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Abstract

Background: The ascomycete Ophiostoma piceae produces a sterol esterase (OPE) with high affinity towards p-
nitrophenol, glycerol and sterol esters. Its hydrolytic activity on natural mixtures of triglycerides and sterol esters has
been proposed for pitch biocontrol in paper industry since these compounds produce important economic losses
during paper pulp manufacture.

Results: Recently, this enzyme has been heterologously expressed in the methylotrophic yeast Pichia pastoris, and
the hydrolytic activity of the recombinant protein (OPE*) studied. After the initial screening of different clones
expressing the enzyme, only one was selected for showing the highest production rate. Different culture conditions
were tested to improve the expression of the recombinant enzyme. Complex media were better than minimal
media for production, but in any case the levels of enzymatic activity were higher (7-fold in the best case) than
those obtained from O. piceae. The purified enzyme had a molecular mass of 76 kDa, higher than that reported for
the native enzyme under SDS-PAGE (60 kDa). Steady-state kinetic characterization of the recombinant protein
showed improved catalytic efficiency for this enzyme as compared to the native one, for all the assayed substrates
(p-nitrophenol, glycerol, and cholesterol esters). Different causes for this were studied, as the increased glycosylation
degree of the recombinant enzyme, their secondary structures or the oxidation of methionine residues. However,
none of these could explain the improvements found in the recombinant protein. N-terminal sequencing of OPE*
showed that two populations of this enzyme were expressed, having either 6 or 8 amino acid residues more than

the native one. This fact affected the aggregation behaviour of the recombinant protein, as was corroborated by
analytical ultracentrifugation, thus improving the catalytic efficiency of this enzyme.

Conclusion: P. pastoris resulted to be an optimum biofactory for the heterologous production of recombinant
sterol esterase from O. piceae, yielding higher activity levels than those obtained with the saprophytic fungus. The
enzyme showed improved kinetic parameters because of its modified N-terminus, which allowed changes in its
aggregation behaviour, suggesting that its hydrophobicity has been modified.
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Background

Sterol esterases (EC 3.1.1.13) hydrolyze fatty acid esters of
sterol and are widespread in nature, being the human chol-
esterol esterase one of the best studied among this group of
enzymes [1-3]. However, those from microorganisms are
the most used for biotechnological purposes since they can
be produced in bulk at low cost. Some examples of these
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are the esterases from the bacterium Pseudomonas aerugi-
nosa [4] and the actinomycete Streptomyces [5,6], the
enzymes LIP2 and LIP3 from the yeast Candida rugosa
[7-14], or those from the filamentous fungi Melanocarpus
albomyces [15] and Trichoderma sp. AS59 [16].

Most of them share a common structural backbone
belonging to the structural superfamily of a/p-hydrolases,
like esterases and lipases, where residues responsible for its
catalytic activity are highly conserved and form the so-
called catalytic triad Ser-Asp/Glu-His [17], being the serine
residue the nucleophile responsible for the beginning of

© 2012 Barba et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:mjmartinez@cib.csic.es
http://creativecommons.org/licenses/by/2.0

Barba Cedillo et al. Microbial Cell Factories 2012, 11:73
http://www.microbialcellfactories.com/content/11/1/73

catalysis. For this reason, all these enzymes are also known
as serine hydrolases.

They display a wide range of molecular mass, usually
from 20 to 80 kDa, although enzymes with lower masses
have been described, for example the 6.5 kDa cholesterol
esterase from Acinetobacter [18]. Typically, these pro-
teins show tertiary structure but dimeric, tetrameric, and
even hexameric forms or more can be found because of
aggregation phenomena giving these pseudo-quaternary
structures [6,19-21].

Their high versatility convert lipase-type enzymes in the
most important group of biocatalysts in biotechnology,
being used in different industries like food, detergent,
pharmaceutical, leather, textile, cosmetic, and paper [22,23].
In fact, these enzymes accounted for about 5% of the world
enzyme market in the year 2000 [24].

Recombinant DNA technology, together with protein
engineering techniques, facilitates obtaining high quan-
tities of an interesting enzyme at low cost, which allows
the production of tailor-made biocatalysts [25]. Heterol-
ogous expression is a good approach for the production of
these enzymes. Different prokaryotic and eukaryotic host
systems can be used with this aim, although the advantage
of the latest is its ability to carry out post-translational
modifications, which can be very important to achieve the
expression of a functional recombinant protein. This is
the case of the methylothrophic yeasts, that provide a
great potential as factories using methanol as the only car-
bon source [26]. The genera Hansenula, Pichia, Candida,
and Torulopsis have been described as methylothrophic
yeasts, but Pichia, and specially Pichia pastoris, is prob-
ably the most exploited yeast for recombinant protein pro-
duction [27,28]. It is a consequence of the knowledge on
the genetic characterization of this yeast gained during the
last four decades, being a highly successful system for the
production of a variety of heterologous proteins for the
last 25 years [29]. This fact, and the advantage of having
its genome sequenced [30], will contribute to facilitate re-
combinant expression and, inclusively, to improve it
through systems biology strategies. Among the benefits of
using P. pastoris as host system for heterologous expres-
sion are remarkable: i) its easy genetic manipulation and
the stability of its transformants, thanks to the integration
of the gene of interest by homologous recombination in
its haploid genome, ii) its simplicity to be cultivated and to
grow in minimal, and so inexpensive, media at high cell
densities with low levels of endogenous protein secretion,
together with the ability to efficiently secrete heterologous
proteins, iii) fermentation processes are scalable to
industrial levels of production, iv) different strong promo-
ters are available to overexpress the gene of interest
producing high quantities of protein, v) multiple copies of
the gene of interest can be inserted into its genome, and
vi) it also performs many of the higher eukaryotic post-
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translational modifications as protein folding, proteo-
lytic processing, disulphide bond formation and
glycosylation [31].

