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Abstract

Background: Cyanobacteria possess several cytochrome P450s, but very little is known about their catalytic
functions. CYP110 genes unique to cyanaobacteria are widely distributed in heterocyst-forming cyanobacteria
including nitrogen-fixing genera Nostoc and Anabaena. We screened the biocatalytic functions of all P450s from
three cyanobacterial strains of genus Nostoc or Anabaena using a series of small molecules that contain flavonoids,
sesquiterpenes, low-molecular-weight drugs, and other aromatic compounds.

Results: Escherichia coli cells carrying each P450 gene that was inserted into the pRED vector, containing the
RhFRed reductase domain sequence from Rhodococcus sp. NCIMB 9784 P450RhF (CYP116B2), were co-cultured with
substrates and products were identified when bioconversion reactions proceeded. Consequently, CYPT10ET of
Nostoc sp. strain PCC 7120, located in close proximity to the first branch point in the phylogenetic tree of the
CYP110 family, was found to be promiscuous for the substrate range mediating the biotransformation of various
small molecules. Naringenin and (hydroxyl) flavanones were respectively converted to apigenin and (hydroxyl)
flavones, by functioning as a flavone synthase. Such an activity is reported for the first time in prokaryotic P450s.
Additionally, CYP110ET biotransformed the notable sesquiterpene zerumbone, anti-inflammatory drugs ibuprofen
and flurbiprofen (methylester forms), and some aryl compounds such as 1-methoxy and 1-ethoxy naphthalene to
produce hydroxylated compounds that are difficult to synthesize chemically, including novel compounds.

Conclusion: We elucidated that the CYPTT0ET gene, C-terminally fused to the P450RhF RhFRed reductase domain
sequence, is functionally expressed in E. coli to synthesize a robust monooxygenase, which shows promiscuous
substrate specificity (affinity) for various small molecules, allowing the biosynthesis of not only flavones (from
flavanones) but also a variety of hydroxyl-small molecules that may span pharmaceutical and nutraceutical
industries.
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Background

Cyanobacteria possess several cytochrome P450s (P450s),
but only a few reports exist regarding their catalytic func-
tions [1-3]. P450 CYP110 is a prominent family found in
heterocyst-forming cyanobacteria including nitrogen-
fixing genera Nostoc and Anabaena. CYP110 genes are
widely distributed in such cyanobacterial strains [1], e.g.,
Nostoc (also referred to as Anabaena) sp. strain PCC 7120
possesses five CYP110 genes |[classified as CYP110AI
(alr1450), CYP110B1 (all3746), CYP110C1 (alr4686),
CYPI110D1 (alr4766), and CYPI10EI (alr4833)] in addi-
tion to one P450 gene of another family (CYP284A1I)
(Figure 1) [4]. The P450NS gene (CYP110CI) is posi-
tioned adjacent to the NSIgene encoding germacrene A
synthase (alr4685) [2]. The encoded protein (CYP110C1)
was recently confirmed to convert germacrene A to a
hydroxylated sesquiterpene (1,2,3,5,6,7,8,8a-octahydro-6-
isopropenyl-4,8a-dimethylnaphth-1-ol) [3]. CYPI110AI is
the first reported cyanobacterial P450 gene, which was
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present in a conserved 11.25-kb episomal element (the
nifD element), and the encoded protein (CYP110A1) was
hypothesized to be a fatty acid w-hydroxylase, based on
its substrate binding profile and amino acid sequence
similarities to P450BM3 (CYP102A1) of Bacillus mega-
terium and the mammalian P450 family 4 fatty acid
w-hydroxylase [1,5].

In order to function as terminal monooxygenases,
P450s must be associated with one or two additional
proteins (or protein domains) to transfer two electrons
from NAD(P)H to the heme domain of the P450 protein
[6,7]. The vast majority of bacterial P450s need a FAD-
containing ferredoxin reductase to receive electrons from
NAD(P)H, and a ferredoxin (small iron-sulfur protein) to
receive them from ferredoxin reductase, which subse-
quently reduces P450 itself [class I system; Additional file
1: Figure Sla] [7]. P450RhF (CYP116B2) derived from
Rhodococcus sp. NCIMB 9784 was discovered to be a
self-sufficient P450 protein, in which the P450 domain is
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Figure 1 Phylogenetic positions of cyanobacterial CYP110 family using 27 CYP110 proteins derived from 11 cyanobacteria, whose
amino acid sequences are shown in CyanoBase. The accession numbers in parentheses show those of respective P450 proteins. CYP110E1 is
shown in boldface. The phylogenetic tree was constructed using the neighbor-joining method. The number shown next to each node indicates
the percentage bootstrap value of 1,000 replicates (only 50% and higher are cited). The scale bar indicates a genetic distance of 0.02 (Knuc).
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C-terminally fused to a reductase domain (here called
RhFRed) [8]. RhFRed contained an FMN-binding ferre-
doxin reductase subdomain to receive electrons from
NAD(P)H and a [2Fe-2S] ferredoxin subdomain [9]. A
short linker region of 16 amino acids existed between
P450 and RhFRed [8]. The redox chain of P450RhF re-
sembles that of the class I system [Additional file 1:
Figure Slc]. Thus, vector pRED was constructed for the
functional expression of bacterial P450 (class I) genes in
Escherichia coli, using the linker sequence and RhFRed
domain sequence [(Additional file 1: Figure S2] [10]. This
vector has been demonstrated to be useful for func-
tional expression of the P450cam gene (CYP10IAI)
[10,11], P450bzo gene (CYP203A) [10], P450balk gene
(CYP153A13a) [12,13], other CYPI53A genes [14], and
P450 PikC gene [15], constituting corresponding self-
sufficient P450 monooxygenation enzymes. We elucidate
here that the CYPIIOEI gene is functionally expressed
on pRED in E. coli to synthesize a robust monooxygen-
ase, which shows promiscuous substrate specificity (af-
finity) for various small molecules.

