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Abstract

antibiotic production.

Streptomyces, the main antibiotic-producing bacteria, responds to changing environmental conditions through a complex
sensing mechanism and two-component systems (TCSs) play a crucial role in this extraordinary “sensing” device.
Moreover, TCSs are involved in the biosynthetic control of a wide range of secondary metabolites, among them
commercial antibiotics. Increased knowledge about TCSs can be a powerful asset in the manipulation of bacteria
through genetic engineering with a view to obtaining higher efficiencies in secondary metabolite production. In this
review we summarise the available information about Streptomyces TCSs, focusing specifically on their connections to
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Introduction
Microorganisms included in the genus Streptomyces are
Gram-positive bacteria that inhabit soil niches, thus facing
ever changing environmental conditions and nutrient scar-
city [1]. Along evolution, this challenging environment has
pushed the genus Streptomyces towards complex adaptive
responses. Among them, two-component systems (TCSs)
are the most important transduction signal mechanism
in bacteria, allowing the translation of these rapid environ-
mental or nutritional changes into a regulatory readout
[2,3]. Typically, TCSs comprise a membrane-bound his-
tidine kinase (HK), which senses specific environmental
stimuli, and a cognate regulator (RR), which mediates
the cellular response, mainly through the transcriptional
regulation of target genes [4].

Bacteria belonging to the genus Streptomyces harbour
a high number of TCSs in comparison with other bacterial
genera, probably due to the changing environment that
these organisms must inhabit. As an example, the genome
sequence of the model S. coelicolor has revealed an unpre-
cedented proportion of regulatory genes (approximately
12.3% of the total ORFs); [5,6]. Table 1 summarizes the
number of TCSs in all Streptomyces species sequenced at
the time of writing (P2CS: http://www.p2cs.org).
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The competitiveness of these bacteria for resources is
also increased due to the production of a large number
of secondary metabolites with different activities such as
fungicides, cytostatics, modulators of the immune response,
and plant growth effectors [1,7]. Henceforth, all these com-
pounds will be grouped under the name “antibiotics” in
order to simplify the review. Almost half of all known anti-
biotics are produced by actinomycetes, mostly Streptomyces
[1,8,9], including two-thirds of the clinically useful antibi-
otics [10]. For example, S. coelicolor produces three chro-
mosomally encoded antibacterial compounds: actinorhodin
(ACT), undecylprodiginine (RED) and calcium dependent
antibiotic (CDA). More recently, a yellow pigment (yCPK)
associated with a type I polyketide synthase cluster (cpk)
has also been described [11,12]. However, its genome con-
tains the information necessary to potentially encode more
than twenty secondary metabolites, most of them as yet un-
detected. Many silenced pathways have been observed in
all the Streptomyces genomes sequenced to date, indicating
the high biosynthetic potential of these organisms [13,14].

Antibiotic production responds to stress situations
(mainly nutrient starvation) in coordination with primary
metabolic responses [15]. Accordingly, Streptomyces needs
to finely modulate such production, depending mostly
on the primary metabolic flux and availability of both
nutrients and precursors for these antibiotics [16].

Such a complex network of antibiotic regulation is
controlled at two main levels. At the lower level, the
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Table 1 Number of histidine kinases, response regulators and mis-Predicted TCS proteins present in the Streptomyces

species sequenced to date*

Organism Histidine Response Mis-Predicted
Kinase (HK) Regulator (RR) TCS protein**
Streptomyces bingchenggensis BCW-1 125 17 7
Streptomyces scabeiei 87.22 108 95 2
Streptomyces violaceusniger Tu 4113 106 99 1
Streptomyces coelicolor A3(2) 100 87 1
Streptomyces avermitilis MA-4680 91 72 2
Streptomyces griseus NBRC 13350 83 80 0
Streptomyces sp. Sirex AA-E 76 73 2
Streptomyces flavogriseus ATCC33331 74 64 1
Streptomyces cattleya NRRL 8057 63 59 0
Streptomyces hygroscopicus 5008 61 75 5

* Taken from the P2CS database (http://www.p2cs.org/) [72,73].