The sterol esterase from the saprophytic fungus Ophios-
toma piceae (OPE) was previously characterized [32], and
its possible application for pitch biocontrol during paper
pulp manufacturing studied and patented because of its
capability to hydrolyze triglycerides and sterol esters
[33,34]. However, the use of any enzyme for biotechno-
logical purposes requires making use of high quantities of
protein. In a preliminary study [35], this enzyme was suc-
cessfully expressed in P. pastoris (OPE*) and in this work
we tackled the optimization of its production, studied its
kinetic constants using p-nitrophenol, glycerol, and chol-
esterol esters, as well as analysed the cause of its improved
catalytic properties.

Material and methods

Chemicals

p-nitrophenyl butyrate and palmitate, glycerol esters,
cholesterol esters, and polyoxyethylene 10 tridecyl ether
(Genapol X-100) were purchased from Sigma. Triton
X-100 (reduced form) was acquired from Fluka. All che-
micals were of the purest available grade.

Fungal strains and plasmids

O. piceae (CECT 20416) was grown in modified Czapeck-
Dox medium at 28°C and 160 rpm. E. coli DH5«
(Stratagene®™) was grown in Luria-Bertani medium at 37°C
and 150 rpm, and used for cloning and plasmid amplifica-
tion. P. pastoris GS115 (his4 auxotrophy) (Invitrogen™)
was used as host strain for expressing the O. piceae ma-
ture esterase sequence under the transcriptional control of
the AOX1 promoter (P40x1). The vectors pGEM-T Easy
(Promega) and the shuttle vector pPIC9 (Invitrogen™)
were utilized for cloning and expressing the esterase gene,
respectively.

Plasmid and strain construction

The mature O. piceae esterase sequence, harbouring 5’
EcoRI and 3’ Notl sites previously incorporated by PCR,
was cloned into the pGEM-T Easy vector, sequenced,
and subcloned into the same sites of the pPIC9 vector.
The construction was subjected to restriction analysis
and sequenced to confirm the correct insertion and
orientation of the mature esterase sequence. As a result,
the OPE mature sequence was fused to the coding
sequence of the a-mating factor secretion signal pre-
propeptide for the extracellular release of the gene prod-
uct. Transformation of Pichia spheroplasts with the Sacl
linearized recombinant vector pPIC9OPE, allowed isola-
tion of Mut® phenotype transformants after homologous
recombination of the vector within the 5" AOX1 region
in the yeast’s genome.
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Oligonucleotides were synthesized by the Protein
Chemistry facility at CIB. DNA sequencing was per-
formed at SECUGEN.

Culture conditions

E. coli DH5« was grown in Luria-Bertani medium (10 g/L
tryptone, 10 g/L NaCl, 5 g/L yeast extract, and 15 g/L agar
for solid medium) supplemented with 100 or 50 pg/mL
ampicillin for liquid medium and agar plates, respectively.
Bacteria were incubated at 37°C and 150 rpm overnight.

P. pastoris His"Mut" transformants were screened for
esterase activity in Petri dishes containing minimal
methanol medium (MM) with tributyrin (13.4 g/L yeast
nitrogen base without amino acids, 4 x 10 g/L biotin,
5 g/L methanol, 1% tributyrin, and 15 g/L agar). Plates
were incubated during 48 h at 28°C and 100 pL of pure
methanol were added daily to the lid of the inverted
plates. Positive clones were initially checked in 1L Erlen-
meyer flasks containing 100 or 200 mL of BMMY
medium (described below).

The best P. pastoris transformant was grown in different
culture media. i) buffered glycerol-complex/buffered
methanol-complex media (BMGY/BMMY): 10 g/L yeast
extract, 20 g/L peptone, 13.4 g/L yeast nitrogen base with-
out amino acids, 4x 10™* g/L biotin, 100 mM potassium
phosphate buffer pH 6.0, and 10 g/L glycerol for BMGY
medium and 5 g/L methanol for BMMY medium, ii) buf-
fered minimal glycerol/buffered minimal methanol media
(BMG/BMM): same composition as BMGY/BMMY with-
out yeast extract and peptone, iii) minimal glycerol/min-
imal methanol media (MGY/MM): 13.4 g/L yeast nitrogen
base without amino acids, 4 x 10* g/L biotin and 10 g/L
glycerol for MGY medium or 5 g/L methanol for MM
medium, and iv) buffered sorbitol-methanol- complex
medium (YEPS): 10 g/L yeast extract, 20 g/L peptone,
10 g/L sorbitol, 100 mM potassium phosphate buffer pH
6.0, and 5 g/L methanol.