Results

Screening experiments

Nostoc sp. strain PCC 7120, Nostoc punctiforme PCC
73102, and Anabaena variabilis ATCC 29413 possess
six, ten, and four P450s, respectively. We screened the
biocatalytic functions of these P450s using 47 small
molecules that contain flavonoids, sesquiterpenes, low-
molecular-weight drugs, naphthalene derivatives, and
other chemicals with benzene rings [Additional file 1:
Figure S3)]. E. coli BL21 (DE3) cells carrying each P450
gene inserted into the pRED vector were co-cultured with
the substrates and possible bioconversion products were
analyzed by HPLC. Consequently, CYP110E1 of Nostoc
PCC 7120 was found to be promiscuous for the substrate
range mediating the biotransformation of various small
molecules. The CYP110E1 enzyme that is C-terminally
fused to RhFRed was confirmed to constitute the active
P450 form by CO difference spectral analysis [Additional
file 1: Figure S4]. Thus, cells of E. coli BL21 (DE3) carrying
plasmid pCYP110E1-Red were used for the following
experiments.

Bioconversion of flavanones by E. coli (pCYP110E1-Red)

Naringenin was biotransformed to a product (F-1) with
a conversion ratio of 31.5% (Figure 2) through co-
cultivation with cells of E. coli (pCYP110E1-Red). F-1
was identified as apigenin (4,5,7-trihydroxyflavone) by its
comparison with an authentic sample on HPLC analysis.
Flavanone (RT 18.2 min) was converted to products F-2
(RT 15.9 min; 5.7%) and F-3 (RT 17.2 min; 2.1%), which
were identified as 3-hydroxyflavanone and flavone, re-
spectively, by their comparison with authentic samples
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on HPLC analysis. Figure 3 shows their production rate
curves. Since this P450 was thought to biotransform vari-
ous flavanones, we further examined 6-hydroxyflavanone
(RT 15.9 min) and 7-hydroxyflavanone (RT 15.4 min). As
a result, these hydroxyflavanones were converted to pro-
ducts F-4 (RT 15.1 min; 12.1%) and F-5 (RT 14.5 min;
1.4%), which were identified as 6-hydroxyflavone and
7-hydroxyflavone, respectively, by their comparison with
authentic samples on HPLC analysis.

Bioconversion of a sesquiterpene by E. coli
(PCYP110E1-Red)

Only zerumbone among the examined terpenes [Addi-
tional file 1: Figure S3] was biotransformed through co-
cultivation with cells of E. coli (pCYP110E1-Red). The
crude ethyl acetate (EtOAc) extract (152.0 mg) from this
bioconversion mixture (200 ml), subjected to silica gel
column chromatography (hexane-EtOAc=2:1), yielded
5.6 mg (12.7%) of S-1 (fr. 10-12), 3.2 mg (6.8%) of S-2
(fr. 19-26), and 1.5 mg (3.2%) of S-3 (fr. 30—40). These
spectroscopic data are shown in Additional file 2.

The molecular formula of S-1 was determined to be
Cy5H240 (zerumbone +2 H) by HREI-MS. Consistent
with its molecular formula, S-1 was proposed to be a
product obtained by the reduction of a double bond in
the substrate. The reduced double bond was determined
to be >>A by the observation of a doublet methyl signal
(81 1.05, H-12), and the 'H-'>C long range coupling
from this doublet methyl to the ketone carbon (8¢ 205.1,
C-1). The identity of S-1 was thus determined as
(6E,10E)-2,6,9,9-tetramethylcycloundeca-2,6-dien-1-one
(Figure 4) [16]. Zerumbone was found to be converted to
S-1 with nontransformed E. coli BL21 (DE3) cells (data
not shown). It was therefore thought that S-2 and S-3
were the genuine products by CYP110E1-Red.

The molecular formula of S-2 was determined to be
Cy5H»40, by HREI-MS. Consistent with its molecular
formula and 'H-NMR spectrum, the introduction of an
alcoholic OH group in S-1 was proposed. The position
of the alcoholic OH group was clarified to be C-13 by
the observation of an oxymethylene signal (8y 3.92 and
8y 4.02, H-13) and the "H-"?C long range coupling from
this oxymethylene to C-5 (8¢ 35.0), C-6 (8¢ 140.1), and
C-7 (8¢ 126.0). The identity of S-2 was thus determined
as (6Z,10E)-6-hydroxymethyl-2,9,9-trimethylcycloundeca-
2-ene-1-one (Figure 4). This product (S-2) was a novel
compound according to the CAS database.

The molecular formula of S-3 was determined to be
Cy5H»40, by HREI-MS. Consistent with its molecular
formula and 'H-NMR spectrum, the introduction of an
alcoholic OH group in S-1 was proposed. The position
of the alcoholic OH group was clarified to be C-8 by the
observation of an oxymethylene signal (8y 4.24, H-8)
and the '"H-">C long range coupling from H-14 (8 1.12)
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Figure 2 HPLC analysis of the ethylacetate extract of the co-culture of cells of E. coli BL21 (DE3) carrying plasmid pCYP110E1-Red with
naringenin. 31.5% of naringenin was converted to F-1, which was identified as apigenin.
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and H-15 (8 1.26) to C-8 (8¢ 75.5). The identity of S-3
was thus determined as (6E,10E)-8-hydroxy-2,6,9,9-
tetramethylcycloundeca-2,6-dien-1-one (Figure 4). This

product (S-3) was a novel compound according to
the CAS database.

Bioconversion of aryl compounds by E. coli
(pCYP110E1-Red)

A variety of aryl compounds, which include naphtha-
lene derivatives and low-molecular-weight drugs, were

biotransformed through co-cultivation with cells of E. coli
(pCYP110E1-Red). Converted compounds were identi-
fied by chromatographic and spectroscopic analyses.
Spectroscopic data are shown in Additional file 2.