**mis-Predicted TCS proteins indicates all the TCS proteins missed in the original genome annotation and later identified from DNA ORFs prediction [73].

cluster-situated regulators (CSRs), located within the
antibiotic biosynthetic clusters, can modulate the anti-
biotic biosynthetic genes of the cluster in which they
are included, and according to recent data they can
also regulate the expression of genes located distant
from them [17]. So far, in S. coelicolor five CSRs have
been elucidated: ActII-ORF4 [18], RedD/RedZ [19,20],
KasO (also designated CpkO) [21] and CdaR [22], which
are responsible for the biosynthesis of ACT, RED, yCPK
and CDA respectively. At the upper level, pleiotropic regu-
lators have been shown to control the production of more
than one antibiotic. In Streptomyces, the most abundant
pleiotropic regulators are the TCSs, a significant fraction of
which regulates antibiotic production and morphological
differentiation. (Orphan regulators such as RedZ with a role
in antibiotic production have also been described but we
will just focus here in “traditional TCS” with a cognate his-
tidine kinase). TCSs regulators can act by direct binding to
CSRs promoters or can act indirectly, through other regula-
tory pathways. Only a few binding sequences of S.coelicolor
TCSs regulators to CSRs promoters have been described to
date. These binding motifs are shown in Figure 1.
Broadening our knowledge of the involvement of TCSs
in the regulation of antibiotic synthesis can contribute to
the rational design of new hyper-producer host strains
through genetic manipulation of these complex systems.
Moreover, strategies involving TCSs can be used to un-
veil new antimicrobial molecules that are not produced
under laboratory conditions. Some excellent broadly-
based reviews regarding general antibiotic regulation
in Streptomyces [15,16,25-28] and describing TCSs in
Streptomyces [29] have been published. Here, we sum-
marise current knowledge regarding the involvement of
TCS in antibiotic biosynthesis in the model streptomycete
S. coelicolor, describing how each TCS affects antibiotic

biosynthesis and providing some examples of their present
applications and their possibilities for the future improve-
ment of antibiotic production and discovery.

To date, the activating signals of most TCSs remain
unknown. In light of the available knowledge about the
signal triggering the system, we shall divide the review
between TCSs with known signals and TCSs whose signals
have not been studied and/or that remain unknown. TCSs
with unknown signals will in turn be divided between TCSs
that regulate the production of a single antibiotic, TCSs that
regulate the production of more than one antibiotic, and
the regulators responsible for controlling antibiotic produc-
tion and morphological differentiation. In order to facilitate
our understanding of this complex network of interactions,
Figure 2 shows updated information regarding which of the
S. coelicolor TCSs plays a role in the production of each
antibiotic and how these regulatory processes work.

Review

TCSs with known activating signals

Coupling nitrogen availability and antibiotic production:

the AfsQ1/2 and DraR/K systems

The AfsQ1/Q2 system was initially identified due to the
ability of a S. coelicolor fragment containing afsQI to confer
the capacity to produce pigmented antibiotics when in-
troduced into a plasmid in S. lividans, whose antibiotic
gene clusters are usually silenced in most culture conditions
[30]. Nevertheless, a deletion mutant of the S. coelicolor
afsQI and afsQ2 genes (AafsQ1/Q2) failed to produce any
phenotype when cultivated in rich medium [30], although
when grown on defined minimal medium with glutamate
as the only carbon source the AafsQ1/Q2 mutant showed a
decrease in ACT, RED and CDA, antibiotic production
[31], indicating the different roles of this system, depend-
ing on the culture medium. The complementation of
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sites and translation start codon are also shown.

Figure 1 Location of the binding sequences for the S. coelicolor response regulators AfsQ1, DraR in the promoter regions of antibiotic
cluster-situated regulators: actll-ORF4, redZ, kasO, and cdaR [23,24]. Transcription starting points are indicated with an arrow. -10 and —35
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the S. coelicolor double mutant with the regulator (afsQ1I)
did not restore ACT production, pointing to AfsQ2 kinase
as the only phosphorus donor of the response regulator.
Although the real signal has not been determined ex-
perimentally, a nutritional signal -either an intermediate
of nitrogen metabolism or the C/N/P ratio- might act as
the trigger of the system.

