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Why and how protein aggregation has to be

studied in vivo
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Abstract

The understanding of protein aggregation is a central issue in different fields of protein science, from the
heterologous protein production in biotechnology to amyloid aggregation in several neurodegenerative and
systemic diseases. To this goal, it became more and more evident the crucial relevance of studying protein
aggregation in the complex cellular environment, since it allows to take into account the cellular components
affecting protein aggregation, such as chaperones, proteases, and molecular crowding. Here, we discuss the use of
several biochemical and biophysical approaches that can be employed to monitor protein aggregation within
intact cells, focusing in particular on bacteria that are widely employed as microbial cell factories.
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Protein aggregation is a relevant process in different fields
of biomedicine and biotechnology. Indeed, many diseases
are associated to the deposition of amyloid aggregates [1],
while the formation of inclusion bodies (IBs) often occurs
during the production of heterologous proteins [2,3]. In
particular, bacterial IBs, for a long time considered a
bottleneck during recombinant protein production, have
recently gained attention [4,5] as a precious source of
active recombinant proteins [6-8], as well as a model sys-
tem for amyloid studies [9-15]. Moreover, the peculiar
structural properties of IBs and the observation that the
aggregated proteins can retain their activity opened the
possibility to use IBs in bio-catalysis [16], regenerative
medicine [17], and in the controlled delivery of thera-
peutic polypeptides [18,19].

Protein misfolding and aggregation have been exten-
sively studied in the test tube, therefore under conditions
that are far from the physiological and pathological ones.
For this reason, in order to take into account the complex-
ity of the cellular environment that plays a crucial role in
tuning protein aggregation [20], it is important to extend
these investigations to intact cells [21].

In this commentary we focalized our attention on the
different approaches that allow to monitor protein
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aggregation within bacterial cells (Table 1). We should
note that most of these approaches have been success-
fully applied to monitor protein aggregation also within
intact eukaryotic cells, including yeasts and mammals.

Among the most employed methods to study protein
aggregation in situ, some are based on the fluorescence
detection of genetically encoded fusion tags, or of
conformational-sensitive fluorescent dyes. In the first
case, one of the most important tools is represented by
the green fluorescent protein (GFP) and its variants,
such as the yellow, the blue and the red, used to obtain
fluorescent chimera-proteins, easily detectable by fluor-
escence microscopy and flow-cytometry.

This approach has been applied, for instance, to investi-
gate the presence of functional proteins embedded in
bacterial IBs [22-24]. Interestingly, in recent works it has
been observed that the fusion of self-assembling or
surfactant-like peptides to different proteins makes it pos-
sible to obtain active IBs, whose formation was detected
in vivo monitoring the fluorescence of GFP - taken as a
model system - fused to the peptide. Indeed, the bacterial
cell images, obtained by confocal microscopy, showed a
diffuse fluorescence when GFP was expressed alone, in a
soluble form. When, instead, the GFP was expressed fused
to the self-assembling or surfactant-like peptide, the fluor-
escence appeared localized in the cell, indicating the
formation of active IBs [23,24]. Moreover the use of GFP
tag as a reporter for corrected folding has been employed

© 2013 Ami et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:silviamaria.doglia@unimib.it
http://creativecommons.org/licenses/by/2.0

Ami et al. Microbial Cell Factories 2013, 12:17
http://www.microbialcellfactories.com/content/12/1/17

Page 2 of 4

Table 1 Methods for the study of protein aggregation in intact cells

Approach

Measurement
methods

Application examples

¢+ Genetically encoded fusion tags

v Fusion of the target
polypeptide with a fluorescent
protein or an enzyme

v Fusion of the target

Reduction of fluorescence or of enzymatic
activity after aggregation; detection of
functional polypeptides within active IBs

Formation of hyperfluorescent aggregates

Bulk cell fluorescence;
fluorescence
microscopy; flow
cytometry; enzymatic

Monitoring of protein aggregation
within intact cells [31]; localization of
functional polypeptides within IBs [22];
formation of active IBs [16,23,24];

polypeptide with the tetra-Cys  in presence of FIAsH activity screening of aggregation inhibitors [26]
tag
« Conformational sensitive dyes
v Thioflavin-S Th-S fluorescence reports on amyloid-like  Bulk cell fluorescence;  Detection of amyloid-like aggregates

structure of the protein aggregates

fluorescence within intact cells [32]
microscopy; flow

cytometry

+ Direct spectroscopic detection of structural properties

v FTIR Monitoring of intermolecular B-sheet
structures in IBs
v NMR Detailed structural information of the

protein embedded within IBs

Label-free intact cell
(micro)spectroscopy

Solid-state NMR of
whole cells

Monitoring of protein aggregation
whithin intact cells [35,39]

Detection of native-like structures [43]

++ Aggregation sensitive reporters

v Reporter protein under an
aggregation sensitive promoter

Protein aggregation induces the

expression of the reporter protein. The
measured fluorescence or enzymatic

Enzymatic activity;
fluorescence

Monitoring of protein aggregation
within intact cells [37,45]

activity of the reporter protein is related
to the level of aggregation within cells

for the screening of AP mutations and chemical com-
pounds able to tune the aggregation propensity of the
peptide. In particular, it should be noted that the fluores-
cence of the fusion protein in intact cells was found to be
inversely correlated with the aggregation of the AB-GFP
fusion protein [25-27].

