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Abstract

secretion efficiency may impact the final protein yields.

Regulative sequences, Secretion mechanisms

The development of complementary technologies enabled the successful production of recombinant polypeptides
in bacteria and opened to biology researchers new avenues as obtaining suitable amounts of proteins necessary for
their experimental work became easy, fast, and inexpensive. Nevertheless, the recombinant approach remained
somehow unpredictable, since many constructs resisted to apparent production or accumulated as aggregates.
Several factors and physical/chemical conditions that could improve the accumulation of native-like protein were
identified. At the same time, it was acknowledged that the outcome of most of them was erratic and that almost
any protein required its own specific optimized set of conditions to achieve its correct folding. The attempt to
understand the critical points specific for recombinant protein production missed the goal of setting universally
useful protocols, but contributed to the increase of the rate of success by proposing always new empiric combinations.
Nevertheless, the results published in the recent literature allow for a better comprehension of some key mechanisms
controlling protein production in E. coli and could enable the elaboration of rational methodologies for improving the
quantitative and qualitative features of the produced polypeptides. This result will be achieved when the identification
of the limiting step that impairs the accomplishment of the native folding for any single construct will become
straightforward. This minireview will discuss how factors such as the expression rate, the folding machinery, and the
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Introduction

The intuition that recombinant expression could repre-
sent a metabolic burden for the host cell arose already in
the infancy of this technology [1]. Consequently, it was
proposed to abandon the initial approaches that pushed
the expression rates by exploiting high-copy number plas-
mids and strong (as well as leaky) promoters in favor of
tighter control and slower expression rate obtained with
suitable plasmids and reduced growth temperatures [2,3].
For instance, in the lac promoter-regulated system both
the addition of glucose and the overexpression of the lacl
repressor and of the T7 lysozyme repress gene expression
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leakage effectively, impairing negative effects on plasmid
segregation during cell replication [4]. Recombinant ex-
pression can be regulated also by controlling the plasmid
number per cell. This factor depends on the origin of rep-
lication sequences: whereas the pUC-based plasmids can
accumulate in hundreds of copies per single cell, the
pBR322-based plasmids produce tens of copies and the
pSC101 and p15A systems just few.

It was also observed that the induction of stress condi-
tions by ethanol, benzyl alcohol or salt addition as well as
by transient heat shock could improve the folding capacity
of the treated bacteria [5]. All these perturbations stimu-
late the cell machinery specialized in protecting the
macromolecule structure and the observed positive effect
in terms of final recombinant protein yields was attributed
to the accumulation of chaperones. This assumption was
experimentally proven by demonstrating that chaperone
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overexpression could prevent the aggregation of recom-
binant proteins and it represented a significant biote-
chnological improvement [6]. Such approach has been
successively optimized but still remains cumbersome due
to the necessity of comparing several different chaperone
combinations [7] (Figure 1). As an alternative, strains that
could improve the production of a single target protein or
a group of structurally similar proteins were generated by
random mutagenesis [8-10]. Both deletion and overexpres-
sion of E. coli proteins resulted in the increased accumula-
tion of recombinant proteins. The mechanisms involved
vary from improved metabolism to the optimization of
the protein quality control machinery [11]. The “Walker
strains” [12] are spontaneous chromosomal mutants iso-
lated by empirical selection of bacteria expressing toxic
proteins and that were able to grow in the presence of
both the expression inducer IPTG and ampicillin. They
allowed for the recovery of several functional recombinant
membrane proteins and created a wave of hope before the
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realization dawned that they were not miraculous, but
constituted just another tool that could work in specific
conditions. More interesting for the design of a more gen-
eral methodology was probably the discovery of the mo-
lecular mechanism by which these strains managed to
improve the recombinant protein yields.