A single colony from fresh yeast extract peptone dex-
trose (YPD) plates (10 g/L yeast extract, 20 g/L peptone,
20 g/L dextrose, and 20 g/L agar) was used to inoculate
25 mL of BMGY, BMG or MGY media in 250 mL flasks,
which were incubated overnight at 28°C and 275 rpm
until an optical density at 600 nm (O.D.go0) value be-
tween 2-6 was reached. Then, cells were harvested by
centrifugation and resuspended in 100 mL or 200 mL of
BMMY, BMM or MM media to an O.D.gyo of 1, in 1L
Erlenmeyer flasks, following the Invitrogen’s protocol
[36]. YEPS medium was directly inoculated from a fresh
single colony.

Media used for induction and expression were main-
tained at 28°C and 250 rpm during at least 96 h. In these
media methanol was added daily at a final concentration
of 5 g/L for maintaining the induction and counteract
evaporation.
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Enzyme assay, protein determination, and biomass
measurement

Enzyme activity was routinely measured by monitoring
p-nitrophenol release from 1.5 mM p-nitrophenyl butyrate
(pNPB) in 20 mM Tris-HCI pH 7.0 buffer at room tem-
perature in a Shimadzu UV-160A spectrophotometer [32].
One unit of activity (1U) is defined as the amount of en-
zyme releasing 1 umol of p-nitrophenol (€409 = 15,200 Mt
cm™) per minute under the defined conditions. 20 mM
citrate-phosphate-borate buffer was used for stability stud-
ies and optimum pH determination.

Protein concentration was determined by the Bradford
microassay (BioRad) using bovine serum albumin as
standard (Sigma).

P. pastoris biomass was expressed as measures of tur-
bidity of the samples at O.D.gpo. This absorbance was
correlated with the equivalent dry cell weight (DCW) in
g/L multiplying the observed absorbance value by a fac-
tor of 0.2.

Enzyme purification

The native enzyme was purified from 15-day-old O. piceae
cultures in modified Czapeck-Dox medium supplemented
with 0.5% olive oil [32]. The recombinant protein was puri-
fied from 4-day-old cultures in YEPS medium. Cultures
were centrifuged 30 minutes at 13,000 rpm and 4°C, and
filtered. Culture filtrates were concentrated by ultrafiltration
using both a Millipore Pellicon™-2 Miniholder, coupled with
a Masterflex® pump, and an Amicon® devices, equipped
with 5 and 3 kDa cut-off membranes, respectively. 0.5 M
(NH4),SO,4 was added to concentrated samples and these
were applied to a HiTrap Octyl Sepharose FF Cartridge
(GE Healthcare) previously equilibrated with 0.5 M of the
salt in 25 mM Tris-HCI buffer pH 7.0, by using an Akta
HPLC system (GE Healthcare). Proteins were eluted with a
linear decreasing gradient (0.5-0 M) of (NH,),SO, in the
same buffer during 60 minutes and the sterol esterase,
which remained bound to the gel at the end of the gradient,
was released after addition of 0.2% (v/v) reduced Triton
X-100 in milli-Q water. Fractions containing esterase activ-
ity were pooled, diluted below critical micellar concentra-
tion of Triton X-100 in 25 mM sodium phosphate buffer
pH 6.0, and concentrated again as mentioned above.

Molecular mass determination

Sodium dodecyl sulphate polyacrylamide gel electrophor-
esis (SDS-PAGE) was performed in a Mini-protean III unit
(BioRad) using running gels at 7.5%. N-linked-carbohydrate
content (%) was estimated by comparing the molecular
mass of the native and the N-deglycosylated protein. Degly-
cosylation was done treating the thermally denatured ester-
ase with 10 mU of Endoglycosidase H (Roche) in 50 mM
acetate buffer pH 5.0 with 0.06% (v/v) SDS and 0.1 mM
B-mercaptoethanol at 37°C overnight. Protein bands were
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visualized either with Coomassie R-250 or silver staining
(depending on protein concentration).

The purified recombinant enzyme (20 pmol/pL) was
analyzed by MALDI-TOF mass spectrometry. The pro-
tein was crystallized in a saturated matrix solution (sina-
pinic acid in 0.1% (v/v) trifluoroacetic acid in a 1:3
acetonitrile:water solution). Desorption, ionization, and
analysis of the sample was accomplished in an Autoflex
III MALDI TOF/TOF instrument (Bruker Daltonics)
equipped with smartbeam, and analyzed using the posi-
tive ion linear mode. Protein Calibration 11 (Bruker) ran-
ging from 20 to 70 kDa was used as external standard.

Kinetic studies
Catalytic parameters were obtained for different p-nitro-
phenol, glycerol, and cholesterol esters.

For these studies, the hydrolysis of pNPB and p-nitrophe-
nyl palmitate (pNPP) were assayed in 3 mL reactions
containing 100 mM sodium phosphate buffer pH 7.0, with
0.15 M NaCl and 1% (v/v) Genapol X-100 using an Uvikon
spectrophotometer with magnetic stirring and temperature
control at 25°C. One unit of activity (1U) is defined as the
amount of enzyme releasing 1 pmol of p-nitrophenol
(€410=15,200 M'cm™) per minute under the defined
conditions.