Regarding the target genes of the AfsQ1 regulator, elec-
trophoretic mobility shift assays (EMSAs) and quantitative
RT-PCR (qRT-PCR) experiments revealed that AfsQ1l
activates antibiotic biosynthesis by interacting directly
with the CSR-genes actll-ORF4, cdaR, and redZ. Moreover,
different AfsQ1l binding motifs in the cdaR, redZ and
actll-ORF4 promoter regions have been described using
Dnase I footprinting assays (Figure 1) [23,31]. AfsQ1 also
activates sigQ, a putative sigma factor that, by acting as a
negative regulator of antibiotic production, (sigQ deletion
leads to an increase in antibiotic levels) might play a role as
an antagonist for the AfsQ1/Q2 system [23].

AfsQ1-binding sequences have been found within the
¢pkA/cpkD intergenic region and deletion of afsQ1/Q2
led to a substantial reduction of the yellow pigment yCPK

[23]. The sequences have also been located in genes with
roles in morphological development and carbon, nitro-
gen and phosphate metabolism, indicating that AfsQ1/
Q2 responds to nitrogen excess not only by regulating
antibiotic production but also by coordinating the C/
N/P balance in the cell through the regulation of genes
involved in nitrogen assimilation and phosphorus and
carbon uptake [32].

The role of the DraR/K system in the regulation of antibi-
otics biosynthesis was elucidated in a screening of the TCS
gene deletion library using minimal medium (MM) supple-
mented with different nitrogen sources [24], suggesting an
interconnection between the role of AfsQ1/2 and DraR/K
in response to nutritional signals.

Deletion of draR/K (and similarly AdraR and AdraK
single mutants) resulted in a reduction in ACT levels
but led to the overproduction of RED when grown in
high nitrogen concentrations (mainly glutamine). An
increase in the yellow pigment (yCPK) in AdraR/K was also
observed under the same culture conditions, indicating
that the TCS might act as a repressor for RED and yCPK
biosynthesis under these circumstances. Thus, the DraR/K
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Figure 2 Schematic overview of the regulation of antibiotic production by the TCSs described in this review. A) TCSs with a known
signal (Nitrogen, N, or phosphate, P). B) TCSs with an unknown signal. (+) Indicates positive regulation; (—) indicates negative regulation. Straight
arrows indicate that the regulation is exerted through the CSRs. A double-lined arrow indicates that regulation is exerted indirectly, and not
through CSRs. The intermediate targets of the indirect regulation are shown, in a box within the arrows, when known. A discontinuous line indi-
cates that the regulation mechanism has not yet been studied. The clock indicates timing control in antibiotic biosynthesis.

RapA1/2 AbrC1/2/3

system was the first TCS identified that acts differentially
in antibiotic biosynthesis in S. coelicolor: it is an activator
of ACT and a repressor of RED and yCPK. Scanning elec-
tronic microscopy revealed that this TCS was also related
to morphological differentiation [24].

qRT-PCR assays confirmed that the deletion of draK/R
originates a decrease in the expression of actlI-ORF4, the
CSR of ACT, and an increase in the expression of kasO,
the CSR of yCPK. EMSAs assays with the DraR regulator
revealed the direct interaction of the DraR regulator with
the upstream regions of actlI-ORF4 and kasO through the
binding of an 11 bp consensus motif defined using DNase
I footprinting assays (Figure 1). In contrast, the increase
in RED production observed in the double mutant is
not related to a higher expression in redD, the CSR of
RED production [24].

Since AfsQ1/Q2, the TCS described above, had a similar
pattern of nitrogen-dependent regulation [31], a double mu-
tant AdraR/AafsQ1 was constructed to study the possible

coordination between both TCSs in the activation of
actlI-ORF4. The actlI-ORF4 transcript was significantly de-
creased in the double mutant (AdraR/AafsQI) as compared
with the single mutant (AdraR), indicating a possible
additive effect between the two systems in the regula-
tion of actII-ORF4 in glutamate-based medium [24].