Expressing less to fold better

The Walker strains were introduced as “mutant hosts that
allow the synthesis of SOME membrane and globular pro-
teins” [12] and for more than ten years the reasons of this
(partial) success remained unknown. It was surprising to
discover that the mutations present in the different strains
were indeed convergent and involved a single mechanism,
namely they contributed to the reduced efficiency of the
lac UV5 promoter that controls the expression of T7 RNA
polymerase [13,14]. It was the first evidence that reducing
the T7 RNA polymerase level in strains depending on this
enzyme for recombinant expression could be a key element
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Figure 1 Expression rate controls the protein native folding in the cytoplasm. The recombinant polypeptide synthetized by the ribosomal
machinery is mostly dependent on one/more chaperones and foldases to reach its native conformation. Disequilibrium between expression rate
and folding capacity (a) will result in the accumulation of aggregates. This fate can be prevented by both reducing the expression rate of the
recombinant protein and favoring the accumulation of chaperones and foldases (b).
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towards the control of the quality of the expressed protein
and the increase of its accumulation. To assess such hy-
pothesis, the control of the polymerase accumulation was
obtained by means of the tunable expression of its inhibi-
tor T7 lysozyme. The results confirmed that, in a specific
range, there was an inverse correlation between polymer-
ase availability and target protein accumulation [13]. This
output is in agreement with the very early supposition that
reducing the expression rate could limit the cell metabolic
burden and promote protein folding quality [15]. The
same effect of improved protein yield under conditions of
promoter down-regulation was proved more recently for
the arabinose-inducible expression system P(BAD) [16]. A
spontaneous and less efficient mutant allowed for lower
cell toxicity and higher productivity of secreted membrane
proteins.

From a practical point of view, the synthesis of fewer
polypeptides per cell would result in more correctly folded
proteins because the cell machinery would work more ef-
fectively, i.e. within its limits. This condition avoids the ac-
cumulation of unfolded polypeptides that tend to aggregate
and to produce a toxic effect. Clearly, not all of the proteins
have the same requirements. For instance, it has been esti-
mated that only 85 of all the E. coli proteins have strict
GroEL-dependence for completing their folding [17],
whereas 180 strongly depend on DnaK and a minority need
both chaperones [18]. Therefore, the production of recom-
binant proteins that are either strictly GroEL-dependent or
can use any/no chaperone to reach their native structure
will exert a totally different pressure on the host cell in
terms of competition for limiting components of the fold-
ing machinery. Both repressor leakiness and high expres-
sion rates can amplify the risk of accumulating misfolded
proteins. The tight regulation of the recombinant expres-
sion is consequently crucial to limit the metabolic burden
and the toxicity. From this perspective, it is interesting to
learn that leakiness can be reduced 10-fold by a single mu-
tation in the core domain of the lac repressor and that such
mutation does not prevent IPTG binding and recombinant
protein production [19]. A complementary approach
should investigate what chaperones are necessary for any
particular protein to fold correctly in its original eukaryotic
cell with the aim of overexpressing the prokaryotic homo-
logues in the recombinant system. For instance, a system-
atic work has identified the substrates of human Hsp90
[20] and such proteins could probably benefit from the co-
expression of the E. coli orthologue chaperone ClpB when
produced in bacteria.

Minimal metabolic perturbation

The production of transcripts originating from a single
gene copy of the target DNA integrated in the chromo-
some represents a solution for obtaining sufficient yields of
heterologous protein and minimizing the metabolic burden
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for the host cells. In such conditions, the cell physiology is
not perturbed by the presence of high-copy number insta-
ble plasmids and by the massive production of antibiotic
resistance enzymes [21]. Sufficient protein yields are as-
sured by enabling highly effective transcription and transla-
tion. Such result was obtained for the XylS/Pm expression
system by combining several stimulatory elements in a
unique expression cassette comprising the promoter, the
5'-untranslated mRNA region, and the XylS regulator cod-
ing sequence [22]. The synergic effect of single point muta-
tions in the sequences which regulate the transcription and
translation steps allowed improving the final protein yields
of 75 times. Both increased transcript production and its
improved translation contributed to the final protein accu-
mulation [23]. Interestingly, the optimal level of the stimu-
lation was protein-specific and higher transcriptional levels
did not automatically correspond to higher yields of func-
tional protein. These results were explained as the effect
of the post-translational folding machinery saturation, a
bottleneck that caused protein misfolding and aggregation.
Such example underlines again how the final yields always
depend on the limiting step in the long chain of events
that leads from transcription to correctly folded proteins.