The hydrolysis of glycerol and cholesterol esters was
assayed titrimetrically in a pH-stat model DL50 (Mettler
Toledo) using 0.1 N NaOH as titrant at 25°C and 30% stir-
ring rate. The reactions were carried out in 1 mM Tris-HCl
buffer pH 7.0, with 0.15 M NaCl and 5% (v/v) Genapol X-
100 in a final volume of 20 mL containing the substrate,
which was previously emulsified in the detergent. One unit
of activity (1U) is defined as the amount of enzyme releas-
ing 1 umol of free fatty acid per minute.

Experimental data were fitted to hyperbolic Michaelis-
Menten curves and statistically analyzed with Sigma Plot
11.0 software.

Circular dichroism spectroscopy

200 pL samples of both the native and recombinant pro-
teins at 0.1 mg/mL in 25 mM sodium phosphate buffer
pH 6.0 were monitored using circular dichroism
spectroscopy (CD) on a J-720 spectropolarimeter (Jasco),
in 1 mm light path quartz cuvettes (HELLMA). Spectra
were acquired in the amide band (195-260 nm) at room
temperature at 20 nm/min, with 0.5 nm bandwidth and
a 4 s time constant. The spectra were measured in quad-
ruplicate, averaged, and baseline corrected by subtrac-
tion of a buffer blank. Far-UV CD spectra were analyzed
on DichroWeb website, using the K2d algorithm [37].

N-terminal sequencing and amino acid composition
N-terminal sequence of the recombinant protein was
obtained by automated Edman degradation of 10 pg of
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purified sample using a Procise 494 instrument (Applied
Biosystems).

Amino acid composition and potential amino acid mod-
ifications were determined, in duplicate, with a Biochrom
30 analyzer (Biochrom, UK) after hydrolyzing 10 pg of na-
tive and recombinant sterol esterases with 6 N HCI at
110°C during 24 hours in vacuum. Amino acids were
separated by cationic exchange chromatography and deri-
vatized with ninhydrin postcolumn. Norleucine was used
as the internal standard and methionine sulfone (Sigma)
as standard of protein oxidation.

Analytical ultracentrifugation

Analytical ultracentrifugation was used to compare the
aggregation behaviour of both the native and recombin-
ant proteins. Purified proteins (200 pg/mL) in 25 mM
sodium phosphate buffer, pH 7.0, with and without 1%
(v/v) Genapol X-100, were used for these experiments.
Measurements were performed in a XL-A analytical
ultracentrifuge (Beckman-Coulter Inc.) equipped with
UV-VIS detection optics, using an An50Ti rotor. Protein
concentration was estimated by absorbance. Results
were analyzed with SEDFIT (version 11.8) and HeteroA-
nalysis (version 1.1.33) softwares for sedimentation
velocity and equilibrium experiments, respectively.

Results

Screening of esterase producing clones

Twenty randomly picked His" transformants were
checked for methanol utilization by plating onto MM and
MD plates as previously reported [35]. All transformants
presented a Mut® phenotype and exhibited hydrolytic
halos on MM-tributyrin plates because of their ability to
hydrolyze the triglyceride. Five transformants were
selected and cultured in liquid media in Erlenmeyer flasks,
in order to check their production levels.

Production in Erlenmeyer flasks

The five His"Mut" selected transformants were grown in
1L Erlenmeyer flasks containing 200 or 100 mL of
BMMY medium. Differences regarding culture volume
were found, showing better production in flasks with
100 mL of medium, between 3- and 7-fold increase in
productivity depending on the colony, respect to the
levels reached in flasks with 200 mL.

The best transformant was selected to optimize ester-
ase production using different culture media (Figure 1).
Yields in buffered media (YEPS, BMMY, and BMM)
were higher than in the unbuffered MM medium, where
the activity was very low probably due to the drastic de-
crease in pH value (from pH 6.0 to pH 2.0 after
48 hours), which could affect enzyme activity. Complex
media (YEPS and BMMY), with peptone and yeast ex-
tract, gave better yields than minimal media (BMM and
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MM). The addition of sorbitol as a second carbon
source in YEPS medium was beneficial for the produc-
tion. The sterol esterase activity levels in YEPS, BMMY,
and BMM media, after 96 h of induction, turned out to
be 7-, 2.5- and 0.2-fold higher than those got when O.
piceae was cultured in modified Czapeck-Dox medium
(1.8 U/mL) for 15 days [32]. The efficiency of P. pastoris
cells on sterol esterase production in YEPS medium
(~2,266 U/g biomass), was 2-, 15-, and 127-fold higher
than in BMMY, BMM, and MM media, respectively.

Purification and biochemical characterization

The recombinant protein was purified to homogeneity
from 4-day old YEPS cultures by a single hydrophobic
interaction chromatography step (Figure 2A) using an
Octyl Sepharose cartridge (GE Healthcare), as previously
reported [32]. Finally, the protein was dialyzed and con-
centrated, as mentioned above, and kept at -80°C
remaining stable in these conditions at least for one year.
9 mg of pure enzyme were obtained from 1L of YEPS
medium. The process yield was around 60% and protein
was purified 9.2-fold (Table 1).