Noteworthy, the fusion with fluorescent proteins has
been also employed to investigate the mechanism of
protein deposition at the single cell level [28] and the
specificity of protein-protein interaction during in vivo
protein deposition. To this aim, for instance, Morell and
colleagues performed Forster resonance energy transfer
(FRET) experiments in prokaryotic cells, labeling two
self-aggregating proteins, the AB42 amyloid peptide and
the VP1 capsid protein, with proper fluorescent protein
variants [29]. In this way, the specificity of protein de-
position was indicated by a higher FRET efficiency,
observed when the two dyes were fused to the same poly
peptide, rather than to the different ones.

Other applications based on fluorescence analysis to
detect, in real time, protein aggregation in vivo include
the labeling of the target protein with a tetra-cysteine se-
quence (Cys-Cys-X-Y-Cys-Cys), which specifically binds
the bis-arsenical fluorescein-based dye (FIAsH) [30].
This smart approach enables to monitor the formation
of hyperfluorescent aggregates within intact cells, by
simply detecting the bulk cell fluorescence or by fluores-
cence microscopy [30,31].

Protein aggregation can be also studied in vivo using
conformational-sensitive dyes, such as the thioflavin-S
(Th-S), whose fluorescence spectroscopic features
change upon interaction with amyloid aggregates. As re-
cently reported in the literature, the capability of Th-S
to be internalized in bacterial cells has been exploited to
detect intracellular amyloid-like aggregates by fluores-
cence spectroscopy, microscopy and flow cytometry.
Interestingly, this approach can represent a new tool to
screen the effects of amyloid inhibitors in an intracellu-
lar environment [32].

Among the spectroscopic techniques that allow to
study protein aggregation in intact cells, Fourier trans-
form infrared (FTIR) spectroscopy offers the advantage
to be a label-free tool. In particular, the detection of pro-
tein aggregates is based on the presence of a specific
marker band due to the formation of intermolecular p-
sheet structures [33,34]. Following this approach, it has
been possible to monitor the kinetics of IB formation
within growing E. coli cells, under different expression
conditions [35]. Interestingly, since the infrared response
of an intact cell represents a chemical fingerprint of its
main biomolecules [36], the IR spectral analysis makes it
possible to obtain also complementary information on
cell processes that accompany protein aggregation, in-
cluding for instance the effects on cell membranes [37].

Moreover, the IR study of extracted IBs allows to ob-
tain important information on the structural properties
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of the aggregated protein [34,38,39], and in particular to
detect the presence of native-like secondary structures of
the proteins within IBs. For these reasons, the IR approach
is a useful tool to identify the best conditions that enable
to modulate not only the level of protein aggregation, but
also the quality of the protein inside the IBs.

A more detailed structural information of the protein
embedded within IBs can be obtained by nuclear mag-
netic resonance (NMR) spectroscopy, a technique that
was applied not only to characterize isolated [40-42] IBs,
but also IBs within cells [43]. For instance, in the
pioneering work of Curtis-Fiske and colleagues, solid
state NMR was applied to study whole bacterial cells
expressing the HA2 subunit of the influenza virus
hemagglutinin protein in form of IBs. In this way, label-
ing the backbone carbonyl and nitrogen (**CO and '°N)
for each amino-acid, it has been possible to identify the
localization of native-like a-helices of the protein func-
tional domain, and to reveal also the protein conform-
ational heterogeneity within IBs [43].

Finally, the evaluation of protein aggregation within in-
tact cells could be also tackled by a biochemical approach
based on the use of gene promoters specifically triggered
by protein misfolding and aggregation [44-46]. For in-
stance, the expression of the [-galactosidase reporter
under the control of the chaperone IbpB promoter, specif-
ically activated by misfolded proteins, allowed the estima-
tion of protein aggregation accumulated inside the cell
[45]. By this approach, together with complementary bio-
chemical and biophysical analyses, it has been studied the
recombinant expression of the glutathione-S-transferase
and its fusion with GFP, whose aggregation can be tuned
by changing the expression conditions. Interestingly, it has
been found that in this model system misfolded proteins
and soluble aggregates - but not the soluble native protein
nor IBs - lead to a significant reorganization of the cell
membranes and of the host protein expression [37], a rele-
vant result in the proteotoxicity context.

Conclusions

We underline here the need to extend the study of pro-
tein aggregation in an intracellular environment in the
presence of factors - such as chaperones, proteases, and
the molecular crowding - that can affect in a crucial way
the aggregation process in vivo.

Indeed, it will be necessary to complement studies in
the test tube with those in intact cells, not only to reach
a better comprehension of the mechanisms underlying
protein aggregation, but also to identify the factors that
can modulate aggregation, such as protein expression
conditions, mutations, and the effects of chemical
compounds.

In this view, it will be highly desirable to further develop
methods that might enable investigations in intact cells, not
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only for the basic understanding of aggregation in situ, but
also for applications in recombinant protein productions
and for the screening of compounds inhibiting aggregation,
a relevant issue in medical therapies.
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