Compounds converted from 1-methoxynaphthalene

The crude EtOAc extract (156.5 mg) from the biocon-
version mixture (200 ml) with 1-methoxynaphthalene
and E. coli (pCYP110E1-Red), subjected to silica gel col-
umn chromatography (hexane-EtOAc=6:1), yielded
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Figure 3 Conversion rate of flavanone to F-2 [3-hydroxyflavanone (¢)] and F-3 [flavone (O)] byE. coliBL21 (DE3) cells carrying
PCYP110E1-Red. Error bars indicate the standard deviations obtained for three independent experiments. The conversion ratio (%) was
measured by the ratio of peak area (max plot) in HPLC.
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Figure 4 Bioconversion of sesquiterpene zerumbone with E. coli BL21 (DE3) cells carrying pCYP110E1-Red. % indicates conversion ratio
measured by the ratio of peak area (max plot) in HPLC. E. coli BL21 (DE3) cells carrying plasmid pFusionF87V that expressed the P450BM3 (F87V)
gene [17] were also examined for the ability to biotransform zerumbone, and the result is shown here.
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2.6 mg (7.5%) of A-1 (fr. 13-15), 0.4 mg (1.1%) of A-2
(fr. 19-22), and 0.7 mg (2.0%) of A-3 (fr. 28-35).

The molecular formula of A-1 was determined to be
CyH1304 by HRAPCI-MS. Consistent with its molecu-
lar formula and '"H-NMR spectrum, A-1 was proposed
to be a secondary product (dimer) obtained by a phenol
oxidation coupling reaction of the direct conversion
product. The structure of A-1 was determined to be
4,4'-dimethoxy-[2,2'-binaphthalene]-1,1'-diol (Figure 5)
by the observation of "H-'>C long range couplings from
H-2 (2)) (8 6.92) to C-1 (1’) (6 149.3), C-3 (3) (8 120.4),
and C-4 (4) (8 142.1), and 'H vicinal spin network of
H-5 (5") (8 8.30) — H-6 (6") (8 7.54) — H-7 (7’) (8 7.49) -
H-8 (8’) (5 8.20) [18].

The molecular formula of A-2 was determined to be
C11H100, by HRAPCI-MS. Consistent with its molecu-
lar formula and "H-NMR spectrum, the introduction of
one phenolic OH group in the aromatic ring was pro-
posed. The position of this phenolic OH group was
determined to be C-5 by the observation of 'H-'H vic-
inal spin networks of H-2 (8 6.84) — H-3 (8 7.39) — H-4
(86 7.74) and H-6 (5 6.84) — H-7 (8§ 7.30) — H-8 (8 7.85),
and an NOE observed between H-8 and H-9 (8 3.99).
The identity of A-2 was thus determined to be 5-
methoxynaphthalen-1-ol (Figure 5) [17].

The molecular formula of A-3 was determined to be
C11H100, by HRAPCI-MS. Consistent with its molecu-
lar formula and "H-NMR spectrum, the introduction of
one phenolic OH group in the aromatic ring was pro-
posed. The position of this phenolic OH group was
determined to be C-2 by the observation of 'H-'H vic-
inal spin coupling of H-3 (6 7.23, d, /=8.5 Hz) and H-4
(8 7.57, d, J=8.5 Hz) and 'H-'>C long range couplings
from H-4 to C-2 (8 145.4) and C-5 (8 128.3). The identity
of A-3 was thus determined to be 1-methoxynaphthalen-
2-ol (Figure 5) [19].

Compounds converted from 1-ethoxynaphthalene

The crude EtOAc extract (89.3 mg) from the bioconver-
sion mixture (200 ml) with 1-ethoxynaphthalene and
E. coli (pCYP110E1-Red), subjected to silica gel column
chromatography (hexane-EtOAc=6:1), yielded 1.8 mg
(4.8%) of A-4 (fr. 10-12) and 1.5 mg (4.0%) of A-5
(fr. 14-16).

The molecular formula of A-4 was determined to be
C15H1,0, by HRAPCI-MS. Consistent with its molecu-
lar formula and "H-NMR spectrum, the introduction of
one phenolic OH group in the aromatic ring was pro-
posed. The position of this phenolic OH group was
determined to be C-4 by the observation of "H-'H vic-
inal spin coupling of H-2 (6 7.55, d, /=8.7 Hz) and H-3
(8 7.23, d, J=8.7 Hz) and the 'H-"3C long range cou-
plings from H-5 (8§ 7.78) to C-4 (5 145.8). The identity
of A-4 was thus determined to be 4-ethoxynaphthalen-
1-ol (Figure 5) [20].

The molecular formula of A-5 was determined to be
C1,H1,0, by HRAPCI-MS. Consistent with its molecu-
lar formula and "H-NMR spectrum, the introduction of
one phenolic OH group in the aromatic ring was pro-
posed. The position of this phenolic OH group was
determined to be C-5 by the observation of *H-'H vic-
inal spin networks of H-2 (8 6.83) — H-3 (§ 7.37) — H-4
(8 7.71), and H-6 (8 6.85) — H-7 (8 7.29) — H-8 (5 7.89),
and the "H-"3C long range couplings from H-3 to C-1 (8
154.8) and C-4a (8 125.4) and from H-7 to C-5 (6 151.2)
and C-8a (6 127.3). The identity of A-5 was thus deter-
mined to be 5-ethoxynaphthalen-1-ol (Figure 5) [21].

Compounds converted from 2-methylnaphthalene

The crude EtOAc extract (175.0 mg) from the biocon-
version mixture (200 ml) with 2-methylnaphthalene and
E. coli (pCYP110E1-Red), subjected to silica gel column
chromatography (hexane-EtOAc=5:1), yielded 1.2 mg
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Figure 5 Bioconversion of 1-methoxynaphthalene and 1-ethoxynaphthalene with E. coli BL21 (DE3) cells carrying pCYP110E1-Red. (%)
indicates yield (calculated from the weight of a purified product). The result with £. coli BL21 (DE3) cells carrying plasmid pFusionF87V [17] is also
shown for comparison.