SDS-PAGE of the pure recombinant protein from
YEPS cultures showed a band at M, 76,000 Da, higher
than that described for the native enzyme (60 kDa), and
similar to that obtained from BMMY cultures [35]. The
heterogeneity of the recombinant protein could be due
to different patterns of post-translational modifications.
This was confirmed after treatment with Endoglycosi-
dase H (Figure 2B). The average molecular mass of the
recombinant sterol esterase was found to be 74,921 Da
by mass spectrometry and this value was used for the
determination of its kinetic constants.

The effects of pH and temperature on enzyme activity
and stability were investigated using 3 pg/mL aqueous
solutions of the protein. The optimum pH of the purified
recombinant protein was between 7.5 and 8.0, and its
optimum temperature at 25°C, which differs from the
value found for the native enzyme (around 60°C). Stability
of the native and the recombinant enzyme was similar be-
tween pH 3.0 and pH 9.0, retaining around 50-70% of
their initial activity after 24 h of incubation. Nevertheless,
at pH 10.0 the recombinant enzyme maintained around
50% of activity while the native one kept less than 20%.
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Regarding temperature stability, OPE and OPE* main-
tained around 85% of their initial activity at 4°C and 30°C,
after 24 h of incubation at pH 6. However, the recombin-
ant protein was less stable than the native one at 45°C
(50% and 35%, respectively) and both retained less than

Table 1 Yield and purification grade throughout
processing of recombinant enzyme

Activity Protein Yield Ae Purification

(Units)  (mg) (%) (U/mg) factor
Culture liquid 9539 140 100 68 1.0
Ultrafiltrate 9839 89 103 111 16
HIC-octyl sepharose 5624 9 59 625 9.2

and removal of Triton
X-100

Ae: specific activity.

10% of their activity at 60°C. It is interesting to mention
that the stability towards pH and temperature of both pro-
teins depends on their concentration, improving with in-
creasing protein concentrations.

Kinetic characterization

Reactions were carried out in presence of Genapol X-100
as surfactant due to the low solubility of most of the
substrates assayed in aqueous solutions. Protein kinetic
parameters were designated as “apparent” (app) as
reported for native enzyme [32]. Table 2 summarizes the
catalytic properties of the native and the recombinant es-
terase. Except for pNPB, the recombinant protein showed
similar or higher affinity (lower KitP values) than the na-
tive one, and greater turnover frequency (kZtF) in all cases.
Its efficiency (K25F/KGEP) increased with the length of the
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Table 2 Apparent kinetic parameters of native and recombinant sterol esterases from O. piceae on p-nitrophenol,

glycerol and cholesterol esters

Substrate Acyl length and Catalytic Native Recombinant
insaturation(s) parameters OPE?® OPE
p-Nitrophenyl butyrate C40 KPP 0.27+0.03 233+0.19
keep 44+) 2533455
KEP/KERP 162£13 1089+70
p-Nitrophenyl palmitate C160 KPP 0.33+0.03 0.37+0.03
k2bP 7443 1049+28
KEP/KERP 224+12 2875212
Glyceryl tributyrate 40 KPP 9.90+0.80 5.10+0.30
Kzep 179+4 1041414
K0P /K0P 1841 204410
Glyceryl trioleate 181 K2PP 0.98+0.08 0.71+£0.09
k2op 20047 1362441
K22P/KapP 206418 19244197
Cholesteryl butyrate C40 K2PP 3.00+0.50 1.60+0.20
Kzee 4742 21247
K20P/KapP 156418 13313
Cholesteryl oleate 181 K2PP 1.00+0.10 0.69+0.10
kP 138+4 631421
KEP/KERP 138+9 918+108
Cholesteryl linoleate 182 KPP 0.99+0.06 0.71+0.09
kP 15043 798+25
KEP/KERP 152+6 1132+123

Reactions were carried out in the presence of the non-ionic detergent Genapol X-100.

KPP (mM), k2P (s') and kZRP/K3PP (s'mM™). Standard errors are based on the curve fitting using Sigma plot 11.0 software. The k2EP/KZPP standard errors were
obtained by fitting the normalized Michaelis-Menten equation as V= (kZEP/KiP)[S)/(1 + [SI/KRYP). Kinetics parameters were obtained using the average molecular
weight of the non-deglycosylated recombinant protein obtained by mass spectrometry as was previously considered with native one.

321

acyl moiety in the substrate, as well as with the presence
of insaturations, as reported elsewhere [32]. The catalytic
efficiency of the recombinant enzyme, compared with the
native esterase, was about 8-10-fold higher for all the sub-
strates assayed.

Effect of deglycosylation on recombinant enzyme activity
The higher degree of N-linked carbohydrate present in
the recombinant protein (28% against 8% for the native
protein) could contribute to improve its catalytic proper-
ties. Both esterases displayed the same M, after deglyco-
sylation with Endo H under non-denaturing conditions
and did not show significant difference in their activities
on pNPB, triolein, and cholesteryl oleate before and after
deglycosylation (Figure 3).

Far UV circular dichroism spectra

spectra were similar, with the two typical negative bands at
222 and 209 nm characteristic of a-helix (Figure 4). Ana-
lysis of the spectra by the K2d method from Dichroweb
[37] resulted in an identical content of «-helix (0.46),
[-sheet (0.23), and random coil (0.31) for both proteins.

