 3 hours at
4°C. SDS sample buffer (5X: 250 mM Tris—HCI, 10% SDS,
0.5% bromophenol blue, 1.4 M [B-mercapto-ethanol) was
added after three wash steps and stored at —20°C.

Proteins were separated by SDS-polyacrylamide gel elec-
trophoresis on the NUPAGE Novex Bis-Tris mini Gel
system (Invitrogen®). Separated proteins were transferred
to nitrocellulose membrane (HybondC extra, Amersham)
and detected by incubation with monoclonal anti-Flag
antibodies and horseradish peroxidase-conjugated anti-
mouse IgG secondary antibodies (Amersham) and detected
using the Supersignal West Pico Luminol solution (Thermo
Scientific). Immunoblots' chemiluminescence was imaged
using Fujifilm LAS-4000 mini, and the accompanying
software Image Reader LAS-4000 (Life Science Fuji
Photofilm Co., Ltd).

Measurement of intracellular L-galactose formation

Recombinant cells precultured in 3 ml YPGal were used
to inoculate 50 mL YPGal, 30°C, 200 rpm for 24 hours.
The cells were harvested by filtration on nitrocellulose
filters 0.45 pm, transferred to 8 mL methanol/chloro-
form (5 mL MeOH/3 mL Chloroform) and kept at —20°C
overnight. Aliquots from the supernatant were taken,
transferred to 2 mL tubes and cleared by centrifugation at
12,000 rpm at 4°C for 10 minutes. Fractions of the super-
natant were dried by speedvac and resuspended in 1 mL
milliQ H,O. Charged compounds were removed from
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the sample using Dowex ion-exchange resins (1:1 v/v)
50WX8-200 (Sigma-Aldrich) and 1x8 200 (Acros Or-
ganics) The samples were used immediately for HPLC ana-
lysis (CarboPac PA1 anion-exchange column, 10 um, 4 x
250 mm, DIONEX, eluent: 100 mM and 16 mM NaOH,
flow rate: 1 mL.min™", detection: pulse amperometry ED40
gold electrode) using pure D-galactose (Sigma-Aldrich,
G0750) and L-galactose (Sigma, G7134) as standards.

Determination of ascorbate-like compounds and L-
Ascorbic acid

For intracellular L-ascorbic acid determination, yeast
cells were pregrown in 3 mL YP or YNB medium supp-
lemented with 2% (w/v) galactose or lactose. These cells
were used to inoculate 50 mL of either medium at an
initial optical density of 0.1. The cells were grown for
24 hours, harvested by centrifugation at 5000 rpm for
5 minutes at 4°C and washed once with ice cold distilled
H,0. The cell pellet was resuspended in about twice the
volume with ice cold 10% (w/v) trichloroacetic acid,
vortexed vigorously for 2 min and kept on ice for 20 mi-
nutes. The supernatant was cleared from cell debris by
centrifugation. Ascorbate-like compounds were deter-
mined spectrophotometrically according the method
adapted from Sullivan et Clarke (1955) [50]: 135 pL of
sample was mixed with 40 pL 85% (v/v) H3POy,, 675 pL
0,5% (w/v) oo’ dipyridyl and 135 puL 1% (w/v) FeCls.
After incubation at room temperature for 10 minutes
the absorbance at 525 nm was measured. The identity
and L-AA measurements were achieved by high perform-
ance liquid chromatography with Luna 5u C18 column
(250 x 4.6 mm, Phenomenex) with 99:1 H2O/acetic acid
as eluent, a flow rate of 0.5 mL.min™, and UV detection
set at 254 nm and the L-AA content was calculated using
the L-AA standard curve. The L-AA (cat. n° A5960) and
D-DAL (cat. n° 58320) standard curve was made using
reagents from sigma Aldrich.

Statistical analysis

The ascorbate-like compounds and L-AA measurement
experiments were carried out at least three times. Herein,
we reported mean values as well as for L-AA standard
curve. Student’s ¢-test was performed with p < 0.05.
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