(3.8%) of A-6 (fr. 11-13) and 1.5 mg (4.7%) of A-7
(fr. 20-24).

The molecular formula of A-6 was determined to be

C11H100 by HRAPCI-MS. Consistent with its molecular
formula and "H-NMR spectrum, the introduction of one
phenolic OH group in the aromatic ring was proposed.
The position of this phenolic OH group was determined
to be C-4 by the observation of two singlet sp* methines
(8 6.67 and & 7.22) and the "H-'H vicinal spin networks
of H-5 (8 8.10) — H-6 (8 7.40) — H-7 (8 7.43) -
(6 7.71). The identity of A-6 was thus determined to
be 3-methylnaphthalen-1-ol (Figure 6). A-7 was identi-
fied as naphthalene-2-ylmethanol (Figure 6) with HPLC
analysis by its comparison with an authentic sample
extracted from co-culture with 2-methylnaphthalene
and E. coli BL21 cells carrying plasmid pUCRED-Balk,
which expressed the CYP153A13a gene [13].

Compounds converted from 1,6-dimethylnaphthalene

The crude EtOAc extract (95.7 mg) from the bioconver-
sion mixture (200 ml) with 1,6-dimethylnaphthalene and
E. coli (pCYP110E1-Red), subjected to silica gel column
chromatography (hexane-EtOAc=6:1), yielded 1.9 mg

(5.5%) of A-8 (fr. 12-15) and 1.0 mg (2.9%) of A-9
(fr. 21-26).

The molecular formula of A-8 was determined to be
C1,H1,0 by HRAPCI-MS. Consistent with its molecular
formula and "H-NMR spectrum, the introduction of one
phenolic OH group in the aromatic ring was proposed.
The position of this phenolic OH group was determined
to be C-4 by the observation of "H-"H vicinal spin cou-
plings of H-2 (8 7.05, d, J=7.9 Hz) and H-3 (3 6.70, d,
J=7.9 Hz), and H-7 (§ 7.37, d, /J=8.6 Hz) and H-8
(8 7.84, d, J=8.6 Hz), and 'H-">C long range couplings
from H-9 (8 2.58) to C-1 (8§ 126.6), C-2 (6 125.1), and
C-8a (8 131.7). The identity of A-8 was thus determined
to be 4,7-dimethylnaphthalen-1-ol [17]. A-9 was identified
as (5-methylnaphthalen-2-yl)methanol (Figure 6) with
HPLC analysis by its comparison with an authentic sam-
ple extracted from co-culture with 1,6-dimethylnaphtha-
leneandE. coli BL21 (pUCRED-Balk) [13].

A compound converted from 2-bromophenol The
EtOAc extract from the bioconversion mixture (0.5 ml)
with 2-bromophenol and E. coli (pCYP110E1-Red) was
subjected to HPLC to yield a product (A-10). A-10 was
identified as 2-bromobenzene-1,4-diol (Figure 6) with
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HPLC by its comparison with an authentic sample
extracted from co-culture with 2-bromophenol and
E. coli BL21 (pUCRED-Balk) [13].

A compound converted from 4-methylbiphenyl The
EtOAc extract from the bioconversion mixture (0.5 ml)
with 4-methylbiphenyl and E. coli (pCYP110E1-Red) was
subjected to HPLC to yield a product (A-11). A-11 was
identified as [1,1’-biphenyl]-4-ylmethanol (Figure 6) with
HPLC by its comparison with an authentic sample
extracted from co-culture with 4-methylbiphenyl and
E. coli BL21 (pUCRED-Balk) [13].

A compound converted from 7-ethoxycoumarine The
EtOAc extract from the bioconversion mixture (0.5 ml)
with 7-ethoxycoumarine and E. coli (pCYP110E1-Red)
was subjected to HPLC to vyield a product (A-12). A-12
was identified as 6-hydroxy-2 H-chromen-2-one (Figure 6)
with HPLC by its comparison with an authentic sample.

A compound converted from 2-(p-tolyl)pyridine The
crude EtOAc extract (103.7 mg) from the bioconversion
mixture (200 ml) with 2-(p-tolyl)pyridine and E. coli
(pCYP110E1-Red), subjected to silica gel column chro-
matography (CH,Cl,-MeOH =20:1), yielded 3.1 mg
(8.4%) of A-13 (fr. 23-27). The molecular formula of
A-13 was determined to be C;,H;;NO by HREI-MS.
The 'H- and ">C-NMR spectra showed the methyl group

in the substrate was oxidized to the corresponding pri-
mary alcohol. The identity of A-13 was thus determined
to be (4-(pyridin-2-yl)phenyl)methanol (Figure 6), which
was also produced through co-culture with 2-(p-tolyl)pyri-
dineand E. coli BL21 (pUCRED-Balk) [13].

A compound converted from ibuprofen methylester
The crude EtOAc extract (225.0 mg) from the biocon-
version mixture (200 ml) with ibuprofen methylester
and E. coli (pCYP110E1-Red), subjected to silica gel col-
umn chromatography (hexane-EtOAc=4:1), yielded
1.1 mg (2.3%) of A-14. The molecular formula of A-14
was determined to be Cy4H,;,03 by HREI-MS. Consist-
ent with its molecular formula and "H-NMR, the intro-
duction of one alcoholic OH group in the substrate was
proposed. The position of this alcoholic OH group was
determined to be C-11 because all signals of H-10, H-12,
and H-13 were observed to be singlet. The identity of
A-14 was thus determined to be methyl 2-(4-(2-hydroxy-
2-methylpropyl)phenyl)propanoate (Figure 7) [22].