Similarly to AfsQ1/Q2, the signal that activates the
DraR/K system might be a common intermediate gener-
ated during nitrogen metabolism or changes in the C/N
ratio under the stress of higher concentrations of nitrogen
[32]. Further studies addressing the biochemical and
biophysical properties of the extracellular sensory do-
main of DraK have recently shown that conformational
changes in this particular domain occur depending on
the pH. This change may be involved in signal trans-
duction processes in DraR/DraK TCS [33]. The recent
crystallization of the extracellular sensory domain of
DraK might provide new clues to unravel the structure
and sensing mechanism of DraK kinase [34].
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Coordinating phosphate availability and antibiotic
production: The PhoP/R system

The TCS PhoP/R is the major signal transduction system
for phosphate control in Streptomyces. Under phosphate
limitation conditions, this TCS plays an important role,
activating pathways for phosphate scavenging and control-
ling the transition to the stationary phase and secondary
metabolism [35,36]. Its involvement in the control of pri-
mary and secondary metabolism in response to phosphate
availability was first described in Streptomyces as a result
of the search for similarities in the S. lividans genome with
the Pho regulon of Escherichia coli and Bacillus subtilis
[37-40]. Under inorganic phosphate limitation, dele-
tion of the gene regulator phoP (AphoP) in S. coelicolor
resulted in a lower and delayed production of ACT and
RED. However, EMSA assays did not reveal any binding
of PhoP to the promoter regions of the CSRs actlI-ORF4
and redD, suggesting an indirect regulation of antibiotic
production [41].

In silico analysis looking for PHO boxes, the target
sequences of the PhoP regulator [42,43], detected a pu-
tative binding sequence in the upstream region of the
afsS gene, previously described as an activator of both
ACT and RED in S. coelicolor [44]. Interestingly, the
PhoP-binding sequence determined by footprinting
analysis coincided with the binding region previously
reported as the binding region of the AfsR regulator
that originates competition between both regulators
[45]. Luciferase reporter experiments also confirmed
that the PhoP regulator not only competes with the
AfsR regulator but also acts as a transcriptional repres-
sor of afsS. Additional EMSA assays revealed a recipro-
cal regulation between both regulators due that AfsR is
able to bind the phoRP promoter [41]. In addition, it
has been shown that PhoP binds to the promoter of
the polymerase omega factor gene rpoZ, required for
the biosynthesis of ACT and RED [46]. These data suggest
that PhoP indirectly regulates antibiotic production through
AfsS and RpoZ. Briefly, PhoR phosphorylates PhoP when
phosphate concentrations decrease, and activated PhoP fi-
nally produces afsS repression and rpoZ activation, yielding
an overall positive regulatory effect on antibiotic production
in S. coelicolor [46)].

TCSs with unknown activating signals
TCSs regulating the biosynthesis of one antibiotic
CutR/S, SC0O0203/0204 and SCO3818 regulating ACT
biosynthesis CutR/S was initially described in S. lividans,
being the first TCS described in Gram-positive bacteria of
the genus Streptomyces [47]. Gene replacement mutants
of cutR and cutS exhibited an accelerated and increased
production of ACT in different media.

The involvement of CutR/S in antibiotic production
was also demonstrated in S. coelicolor. After the cloning
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of cutR from S. lividans in this organism, an important
repression of ACT production was observed. Therefore,
CutR/S also negatively regulates ACT production in
S. coelicolor, although no direct binding to actII-ORF4
has been demonstrated. There is no information regarding
the activator signal of the system [48].

SC0O0203/0204 TCS was studied after the finding of high
similarity between the regulator of the TCS, SCO0204,
and an orphan regulator, SCO3818. The hypothesis that
both regulators might be regulated by the same histidine
kinase encoded by SCO0203 was confirmed using trans-
phosphorylation analysis [49]. Regarding their role in anti-
biotic production, both deletion mutants (ASC0O0203,
ASC03818) and the double mutant (ASC00203/0204)
showed an earlier and increased ACT production in
certain complex media sufficient in Mg>*. In all cases,
overproduction could be complemented through the
integration of a functional copy of the deleted gene/s.
However, the double mutant (ASC0O0203/0204) could be
complemented by a functional copy of SCO0203/0204 or
only by a copy of the kinase encoded by SC0O0203. The
fact that functional complementation of the whole system
can be achieved by complementing only with the kinase
seems to indicate that there is a functional correlation be-
tween the regulator SCO3818 and its potential phosphor
donor kinase SCO0203 [49]. Since the phenotype was only
evident in complex media sufficient in Mg>, it is reason-
able to speculate that this bivalent cation might act as a
signalling molecule to activate the system, although it has
not yet been defined as the actual signal itself.