Methionine oxidation determination

Oxidation in methionine residues has been previously
reported in other proteins expressed in P. pastoris
[38,39], and could be another factor to explain the
improved catalytic properties of the recombinant en-
zyme. However, amino acid analysis of the recombinant
protein revealed the lack of methionine sulfone, oxidized
form of methionine (Figure 5).

N-terminal sequencing
A modified N-terminal sequence was found in the recom-

Secondary structure of the OPE and OPE* was analyzed by
CD spectroscopy in order to find differences between them
which could explain the kinetic results. However, their

binant enzyme (EAEAYVEFTTVNVNYPE) when compared
to that from the native one (TTVNVNYPE). This fact can be
explained because of the cloning process strategy, which
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different measures. Error bars represent standard deviation.
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were assayed for the analysis: pNPB (white bars), triolein-TO (gray bars), and cholesteryl oleate-CO (black bars). Substrates were used at 5 mM
concentration in the presence of Genapol X-100. Conditions are described in experimental section. Data points are the average of at least two

added 4 amino acid residues (YVEF) belonging to the EcoRI
(gaattc) and SnaBl (tacgta) recognition sites in the multiple
cloning site (MCS) from pPIC9 vector. On the other hand,
the incorrect processing of the pre-propeptide of the a-
mating factor from S. cerevisiae, used as signal for secretion,
by STE13 protease, adds two (EA) or four (EAEA) more
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Figure 4 Circular Dichroism spectroscopy. Spectra of the native
(white circle) and recombinant (black circle) proteins. Conditions are
described in experimental section.

residues to the sequence. Then, the N-terminal sequence of
the OPE* contained 6 or 8 additional residues, and both
forms were simultaneously found in the purified recombin-
ant protein.

Aggregation behaviour of native and recombinant
enzymes

The aggregation state of both the native and recombin-
ant proteins was studied by analytical ultracentrifugation
techniques, comprising sedimentation velocity and equi-
librium studies.

Regarding the sedimentation velocity method, the na-
tive protein showed a high sedimentation coefficient
(Figure 6A) which corresponded to a high molecular
mass multi-aggregate in aqueous solution (25 mM so-
dium phosphate buffer pH 7.0), as previously reported
[32]. However, under the same conditions, the recom-
binant protein presented sedimentation coefficients of
4.6S and 7.2S for the monomeric and dimeric forms, re-
spectively (Figure 6C). When the study was performed
in the presence of 1% (v/v) Genapol X-100, both pro-
teins showed sedimentation coefficients of 3.3S and 3.8S,
mainly compatible with the monomeric forms of the na-
tive and recombinant protein, respectively (Figure 6B
and 6D). These coefficients differ to those measured in
water solutions because the detergent affects the float-
ability of proteins. An additional experiment was carried
out, in aqueous solution, with the deglycosylated OPE*
obtained after treatment with Endo H in non-denaturing
conditions. In this case, the protein was also found as
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monomeric and dimeric forms, with sedimentation coef-
ficients of 4.2S and 6.7S, slightly lower than those
obtained for the glycosylated protein because of the lack
of N-glycan attached to asparagine residues.

Equilibrium experiments for glycosylated proteins in
aqueous solutions corroborated an average molecular
mass of 138 kDa (theoretical v-bar 0.73, being v-bar the
partial specific volume) for OPE*, which is compatible
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Figure 6 Analytical ultracentrifugation. Sedimentation velocities of the native (A) and recombinant (C) sterol esterases from O. piceae in
aqueous solution and in the presence of Genapol X-100 (B and D, respectively). Conditions are described in experimental section.
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with the dimer. No results were obtained for the native
protein as a consequence of its tendency to form big
aggregates, which prevents this kind of study. When a
surfactant was employed, average molecular masses were
45 kDa (theoretical v-bar 0.73) and 56 kDa (theoretical
v-bar 0.73) for OPE and OPE*, respectively (lower than
those expected because of Genapol X-100, although
compatible with the monomeric form). Concerning the
deglycosylated recombinant protein, an average molecu-
lar mass of 109 kDa (theoretical v-bar 0.74) was obtained
in aqueous solution. This can be explained from the co-
existence of a mixture of molecular species, in contrast
with the 47.5 kDa (theoretical v-bar 0.74) obtained for
this sample in presence of the detergent, compatible
with the monomeric form (data not shown).

Discussion

Several advantages of using P. pastoris as biofactory for
the production of the recombinant protein have already
been mentioned. An additional reason to choose this
system to express the O. piceae sterol esterase was that
other fungal lipases have been successfully expressed in
this yeast, such as the different isoenzymes (Lipl-Lip5)
from C. rugosa [8,10,40-44] and G. candidum [45,46], as
well as the sterol esterase from M. albomyces [15].

The screening to select the clones of P. pastoris with
sterol esterase activity was carried out by using a simple
plate activity assay [47] based on the hydrolysis of tribu-
tyrin in MM medium, which showed clear halos in the
positive transformants. Initially, five positive clones were
selected for the production of the sterol esterase in 1L Er-
lenmeyer flask containing different volumes of BMMY li-
quid medium. In any case, all clones secreted higher
activity levels than those attained with O. piceae. However,
the highest levels (up to 18 U/mL) were obtained when a
lower volume of culture medium was used [35] because of
the increase in the oxygen transfer rate. This is one of the
different strategies previously proposed to facilitate oxy-
gen transfer in Erlenmeyer flask cultures [28,31].