Compounds converted from flurbiprofen methylester

The crude EtOAc extract (254.7 mg) from the biocon-
version mixture (200 ml) with flurbiprofen methylester
and E. coli (pCYP110E1-Red), subjected to silica gel col-
umn chromatography (hexane-EtOAc=4:1), yielded
1.5 mg (2.7%) of A-15 (fr 10-12) and 1.8 mg (3.3%) of
A-16 (fr 23-28).
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E. colt
(pUCRED-Balk)

ibuprofen methylester

0\1 6 O\
- ——
E. coli E. coli
(pCYP110E1-Red) (pPCYP110E1-Red)
1 ) HO 13
A-15 (2.7%) flurbiprofen methylester 14 A-16 (3.3%)

Figure 7 Bioconversion of drugs ibuprofen methylester and flurbiprofen methylester with E. coli BL21 (DE3) cells carrying pCYP110E1-
Red. (%) indicates yield. The result with E. coli BL21 cells carrying plasmid pUCRED-Balk that expressed the P450balk gene (CYP153A13a) from an
alkane-assimilating marine bacterium Alcanivorax borkumensis [13] is also shown for comparison.

E. colt
(pCYP110E1-Red) 12 10 8

The molecular formula of A-15 was determined to be
C16H15FO3 by HREI-MS. Consistent with its molecular
formula and 'H-NMR spectrum, the introduction of
one alcoholic OH group in the substrate was proposed.
The position of this alcoholic OH group was deter-
mined to be C-2 because the signal of H-3 (§ 1.80) was
observed to be singlet. The identity of A-15 was thus
determined to be methyl 2-(2-fluoro-[1,1'-biphenyl]-
4-yl)-2-hydroxypropanoate (Figure 7).

The molecular formula of A-16 was determined to be
C16H15FO3 by HRAPCI-MS. Consistent with its molecu-
lar formula and "H-NMR spectrum, the introduction of
one phenolic OH group in the aromatic ring was pro-
posed. The position of this phenolic OH group was
determined to be C-13 because the signals of H-12 and
H-14 were observed to be doublet (J=8.6 Hz) and at high
field (5 6.89). The identity of A-16 was thus determined
to be methyl 2-(2-fluoro-4'-hydroxy-[1,1'-biphenyl]-4-yl)
propanoate (Figure 7).

Discussion

The phylogenetic analysis (Figure 1) showed that
CYP110E1 of Nostoc sp. strain PCC 7120 was located in
close proximity to the first branch point in the phylo-
genetic tree of the CYP110 family, ie, among 27
CYP110 proteins derived from 11 cyanobacteria, only
four P450s, CYP110K1, CYP110D2, CYP110E6, and
CYP110D3, were located closer to the first branch point
than CYP110EL. In this study, CYP110E1, whose function
had been unknown, was found to function as a substrate-
promiscuous monooxygenase when it was C-terminally
fused to the RhFRed reductase domain of P450RhF
(CYP116B2) by the use of the pRED vector. Naringenin was
converted directly to apigenin with a significant conversion

ratio (31.5%) (Figure 2). Naringenin and apigenin belong to
typical flavonoids that can be biosynthesized in higher
plants. Artificial flavonoids, flavanone, 6-hydroxyflavanone
and 7-hydroxyflavanone, were also converted to the respect-
ive flavones, even if with low conversion ratios, i.e., major
parts of the substrates remained without being biotrans-
formed even after 48-h co-culture. These results revealed
that CYP110E1 functions as a flavone synthase. Such an ac-
tivity is reported for the first time in prokaryotic P450s.
When using flavanone as the substrate, 3-hydroxyflavanone
was additionally generated (Figure 3). It may be possible
that 3-hydroxyflavanone is the intermediate from flavanone
to flavone. However, E. coli (pCYP110E1-Red) did not bio-
transform 3-hydroxyflavanone when it was added as the
substrate (data not shown). It is therefore likely that fla-
vones and 3-hydroxyflavanone were generated independ-
ently from flavanone. The higher-plant CYP93B was
characterized as P450-type flavone synthase (FSII) and was
proposed to convert flavanones to flavones by way of 2-
hydroxyflavanones [23,24]. Such a catalytic route may be
the case with CYP110EL.

P450BM3 (also described as P450BM-3 or P450p,3;
CYP102A1) derived from Bacillus megaterium, one of
the best-characterized prokaryotic P450s, is a natural fu-
sion enzyme composed of a P450 part and a eukaryote-
type NADPH-P450 reductase domain [Additional file 1:
Figure 1d] [25-27]. This P450 part is closely related to
the CYP110 family [1] and exhibited 24.6% amino acid
sequence identity to CYP110E1l. P450BM3, whose na-
tive substrates are thought to be long-chain fatty acids,
has been shown to possess substrate and catalytic pro-
miscuities [28-31]. Specifically, P450BM3 variants in-
corporating active site mutations that include F87V (or
F87A) were found to acquire broader substrate affinity
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not only for a variety of aryl compounds including sub-
stituted naphthalenes [17,32,33], but also for the mono-
terpene a-pinene and the sesquiterpene amorpha-4,11-
diene [30,34]. The P450BM3 variant F87V that was N-
terminally fused to an archaeal peptidyl-prolyl cis-trans
isomerase (PPlase), which was synthesized by the plas-
mid named pFusionF87V in E. coli cells, was shown to
elevate the stability of the P450 protein [17].

Zerumbone, a sesquiterpene contained in the shampoo
ginger (Zingiber zerumbet Smith), is a promising chemo-
preventive agent, since its anti-inflammatory and anti-
tumor activities have been investigated [35-38]. E. coli
BL21 (DE3) carrying plasmid pCYP110E1-Red was
shown to hydroxylate zerumbone to produce two novel
compounds (S-2 and S-3) via the endogenous metabol-
ite in E. coli (S-1; Figure 4). On the other hand, E. coli
BL21 (DE3) carrying plasmid pFusionF87V was not able
to synthesize compound S-3 from zerumbone, although
it bioconverted zerumbone to compound S-2 with a
higher conversion ratio than that of E. coli (pCYP110E1-
Red) (Figure 4). E. coli (pFusionF87V) was able to hy-
droxylate [-eudesmol (a sesquiterpene contained in
edible plants of the Zingiberaceae family) at its C-5
position [17], while E. coli (pCYP110E1-Red) was not
able to biotransform [-eudesmol (data not shown).
The two prokaryotic P450s, CYP110E1 and P450BM3
(E87V), are likely to have the ability to biotransform
some sesquiterpenes of higher-plant origin complemen-
tally. CYP109B1 from Bacillus subtilis was also found to
possess a wide substrate range for saturated fatty acids,
n-alcohol, and some isoprenoids, and convert the sesqui-
terpene (+)-valencene to (+)-nootkatone, a high added-
value compound found in grapefruit juice [39,40].