EcrA1/A2 and EcrE1/E2 regulating RED biosynthesis
Microarray analysis revealed two TCSs designated ecrA1/
A2 [50] and ecrEI/E2 [51] in the vicinity of the red locus
that are expressed in coordination with the genes of the
RED biosynthetic pathway. Single-deletion mutants of both
systems, ecrA1/A2 and ecrE1/E2, originated strains with
lower RED production than the wild-type strain, while
ACT values did not change significantly between the strains
tested. In light of this result, both EcrA1/A2 and EcrE1/E2
can be thought to play a role as positive regulators for RED
production [50,51]. ecr genes are also present in other
Streptomyces such as S. flavogriseus and S. venezuelae
that do not harbour the RED cluster. Therefore, although
a coordinated expression of ecrA1/A2 and ecrE1/E2 with
RED cluster genes has been described in S. coelicolor,
these TCSs should have a different regulatory role in
other Streptomyces with no RED biosynthetic pathway.

TCSs controlling the biosynthesis of more than one antibiotic
AbsA1/A2 coordinating antibiotic production AbsA1l/
A2 was one of the first TCSs to be related to antibiotic
production in S. coelicolor [52]. A screening of mutants
produced by UV mutagenesis revealed four mutants
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blocked in antibiotic production without being affected
in morphological differentiation. All of them were mutants
in a putative TCS designated AbsA1/2 [52]. Further stud-
ies in the mutations that originated the non-antibiotic-
producing phenotype revealed point mutations in the
transmitter domain of AbsAl histidine kinase, locking
the regulatory system into a negatively regulating mode
[53] caused by the lack of phosphatase activity in AbsAl
kinase [54]. Surprisingly, both disruption and deletion
mutants at the absA1 and/or absA2 loci originated a
precocious hyper production of ACT and RED antibiotics
(Pha phenotype), pointing to AbsA1 as the only kinase
able to phosphorylate the regulator [52] and to the ac-
tivated regulator AbsA2-P as a repressor of antibiotic
production. Amino acid replacements of D54E, D54A and
D54N in AbsA2, which have been described previously as
phosphorylation inhibitors, also caused a Pha phenotype
in all three mutants [55].

Biochemical studies support the role of AbsA2-P as a
repressor of antibiotic production and have demonstrated
that the AbsAl cytoplasmic domain exerts a dual activity
and can phosphorylate and dephosphorylate AbsA2. As
expected, antibiotic production is dramatically reduced in
mutants with enhanced kinase activity and in those with
impaired AbsA1 phosphatase activity [54].

The molecular bases for the Pha phenotype were estab-
lished by AbsA2-P chromatin inmunoprecipitation (ChIP)
and revealed that the phosphorylated regulator binds the
promoter regions of actll-ORF4, cdaR and redZ, all of them
CSRs [56]. In vivo binding targets were confirmed in vitro
with EMSA experiments [56].

To gain further insight into the signal response mech-
anism of the system, kinase transmembrane topology
was studied by using different AbsA1l C-terminal dele-
tion fusions to eGFP that positioned the fluorescent
protein between each of the five predicted transmembrane
domains. The results matched the in silico topological
predictions, demonstrating that the AbsA1l kinase has
5 transmembrane domains and a large extracellular C-
terminal domain that might be important for response
to a hitherto unidentified signal [57].

RapA1/2 A screening of TCSs knock-out mutants in
S. coelicolor allowed the isolation of the ArapA1/A2 strain,
which showed a significant reduction in ACT production
but no differences in morphological differentiation or
growth on R4C solid medium [58].

Semiquantitative RT-PCRs analysis demonstrated that
the expression of actlI-ORF4, the CSR of the ACT gene
cluster, and the two ACT biosynthetic genes, actlll and
actVAS, were clearly reduced in the mutant, suggesting
that reduced ACT production may be directly or indir-
ectly dependent on the cluster situated activator actll-
ORF4 [58].
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Proteomic analysis of the knock-out mutant also revealed
a lower production of KasO, the CSR of the cryptic polyke-
tide biosynthetic gene cluster (cpk) responsible for yellow
pigment (yCPK) production and this result was confirmed
by semiquantitative qRT-PCR [58].