Stoichiometric limitations

The question as to elevated expression rates can result in
low yields finds its answer in the observation that proteins,
in the majority of cases, depend on molecular factors to
reach their functional structure. These factors can be as
different as foldases, chaperones, interacting partners in
the case of larger complexes, or membrane proteins in-
volved in cell trafficking. The efficiency of the overall
process leading to the production of a fully active protein
relies on the availability of all the essential partners. There-
fore, it is necessary to identify the critical molecular elem-
ent involved in the folding process of a specific polypeptide
that is the first to become limiting. This allows concentrat-
ing on its overproduction without causing the unaffordable
energetic expense that the indiscriminate production of
any foldase would cause to the cell. For instance, a specific
chaperone overexpression is meaningful only when the re-
combinant protein requires their massive support to fold
correctly, otherwise it represents a metabolic competition
for the target recombinant protein [7]. In the case of se-
creted recombinant proteins, the Sec-translocon appears a
major bottleneck because its carrier capacity can be easily
saturated, as illustrated by Schlegel et al. [24]. As a conse-
quence, unfolded protein intermediates accumulate in
the cytoplasm and precipitate into aggregates (Figure 2).
When toxic, these impair correct cell growth and div-
ision, leading to diminished biomass formation. The re-
duction of the recombinant translational activity can
restore the physiological conditions and promote the
periplasmic accumulation of processed and correctly
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rates, the polypeptides will progressively aggregate because either the Sec

Figure 2 Expression rate determines the folding rate of secreted proteins. In optimal conditions (a), the newly synthetized polypeptides
can be successfully delivered to the translocon by the SecB co-chaperone and transported for folding into the periplasm. At higher expression

co-translational SRP-based secretion route could overcome the SecB paucity (d), but shares the same export machinery and, therefore, any
construct in excess to the translocon capacity will remain trapped in the cytoplasm (e).

translocon (b) or/and SecB (c) will become limiting. The

folded heterologous proteins. This accomplishment re-
calls the results obtained with a library of vectors used
to produce secreted proteins the components of which
possess translational strengths covering a 10-fold range
[25]. It was obtained by random alteration of the trans-
lation initiation regions of the signal sequence and the
resulting vectors were tested in combination with a set
of heterologous proteins. The results showed that the
translation rate optimum is narrow and protein-specific.
There is an upper limit above which the production drops
due to the saturation of the system and a lower limit
below which the protein synthesis machinery is not com-
pletely exploited.

In the past it was also demonstrated that secreting
thermodynamically favored constructs by the co-
translational SRP route could facilitate the production of
functional proteins because this option avoided the
SecB-dependent accumulation in the cytoplasm of par-
tially folded, inactive or toxic intermediates [26,27]. Also
the deletion of the gene responsible for the expression of
the Trigger Factor (TF) chaperone contributed to limit
the cell toxicity and to increase the accumulation of re-
combinant SRP-dependent proteins [16,28]. Since TF
binds 1:1 the polypeptides emerging from the ribosomes,
it was argued that TF competes with the signal recogni-
tion particle for the nascent proteins. Therefore, in the
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absence of TF the cytoplasmic accumulation of non-
productive protein intermediates would be drastically re-
duced. Nevertheless, too elevated expression rates would
finally result in secretion impairment independently of the
deletion strategy and of the chosen export route, since SecB
and SRP share the same translocon unit [24] (Figure 2).

Summarizing, the improvement of the recombinant di-
sulfide bond-dependent protein production relies on the
capacity of calibrating the secretion and the translocon
rates. The illustrated data emphasize also the limits of pro-
duction strategies depending on the periplasmic accumula-
tion of heterologous proteins. Even after successful export
through the Sec-translocon, the proteins will undergo mo-
lecular crowding in the reduced periplasmic space and will
be prone to aggregation [29].