E coli (pCYP110E1-Red) was found to biotransform
various aryl compounds. 1-Methoxynaphthalene and 1-
ethoxynaphthalene were converted to several hydroxylated
compounds (Figure 5). When using 1-methoxynaphthalene
as the substrate, an aryl coupling reaction was observed to
produce compound A-1. This product is likely to be gener-
ated via oxidative aryl coupling through a non-enzymatic
dimerization process from 4-methoxynaphthalen-1-ol,
which is speculated to be the direct enzyme product.
Misawa et al. (2011) showed that these two substrates were
biotransformed by E. coli (pFusionF87V) to hydroxylated
compounds different from those obtained using E. coli
(pCYP110E1-Red) (Figure 5) [17]. In this case, oxidative
aryl coupling was observed in the reaction, not from
1-methoxynaphthalene but from 1-ethoxynaphthalene to
produce 4,4'-diethoxy-[2,2"-binaphthalene]-1,1'-diol [17].
These findings suggest that the two P450s, CYP110E1 and
P450BM3 (F87V), are useful for producing a variety of
1-methoxy and 1-ethoxy naphthalene derivatives, whose
naphthalene rings acquire one hydroxyl group without
eliminating the methyl or ethyl group. Such an elimination
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is often likely to occur, e.g., CYP153A13a (P450balk) from
Alcanivorax borkumensis SK2, which was found to possess
a promiscuous substrate range for aryl compounds and
aromatic compounds including alkyl groups, converted
1-methoxy naphthalene to 1-naphthol [12,13]. Figure 6
shows other aryl compounds biotransformed with E. coli
(pCYP110E1-Red). The reactions towards products A-7,
A-9, A-10, A-11, and A-13 were observed also in E. coli
BL21 (pUCRED-Balk) that expressed the CYP153A13a
gene [13]. On the other hand, E. coli (pFusionF87V) con-
verted 2-methylnaphthalene to compounds 2-methyl-1
-naphthol and 6-methy-1-naphthol, which are different
from those with E. coli (pCYP110E1-Red), while it con-
verted 1,6-dimethylnaphthalene to the same compound
A-8 [17].

The present study also showed that E. coli (pCYP110E1-
Red) biotransformed the methylester forms of non-
steroidal anti-inflammatory drugs ibuprofen and flurbi-
profen to produce the respective hydroxyl derivatives that
are difficult to synthesize chemically (Figure 7). E. coli
(pUCRED-Balk) converted ibuprofen methylester to an-
other hydroxyl substituent [13], while it was not able to
biotransform flurbiprofen methylester (data not shown).
The four drug metabolites produced by recombinant E.
coli cells (Figure 7) or their free carboxylate forms,
awaiting the determination of the absolute configur-
ation, could be used as standards in studies on the
metabolisms of ibuprofen and flurbiprofen with human
P450s [41].

Conclusion

The present study revealed that cyanobacterial cyto-
chrome P450 CYP110E1, C-terminally fused to the
P450RhF (CYP116B2) RhFRed reductase domain, is pro-
miscuous for substrate and catalytic ranges and is useful
for biosynthesizing not only flavones (from flavanones),
but also a variety of hydroxyl- small molecules that are
difficult to synthesize chemically, which may span
pharmaceutical and nutraceutical industries.

Methods
Bacterial strains and genetic manipulation
Three cyanobacterial strains, Nostoc sp. strain PCC
7120, Nostoc punctiforme PCC 73102 (=ATCC 29133),
and Anabaena variabilis ATCC 29413 were obtained
from Pasteur Culture collection, Paris, and grown auto-
trophically in BG 11 medium. For the isolation of gen-
omic DNA, cyanobacteria were harvested from the log
phase and were immediately treated with lysozyme
(10 mg/ml for 1 h). Genomic DNA was then isolated
with the GenElute plant genomic DNA kit (Sigma-
Aldrich, St. Louis, MO).

E. coli DH5a (ECOS Competent E. coli DH5«; Nippon
Gene, Tokyo, Japan) was utilized as the host for DNA
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manipulations. E. coli BL21 (DE3) (Nippon Gene) was
used for the functional expression of each P450 gene,
which was inserted into the pRED vector [10]. PCR
amplifications were performed using Prime STAR Max
Premix DNA polymerase (Takara Bio, Ohtsu, Japan) and
a thermal cycler (Applied Biosystems, Foster City, CA).
Restriction enzymes and DNA-modifying enzymes were
purchased from New England BioLabs (Beverly, CA) or
Takara Bio. A Ligation-Convenience Kit (Nippon Gene)
was also used. Plasmid DNA was prepared with a QIA-
prep Miniprep Kit (Qiagen, Hilden, Germany). All re-
combinant DNA experiments were carried out according
to the suppliers’ manuals or Sambrook and Russell
(2001) [42].

Nucleotide sequencing and computer analysis

Nucleotide sequences were confirmed with Bigdye ter-
minator cycle sequencing ready reaction kit version 3.1
(Applied Biosystems) and a model 3730 DNA analyzer
(Applied Biosystems). Homologous protein sequences in
the protein sequence database were retrieved from Cyano-
Base of Kazusa DNA Research Institute (http://genome.
kazusa.or.jp/cyanobase) with the BLAST program [43],
and aligned by Clustal W program in Molecular Evolu-
tionary Genetics Analysis (MEGA) software version 5.0
(http://www.megasoftware.net/). A phylogenetic tree was
also constructed according to MEGA 5.0.