TCSs controlling pleiotropic processess

AbrA1/2 and AbrC1/2/3 coordinating growth phase
and antibiotic production The deletion of several TCSs
with sequence similarity with the above-described negative
regulator AbsA1/2 system allowed the identification of two
TCSs with opposite activities. While the AabrA1/2 strain
displayed a conditional (medium-dependent) increase in
antibiotic production and differentiation rates, the dele-
tion of the AbrC1/2/3 (AabrC1/2/3) system originated a
conditional decrease in differentiation rates and antibiotic
production. Therefore, both are pleiotropic regulators
being AbrA1/2 negative and AbrC1/2/3 positive regu-
lators respectively [59].

Owing to the presence of two histidine kinases in the
vicinity of a regulator, the AbrC1/2/3 system should be
considered an atypical two-component system. More-
over, each gene is separated from the upstream ORF by
a DNA sequence long enough to harbour its own pro-
moter. Therefore, each gene might be expressed inde-
pendently in order to fit the different needs of bacteria,
although the signals detected by these kinases have not
yet been identified. Interestingly, this system is conserved
in all Streptomyces species sequenced so far.

Genome-wide ChIP-chip experiments have demonstrated
that the AbrC3 protein is able to bind in vivo to the pro-
moter of the CSR of the ACT gene cluster actll-ORF4p,
explaining the downregulation of the act cluster observed
in the AabrC3 strain (Rico et al. unpublished data).
However, no direct binding of the regulator to the RED
and CDA CSRs was observed, suggesting an indirect regu-
lation of these pathways.

The signal or signals triggering kinase phosphorylation
remain unknown. Since the phenotypes are medium-
dependent, a signal that is only present in certain media
seems to be necessary for the system to be activated.
An alternative explanation might be that in culture
media in which no change in phenotype was observed
other regulatory systems could be active, perhaps masking
AbrC1/2/3 activity.

SCO5784/5785: controlling the timing of sporulation
and antibiotic production This TCS was originally stud-
ied because it shares a certain degree of homology with
the B. subtilis degS-degll operon that influences protein
secretion and the timing and level of antibiotic production
[60,61]. ACT synthesis occurs later in the deficient strain
than in the wild-type, while the propagation of multicopy
SCO5785 results in a higher production of ACT at earlier
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stages relative to the wild-type strain. An equivalent result
was observed when RED was measured. It was also seen
that sporulation was delayed when the level of the regula-
tor gene decreased, whereas its overproduction caused
early sporulation [62]. As expected, transcriptomic ana-
lysis revealed an up-regulation of the ACT and RED CSRs
actll-ORF4 and redZ respectively in the overproducer
strain and a downregulation in the deficient strain. In this
case, the TCS seems to respond to environmental inputs,
modulating the timing of both antibiotic production as
well as sporulation, and controlling the transition from
primary to secondary metabolism [62].

Engineering S. coelicolor TCS to improve antibiotic biosynthesis
The emergence of new antibiotic-resistant strains makes
the discovery and improvement of the production of new
antibiotics major challenges for microbial biotechnology.
New tools must be developed to exploit the “hidden bio-
synthetic potential” available in all Streptomyces genomes
sequenced to date [63,64]. Thus, the sequencing of the
S. coelicolor genome [5] has revealed a large number of
previously unknown metabolic gene clusters, potential
candidates for the production of as yet undiscovered
antibiotics and natural products [13]. Among all the possi-
bilities, metabolic engineering using the available know-
ledge about S. coelicolor TCSs has been used successfully
to achieve higher antibiotic production efficiencies and
to unveil “cryptic” antibiotics not produced previously
under laboratory conditions. Below we briefly summar-
ise some relevant examples.

The information gained about S. coelicolor TCSs has
been used in other Streptomyces strains. Homologies with
TCSs previously described in S. coelicolor have been found
in many other Streptomyces species and could be used as
targets to improve antibiotic production. As an example,
DraR/K homologues have been found in six Streptomyces
strains. The involvement of this system in the biosyn-
thesis of other antibiotics was demonstrated using an
S. avermitilis AdraR/K strain. Antibiotic production profiles
changed dramatically in the deletion mutant as compared
to the wild-type strain. Thus, it was observed that DraR-K
homologues could be useful targets for the metabolic
engineering of Streptomyces species [24]. Reciprocally,
information obtained in other Streptomyces strains
might be used in S. coelicolor in order to improve anti-
biotic production.