The consequence is that the yields of periplasmicaly ac-
cumulated recombinant proteins remain low. A theoret-
ical possibility exists of folding the (disulfide-independent)
proteins in the bacterial cytoplasm, where the folding ma-
chinery is more effective, and then of exporting them into
the periplasm by means of the Twin-arginine translocation
pathway. The factors regulating this export route have
been recently investigated [30] and it can have some bio-
technological applications, such as the possibility of evalu-
ating the correct folding of GFP-fused proteins [31].
Disulfide-bond dependent proteins can be forced to fold
in the cytoplasm of mutated bacteria (oxidizing strains
such as AD494 or Origami) in which the reducing path-
ways have been partially or totally impaired [32]. Others
have proposed the secretion of such proteins into the
medium [33,34]. Nevertheless, controlling the parameters
that regulate the protein accumulation in the medium is
cumbersome and the conditions can critically change
when productions are scaled-up due to different leakage
rates [34]. Concerning the “oxidizing strains”, the results
are often deceiving in terms of yield [32,35,36], probably
because the non-physiological conditions imposed to the
cells slow down their growth. The overproduction of isom-
erases can help the correct folding of disulfide bond-
dependent proteins. Nevertheless, DsbC isomerase used as
a fusion tag is not sufficient to obtain reliable yields of
functional target protein [32,36], even though it is statisti-
cally more effective than other carriers [36]. So far, the
most innovative and complete approach for producing
functional disulfide-rich proteins remains the model pro-
posed by the Ruddock’ s group that enables oxidation and
assisted folding by co-expressing both sulthydryl oxidase
and disulfide isomerase (DsbC or PDI) in the cytoplasm of
wild type bacteria [37]. In the absence of sulthydryl oxi-
dase, most of the disulfide-dependent fusion proteins fused
to DsbC that accumulated in the cytoplasm of wild type
bacteria formed soluble aggregates [36] in which probably
the (folded) carrier keeps in solution the aggregate target
protein. According to the model initially proposed by
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Nominé et al. [38] (Figure 3), such soluble aggregates of fu-
sion proteins are micelles with a core composed by tightly
aggregated target proteins and an external hydrophilic
layer formed of folded carriers. The amphiphilic nature of
these structures has been recently harnessed for producing
nanopills with bacterial binding capacity [39]. In the pro-
posed model, the micelles are formed by conjugated pro-
teins in which the external layer has the capacity to bind
specifically the biological target. The cargo, composed by
aggregated but partially active polypeptides, is then re-
leased by means of controlled enzymatic cleavage.

Tuning protein aggregates

Aggregate formation is a constant of recombinant pro-
tein production. In contrast to previous hypotheses, we
know now that aggregated proteins can conserve a con-
sistent biological activity. Consequently, it is meaning-
ful to study the aggregation process in vivo and to
understand how chemical-physical factors can tune
their characteristics [40] to improve their biotechno-
logical value. Two opposite approaches have been pro-
posed to cope with recombinant protein aggregation:
try to limit it or to force the process and accumulate
useful (functional and non-toxic) aggregates. The re-
versible dynamic of the aggregation-disaggregation
process has been forced to improve the yields of sol-
uble recombinant proteins by stimulating the bacterial
cells to dissolve their inclusion bodies in vivo [7,41].
As an alternative, aggregation has been exploited as a
valuable means for accumulating functional recom-
binant protein in the inclusion bodies and simplifying
its purification for biotechnological applications [42]
(Figure 3). From this perspective, the identification of
genetic backgrounds favorable for the production of
particularly dense inclusion bodies is justified by the
interest in improving the protein processing, obtain-
ing higher titers in fermentation and simplified purifi-
cation steps due to the reduced volumes and faster
sedimentation. Pandey et al. [43] induced the production
of recombinant model proteins in a bacterial library of
randomly obtained knock-out mutants and succeeded in
isolating clones producing more/denser inclusion bodies
by means of percoll density gradient centrifugation. Un-
luckily, the authors did not evaluate whether the protein
packed into denser inclusion bodies had structural and
functional characteristics comparable to the control ma-
terial or have lost them, as it has been observed when lip-
ase A was fused to the self-assembling peptide ELK16 to
improve its precipitation [44].