Construction of plasmids

Cyanobacterial P450 genes were amplified by PCR from
genomic DNA of Nostoc sp. PCC 7120, N. punctiforme
PCC 73102, or A. variabilis ATCC 29413. All synthetic
oligonucleotides used in this work were listed in Table 1.
PCR amplification was performed in a 50 pl reaction
mixture containing 25 ng of genomic DNA, 25 ul of
2 x the DNA polymerase, 10 uM of each primer, and 5%
dimethyl sulfoxide (DMSO). The PCR conditions used
were the following: preincubation at 98 °C for 2 min; a
total of 5 cycles at 98 °C for 10 sec, 55 °C for 10 sec, and
75 °C for 15 sec; a total of 30 cycles at 98 °C for 10 sec,
62 °C for 5 sec and 75 °C for 15 sec. An amplified 1.4 kb
fragment was digested with Ndel and EcoRI or HindIl],
and ligated into the Ndel-EcoRI or Ndel-HindIll site of
pRED to construct the desired plasmids. In these plas-
mids, the stop codons of the respective P450 genes were
removed to fuse the N-terminus of RhFRed.

CO difference spectral analysis
CO difference spectral analysis was done as described
[12].

Bioconversion experiments
E. coli BL21 (DE3) carrying each plasmid was grown in
an LB medium including ampicillin (Ap; 100 pg/ml) at
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37°C with rotary shaking for 3—4 h until the absorbance
at OD 600 nm reached approximately 0.8. For screening
experiments, 1.5 ml of this preculture was inoculated
into 125 ml of an LB medium including Ap (100 pg/ml),
5-aminolevulinic acid hydrochloride (5-ALA; 80 pg/ml),
ammonium iron (II) sulfate (0.1 mM), and IPTG
(0.1 mM) in a baffled Erlenmeyer flask, and cultured at
20°C for 20 h on a rotary shaker (140 rpm; Kuhner
Shaker Lab Therm LT-X, Basel, Switzerland). Cells were
collected by centrifugation and resuspended in 25 ml of
CV-3 buffer [sodium phosphate buffer (50 mM, pH 7.2)
containing 5% glycerol] in a baffled Erlenmeyer flask.
Five hundred pl of this cell suspension was added into
each well of a 96 well sterile plate (PR-Master Block
2ML; Greiner Bio-One, Frickenhausen, Germany), to-
gether with 1 mM (final concentration) of substrate dis-
solved in dimethyl sulfoxide (DMSO). Bioconversion
was performed by cultivation at 25°C for 24 h with
300 rpm using the Kuhner Shaker.

For structural determination of products, large scale
cultivation was carry out, by inoculation of 5 ml of the
preculture into 500 ml of LB medium including Ap
(100 pg/ml), 5-ALA (80 pg/ml), ammonium iron (II) sul-
fate (0.1 mM), and IPTG (0.1 mM) in a baffled Erlen-
meyer flask at 20°C for 20 h with 140 rpm on the
Kuhner Shaker. Cells were collected by centrifugation,
and resuspended in 100 ml of CV-3 buffer in a baffled
Erlenmeyer flask. Each substrate dissolved in DMSO was
added at a final concentration of 1 mM to the cell sus-
pension and bioconversion was performed by cultivation
at 25°C for 48 h with 180 rpm.

Substrates and authentic samples used in this study
were purchased from Tokyo Chemical Industry Co.
(Tokyo, Japan), Sigma-Aldrich Co. (St. Louis, MO), or
Wako Pure Chemical Industries (Osaka, Japan).

Chemical synthesis of ibuprofen methylester and
flurbiprofen methylester

Zero point six mol/l of trimethylsilyldiazomethane in
hexane (12.5 ml, 7.5 mmol; Tokyo Chemical Industry)
was added, drop by drop on ice, to a solution (33 ml,
benzene/methanol =2/1) containing ibuprofen (1.03 g,
5 mmol; Wako Pure Chemical Industries) or flurbipro-
fen (1.22 g, 5 mmol; Wako Pure Chemical Industries).
The reaction mixtures from ibuprofen and flurbiprofen
were stirred at room temperature for 5 h. After concen-
trated to dryness, the respective residues (1.23 g and
1.53 g) were subjected to column chromatography (I.D.
20 mm x 300 mm) with silica gel IR-60-63/210-w (Daiso
Co., Osaka Japan), developed in hexane-ethyl acetate
(EtOAc) =2:1 and hexane-EtOAc=10:1, to yield 0.79 g
of ibuprofen methylester as a colorless oil and 1.27 g of
flurbiprofen methylester as a white powder.
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Table 1 List of primers used in this study

primer sequence species
CYP284A1 Ana1361F 5-TAC CAT ATG ATG CTC CAA TAC ATT ACT GCT CTC-3'

Ana1361R 5'-TAC GAA TTC ATT TCT CAA CCG AAA GCG CAC T-3'
CYP110A1 Ana1450F 5'-TAC CAT ATG ATG TTG ACT CAA TTA CCA AAT CC-3'

Ana1450R 5'-TAC GAA TTC GTT GAA AAT CTT GCT ACT TTG CT-3'
CYP110B1 Ana3746F 5'-TAC CAT ATG ATG CAC CTA CCA AAA GG-3'

Ana3746R 5'-CAC GAA TTC ACT TAC AGT AGT TGT TTC TAG-3'