An alternative strategy that applies the regulatory
properties of TCSs is the use of TCS-manipulated strains
of S.coelicolor as heterologous hosts in order to hyper-
produce different antibiotics or natural products. These
strains may be either deletion mutant strains or strains
in which a kinase or regulator has been overexpressed,
resulting in antibiotic overproduction. Recently, at our la-
boratory the production of the antitumor drug oviedomycin
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has been optimized using this kind of approach. This
molecule, isolated from S. antibioticus, shows in vitro
antitumor activity and induces apoptosis in cancer cell
lines [65,66]. In these experiments the AabrAl/A2 strain
[59] showed a significant increase in the heterologous pro-
duction of oviedomycin as compared with the wild-type
strain (Santamaria et al., unpublished results). Accordingly,
the AabrA1/A2 deletion mutant strain might be a good
candidate for the heterologous production of natural
products. This kind of approach can also be used for the
combinatorial biosynthesis of antibiotics. Combinatorial
biosynthesis manipulates the genes that encode enzymes
in biosynthetic pathways rationally in order to redesign
antibiotic structures to create new activities and overcome
bacterial resistance to existing antibiotics [67].

A metabolic engineering approach can also be used
to unveil cryptic pathways for antibiotic biosynthesis.
As mentioned above, some of the first TCSs discovered
in S. coelicolor were revealed using a similar approach.
AfsQ was initially identified due to its capacity to in-
duce antibiotic production when introduced into the
non-antibiotic producer S. lividans [30]. Similar strategies
using the overexpression of regulators have been employed
successfully in S. coelicolor [68] and other Streptomyces
species [69] to discover “hidden” antibiotic synthetic
pathways. The expression of wild-type or mutated pleio-
tropic regulators can be used to create modified streptomy-
cetes in which cryptic biosynthetic genes clusters have been
activated. The overexpression of kinases has also been used
successfully in S. coelicolor to modify levels of antibiotic
production. absA1 alleles previously shown to be antibiotic
enhancers in S. coelicolor (see TCS AbsA1/2) were inte-
grated into heterologous Streptomyces to alter its secondary
metabolism [70]. New antimicrobial activity was induced in
ten streptomycetes and, also as a result of AbsA1 activa-
tion, pulvomycin (a broad-spectrum antibiotic) was iso-
lated using this method for the first time in S. flavopersicus
[70]. Regarding the mechanism underlying the induction of
new antimicrobial activities, as has been reported AbsA2 is
a negative regulator of antibiotic production that requires
phosphorylation to exert its repression [56]. absAl alleles
could counteract the effects of endogenous AbsAl protein,
dephosphorylating the AbsA2 regulator and therefore
allowing the overexpression of totally or partially repressed
pathways in Streptomyces species in which AbsA1/2 pleio-
tropic regulation occurs. Thus, the expression of wild-type
or mutated pleiotropic regulators can be used as a screen-
ing method to search for new antibiotics and induce silent
biosynthetic pathways in Streptomyces.

Another important strategy to decrypt silent pathways
in the future might be the use of the proper signals to trig-
ger the TCS activity. As mentioned in previous sections, to
date the nature of most of the signals activating S. coelicolor
TCSs remains elusive. Their discovery and use in different
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Streptomyces might offer an important way forward in the
discovery of new metabolites with antibiotic properties [71].
In some cases, topology studies (as we report above in
the section addressing AbsA1/A2 TCS) can offer rele-
vant information regarding the position of kinases in
the membrane and therefore give up some clues about
their signal reception. In silico topology predictions of
all the kinases described in this review and the conserved
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domains of both kinases and regulators are shown in
Figure 3.

Conclusions

As discussed above, in recent decades important advances
have been made in deciphering the role of TCSs in the
regulation of S. coelicolor antibiotic production and some
examples of applied knowledge have been described briefly.
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The emergence of an increasing number of antibiotic-
resistant strains has made antibiotic research one of the
main priorities in biomedical investigations. Here we
have shown how antibiotic production can be improved
and how the discovery of new antibiotics can be achieved
using on-going research into TCSs. More work needs to be
done to study new TCSs in Streptomyces, the connexions
between them, and at the same time the whole regulatory
system of these interesting microorganisms.
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