On the other hand, since the production of recombin-
ant proteins in P. pastoris is closely connected to growth
yields, the use of different carbon sources on biomass
production, and so on the expression of the recombinant
protein was studied. As methanol is a poor energetic
substrate yielding in theory only 6 ATP molecules, both
in assimilation and dissimilation pathways [48,49], the
biomass production in media with methanol as the sole
carbon source was lower than those obtained in media
with sorbitol. In accordance with this, the biomass was
lower for the selected P. pastoris Mut" transformant
growing in media with only methanol (MM, BMM, and
BMMY) than in a medium with an alternative carbon
source like sorbitol (YEPS), which do not repress AOX1
promoter [50]. Consequently, the greatest activity levels
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were obtained in YEPS medium, being 3- and 32-fold
higher than in BMMY and BMM media, respectively in
terms of maximal activity. The performance of the pro-
duction in YEPS medium, according to generated
biomass, was higher than in BMMY and BMM (2- and
15- fold, respectively) and much higher than with MM
(127-fold). The use of either complex or unbuffered
media could contribute to decrease the effect of pro-
teases during growing of P. pastoris. In the first case,
yeast extract and peptone not only improve the growth
of the yeast, but also can be substrates for proteases and
could suppress their expression when nitrogen is limited
[28,51]. In the second case, the growth of the yeast
causes a fall in pH, favouring protease inactivation [36].
All these facts could explain the better activity levels
found in BMMY medium as compared with BMM
medium, and the very low activity detected in MM
media. These results agree with previous reports de-
scribing higher activity levels of the recombinant cinna-
moyl esterase from Aspergillus niger expressed in the
yeast when buffered complex media were used [52].
Nevertheless, low activity levels of recombinant M. albo-
myces sterol esterase have been obtained in these culture
conditions [15]. On the other hand, and also agreeing
with our data, G. candidum lipase activity was not
detected in cultures in MM medium [46], probably due
to a pronounced decrease in pH with time (around 2),
which would cause the denaturalization of the enzyme.

The recombinant enzyme was purified from YEPS
medium in a single chromatographic step, with a purifica-
tion factor higher than that obtained for the native en-
zyme [32]. LIP3 from C. rugosa was purified with a similar
procedure, but yielding lower amounts of protein [8].

The purified enzyme can work in a wide pH range keep-
ing more than 50% of its initial activity, as has also been
reported for recombinant LIP3 [8], and it is thermostable
at 4°C and 30°C for 24 hours in the assayed conditions. In
any case, comparing the native and recombinant proteins,
OPE* showed higher stability at very alkaline pHs and
lower optimum temperature than OPE, which could be
advantageous for its industrial application.

The existence of different post-translational modifica-
tions was considered in order to explain the observed
changes, not only in the optimum temperature but also
in the kinetic parameters of the recombinant enzyme.
Regarding glycosylation, it has been described that long
outer chains can potentially interfere with the folding
and function of a foreign protein [29]. However, dichro-
ism spectroscopy experiments (Figure 4) indicated that
the recombinant protein was not misfolded, and an
identical secondary structure was deduced for both
sterol esterases. In addition, N-linked carbohydrates did
not seem to be needed for maintaining the hydrolytic ac-
tivity of these proteins, as deduced from deglycosylation
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experiments (Figure 3). Similarly, lipase B from Candida
antarctica [53] and LIP4 from C. rugosa [43] maintained
comparable kinetic properties after their expression in E.
coli, although the glycosylated form of LIP4 produced in
P. pastoris had higher thermal stability.

On the other hand, the partial oxidation of methionine
residues during heterologous expression of proteins in P.
pastoris has been reported [38,39]. Peroxisome environ-
ment in P. pastoris is highly oxidative and oxidation of
sensitive residues could occur when hydrogen peroxide,
produced during methanol metabolism, is released from
peroxisomes to the culture medium after minimal cell
lysis [39]. The sequence of the O. piceae sterol esterase
contains 5 oxidizable methionine residues, one of them
located in the surroundings of the substrate binding site
[35]. However, amino acid analysis of the recombinant
O. piceae sterol esterase suggested that this is not the
reason for its improved catalytic properties, since no
methionine sulfone residues were found (Figure 5).

Secretion is the preferred approach for heterologous
protein production due to the ease of product recovery
[54]. Furthermore, the secreted recombinant protein in P.
pastoris constitutes the vast majority of total protein in
the medium because the yeast secretes low levels of en-
dogenous proteins [29]. However, the high level of expres-
sion from P4pox; may overwhelm the post-translational
machinery of the cell causing an unprocessed foreign pro-
tein [29]. The bad processing of the pre-propeptide of the
a-mating factor can be explained by the formation of ter-
tiary structures during the expression of a foreign protein
that could protect cleavage sites from KEX2 and STE13
proteases [29]. In addition STE13, which cleaves EA repe-
titions, is a minor protein in the cell and it would not be
able to process correctly an overexpressed protein [55].
Sequencing of the N-terminal region of the recombinant
O. piceae esterase disclosed a wrong processing of the
protein, since its N-terminus contained 6 or 8 additional
residues from the secretion signal and the vector. This
modification at the N-terminal end seems to influence
some properties of the recombinant protein such as its ag-
gregation state, as shown by analytical ultracentrifugation
(Figure 6). While the native enzyme forms big aggregates
in water solution [32], as reported for the M. albomyces
sterol esterase [21], the recombinant enzyme remained as
a mixture of monomeric and dimeric forms (even at
200 pg/mL). This behaviour could be the ultimate reason
responsible for the improved catalytic properties of the re-
combinant enzyme. A wrong processing of the a-mating
factor pre-propeptide has also been described in other
proteins expressed in P. pastoris, such as the feruloyl es-
terase from Talaromyces stipitatus [56], the xylanase from
Thermomyces lanuginosus [57], as well as the lipases from
C. antarctica (53] and Candida parasilopsis [58], but the
catalytic properties of these recombinant proteins were
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not affected. This wrong processing has been reported
even in S. cerevisiae [59].