Nostocsp. PCC 7120

CYP110C1 Ana4686F 5'-CAC CAT ATG ATG AAA TAT CAA ATA CAG AGA CC-3'
Ana4686R 5'-TAC AAG CTT TGC GTT GAA TGT TGT TGA G-3'
CYP110D1 Ana4766F 5'-TAC CAT ATG ATG ACA GTC ACT CAA AAC C-3'
Ana4766R 5'-CAC AAG CTT CGA ATT ACG CAT TCT TTT ATT AG-3'
CYP110E1 Ana4833F 5'-TAC CAT ATG ATG AAA CTT CCA GAT AGT C-3'
Ana4833R 5'-TAC GAA TTC TAC TTC TAC AGG GTT TTT G-3'
CYP110C3 Ana1981F 5'-TAC CAT ATG ATG AAG TAT CAA ATA AAG AGA C-3'
Anal981R 5'-TAC GAA TTC TGT TGT GAA TGT TGT TGA G-3'
CYP110E6 Ana2103F 5'-TAC CAT ATG ATG AAA CTT CCA GAT AGT CC-3'
Ana2103R 5'-TAC GAA TTC TAC TTC TAC AGG GCT TTT GA-3'
A. variabilisATCC 29413
CYP110A2 Ana3921F 5'-TAC CAT ATG ATG TTG ACT CAA TTA CCA AA-3'
Ana3921R 5'-CAC GAA TTC ATT AAA AAT CTT GTT ACT TTG CT-3'
CYP284A3 Ana4063F 5'-TAC CAT ATG ATG CTC CAA TAC GTT ACT GCT C-3'
Ana4063R 5'-TAC GAA TTC ATT TCT CAA CCG AAA GCG CAC-3'
CYP110F1 Nos0984F 5'-TAC CAT ATG ATG AAA ATA CTT GAT AGT CTA AC-3'
Nos0984R 5'-TAC AAG CTT AGT AGA AAG TAT TGT TTG TCT TT-3'
CYP110B2 Nos0985F 5'-TAC CAT ATG ATG AAA TTA CCA AAA GGC C-3'
Nos0985R 5'-TAT GAA TTC AAC AGT GGC TGT CTG-3'
CYP197B1 Nos2212F 5'-TAC CAT ATG ATG GTT GCC GAT GTA TT-3'
5'-CAC GAA TTC TTT AGA AGT GTC TAA TGC AA-3'
CYP284A2 Nos2399F 5'-TAC CAT ATG ATG TTC CAA CAG ATT GCT GC-3'
Nos2399R 5'-TAC GAA TTC ACG AGC GAT ATT GTC AGA GT-3'
CYP120B1 Nos2686F 5'-TAC CAT ATG ATG AAA ACT AAT CAA ATT CCT-3'
Nos2686R 5'-TAT GAA TTC CCG AGG TTG AAA TCT-3'
N. punctiformePCC 73102
CYP110D2 Nos3640F 5'-CTA C CA TAT GAT GAA AAG TCG TAA CAA TAA AA-3'
Nos3640R 5'-TAT GAA TTC AAC TAG GGC TGG C-3'
CYP110C2 Nos6291F 5'-TAC CAT ATG ATG CAA CTA CCT AAT ATT CT-3'
Nos6291R 5'-TAT GAA TTC GGA TAG GGG TGT AG-3'
CYP110E2 Nos7017F 5'-GCA GCA TAT GAT GTC TTT ACT TAA ACT G-3'
Nos7017R 5'-TCA C GA ATT CAA CTG AAC TAG AGC T-3'
CYP227A1 Nos7684F 5'-ATA C CA TAT GAT GAC ACT TAA AGA TAA AG-3'
Nos7684R 5'-TAT GAA TTC CAG TCG TTG AGC AA-3'
CYP120C1 Nos8095F 5'-TAC CAT ATG ATG CAG CAG TTA AAA TCC G-3'

Nos8095R 5-TAC GAA TTC ACT ATC CAA GGG ATG CTT T-3
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Extraction and HPLC analysis of products

Five hundred pl of the reaction mixture liquid was added
to 100 ul of saturated sodium chloride solution and
500 pl of EtOAc and shaken for 5 min. After centrifuga-
tion, the organic phase was analyzed by high pressure li-
quid chromatography (HPLC; Waters 2695, Waters
Corp., Milford, MA) equipped with an on-line photo-
diode array detector (Waters 2996). An aliquot of the or-
ganic phase (20 pl) was applied to HPLC and separated
using an XTerra MS C;g column (LD. 4.6 mm x 100 mm;
Waters), and a flow rate of 1 ml/min was used, with solv-
ent A [5% acetonitrile (CH3CN) in 20 mM phosphoric
acid] for 3 min, then a linear gradient from solvent A to
solvent B (95% CH3CN in 20 mM phosphoric acid) for
25 min, and finally with solvent B for 15 min, with the
maximum absorbance being monitored in the range of
200-500 nm (max plot).

Purification and identification of products

The liquid phase containing the reaction mixture
(200 ml; 100 ml x 2) was extracted with EtOAc (200 ml x
2 times). The resultant organic layer was concentrated
in vacuo and analyzed by thin-layer chromatography
(TLC) on silica gel (E. Merck 60 F-254 0.25-mm silica
gel plates). Products were purified by column chroma-
tography on Silica Gel 60 [20 mm (diameter) x 250 mm
(length); Merck]. To elucidate the structures of these
products, high resolution mass spectral data [HREI-MS
(Jeol DX505W; Jeol, Tokyo, Japan) or HRAPCI-MS (Jeol
JMS-T100LP)], and nuclear magnetic resonance (NMR)
spectral data (400 MHz, Bruker AMX400) were applied.

Additional files

Additional file 1: Figure S1. Composition of four distinct P450
monooxygenase systems. Figure S2: Structure of the pRED vector
for the functional expression of class | P450 genes in E. coli. Figure
S3: List of screened substrates (47 samples). Figure S4: CO
difference spectral analysis of CYP110E1 C-terminally fused to
RhFRed. Cell extracts from E. coli BL21 (DE3) carrying plasmid
pCYP110ET-Red (three samples, S1, S2, and S3) were measured for CO
difference spectra.

Additional file 2: Spectroscopic data of the individual converted
products.
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