The biological value of proteins trapped in the inclusion
bodies can be related to their physical structure rather
than to their functional features. For instance, controlling
the fermentation parameters allowed for the obtaining of
inclusion bodies with variable geometries. When used to
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Figure 3 Characteristics of the recombinant protein aggregates. Recombinant polypeptides can aggregate in the inclusion bodies that are
either completely inactive (a) or trap different amounts of active protein (b). Furthermore, the polypeptides can be released from the inclusion
bodies and a network of chaperones and foldases/isomerases can convert misfolded constructs into native proteins (c). Highly soluble carriers
fused to the target proteins can simplify the purification step (d) or keep in solution thermodynamically unfavorable partners for the time
necessary to the folding machinery to complete its work (e). Nevertheless, the partner can finally fail to fold, remaining (partially) misfolded. Such
misfolded domains exposing hydrophobic residues tend to form micelles that are kept in solution by the soluble carriers that constitute an
external hydrophilic layer (f). Such soluble aggregates can be used to deliver the cargo in vivo and the carriers can be cleaved off when the

treat surfaces, they facilitate the adhesion of eukaryotic
cells and promote tissue culture and differentiation [45].

Conclusions

Successful recombinant protein production is often strictly
necessary to accumulate enough material for basic research
studies as well as for biotechnological and clinical applica-
tions. A stimulating article [46] indicates that research
stops where no reagents are available. Specifically, the au-
thors remark that proteins that have a clear genetic link
with human diseases, but for which reliable antibodies and
chemical inhibitors are not accessible, are systematically
less studied than similar proteins for which reagents are
available. It would be interesting to analyze whether the re-
agent availability is related to the ease in obtaining func-
tional and natively structured recombinant protein, since it
can be expected that missing this step would represent a
critical bottleneck. The knowledge accrued in the last
20 years conceives recombinant protein production as a
long chain of successive events. Any of them can be limit-
ing or can become the limiting after another obstacle has
been removed. Therefore, the process optimization can be
seen as a progressive removal of impairments: for a specific

construct, too many transcripts blocks the translational
machinery because there are not enough tRNA molecules
for a specific codon, but in a strain overexpressing that
tRNA the accumulated polypeptides can fail to fold due to
DnaK shortage, and so on. Now we are probably ap-
proaching the comprehension of each single step involved
in the whole process. For instance, several proteins that
can improve protein secretion have been identified, the
mechanisms by which low expression rate can lead to
higher protein yields have been described in details, bac-
terial strains and vectors calibrated for working at physio-
logical conditions are now available. The future efforts
should be dedicated to a rational method to identify
quickly and effectively the process weakness for any given
protein to select the suitable counteraction. Combinator-
ial platforms exist for comparing experimentally protein
production conditions by varying factors as different as
bacterial strains, growth temperature, osmolyte concen-
tration, fusion to different tags, promoter and transcrip-
tion factor strength, mRNA stability and translation
efficiency, chaperone co-expression, or signal peptide
sequence [5,7,9,47-52]. By contrast, predictive models
are still missing. The lack of searchable data might be
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one of the reasons and, consequently, it would be benefi-
cial for the community to make the effort of collecting and
annotating experimental data in a standardized manner to
facilitate their metadata analysis. Certainly, this effort re-
quires the input of extra energy and can be perceived as a
limitation of the research freedom, both reasons for the
scarce success of previous initiatives [53]. Nevertheless,
such information is necessary to confirm some intuitions
and to support statistically the cause-effect correlations ev-
idenced by the already available results. The final accom-
plishment would be the development of holistic models
able to consider all the elements that contribute to the
protein production process.
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