Esterases and lipases form pseudo-quaternary structures
easily in aqueous solution. Multimeric forms have been
described for the M. albomyces sterol esterase in the ab-
sence of detergent [21] although, at low concentrations,
tetrameric forms have been reported for the native pro-
tein, and dimeric structures for the recombinant variant
[15,60]. This tendency to form multimolecular aggregates
has also been reported in the lipase from C. parapsilosis
[58] and in the sterol esterases from Streptomyces species
[6]. In addition, recombinant C. rugosa LIP2, expressed in
P. pastoris, resulted in an aggregated, inactivated form of
the protein, and only after diaultrafiltration lipolytic activ-
ity was recovered [10]. Monomolecular forms from C.
rugosa, Humicola lanuginosa (synonym T. lanuginosus),
and Mucor miehei lipases were found only at low enzyme
concentrations and in the presence of detergents. So it is
difficult to find only the monomolecular form of lipase-
type enzymes since it can only be achieved by mixing the
enzyme solution with a detergent [61].

Lipases display different functional properties in their
monomeric or aggregated forms [61]. In general, it seems
that multimolecular forms exhibit lower specific activity
and higher stability to pH and temperature than the mono-
meric proteins, although controversial data have been pub-
lished for C. rugosa lipase [62]. For instance, enzymes from
M. albomyces and Streptomyces sp. increased their activity
in the presence of a detergent, where proteins probably
tend to be in their monomolecular form [6,21]. However,
in the case of O. piceae sterol esterase, neither activation
nor inactivation of the enzyme (native or recombinant) has
been reported in the presence of 0.2% Triton X-100 (used
in the purification of these proteins), although above this
concentration a decrease in their activity was observed
(data not shown) as reported for the lipase BTL2 from
Bacillus thermocatenulatus [63]. The use of Genapol X-
100, which is indispensable in reactions involving long-
chain triglycerides or fattyacid cholesterol esters in order
to solubilise them, is detrimental for enzyme activity on
PNPB since it acts as a competitive inhibitor for this short
chain substrate [32]. In any case, as we report here, the use
of detergents favour the monomeric form of the protein.

In accordance with previous works [61], when a concen-
trated aqueous solution of the recombinant enzyme was
maintained during 16 h at 37°C no significant loss of activ-
ity was found. On the contrary, if this solution is diluted
and the resulting solution incubated under the same condi-
tions, an appreciable amount of activity was lost.

The high overall content in hydrophobic amino acid
residues (38%) of the native enzyme could explain its ten-
dency to form aggregates, as has been suggested for lipase
BTL1 from B. thermocatenulatus [63]. However, the modi-
fication at the N-terminal end of the recombinant protein
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expressed in P. pastoris, by the addition of 6-8 extra amino
acid residues from pPIC9 vector, used for protein expres-
sion, and the inefficient processing of the a-mating factor
pre-propeptide, used for secretion, affected the aggrega-
tion state of the protein, as was confirmed by analytical
ultracentrifugation experiments with deglycosylated re-
combinant enzyme.

Usually, a bad processing has no effect on recombinant
protein activity, such as in G. candidum [46], Yarrowia
lipolytica [64], and C. parasilopsis lipases [58]. An improve-
ment of catalytic properties [65-69] and stability [8,42] of
some recombinant and native enzymes has been previously
reported, speculating on the basis of different glycosylation
degree, N-terminal modification or aminoacid substitution
(due to a preferential codon use in P. pastoris respect to
natural host) [42]. However, to the best of our knowledge,
the results presented in this paper constitute the first ex-
perimental report of an improvement of the solubility and
kinetic constants of the enzyme, as a consequence of its N-
terminal modification.

Conclusions

The selection of the expression system is important in
order to guarantee that a bioactive recombinant protein is
produced with good yield. In this context, P. pastoris is a
well-characterized system, which offers different possibil-
ities for expression and is used in well-studied biopro-
cesses. So, it could be considered as an optimal biofactory
for the production of sterol esterases, lipases, and esterases.
This yeast resulted to be an excellent system for the heter-
ologous production of recombinant sterol esterase yielding
higher protein levels than those obtained with O. piceae.
The recombinant protein showed different optimum
temperature and improved catalytic properties probably
due to its modified N-terminus, which must have caused
changes in its hydrophobicity, altering its aggregation be-
haviour, and affecting positively its hydrolysis efficiency for
all the substrates assayed.
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