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Myxobacteria: natural pharmaceutical factories
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Abstract

conserved throughout evolution.

Myxobacteria are amongst the top producers of natural products. The diversity and unique structural properties of
their secondary metabolites is what make these social microbes highly attractive for drug discovery. Screening of
products derived from these bacteria has revealed a puzzling amount of hits against infectious and non-infectious
human diseases. Preying mainly on other bacteria and fungi, why would these ancient hunters manufacture
compounds beneficial for us? The answer may be the targeting of shared processes and structural features
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Commentary
Natural products from plants and microbes have played
a pivotal role in drug discovery for more than a century
[1-3]. In recent years, myxobacteria have matched fungi,
actinomycetes as well as some species of the genus Bacil-
lus as top producers of microbial secondary metabolites
[4-6]. More importantly, screening campaigns have
revealed a large proportion of the myxobacteria second-
ary metabolism to have activities against human diseases
such as cancer, bacterial and viral infections [6-8].
Myxobacteria are a group of proteobacteria which res-
ide mainly in soil [9,10]. These social microbes move by
an axonal cellular motion called gliding [11,12], and al-
though cells grow independently, they form collective
swarms to prey and generate transient structures, called
fruiting bodies (Figure 1), when resources are scarce
[13]. During cooperative feeding, individual cells
organize in waves which travel in a rippling-like motion
[12,14]. As waves of cells collide, they aggregate in
mounds that grow in size forming fruiting bodies that
can harbor about 10° individuals. Cells within these
structures become myxospores. Sporulation is triggered
by signaling at the cell-cell contact surface when nutri-
ents are available, and the myxospores germinate to
eventually develop new swarms [11]. To control these
processes, myxobacteria have evolved a unique mechan-
ism of extracellular and intracellular signals, including
diverse proteins and small metabolites [15].
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The chemical space of the myxobacteria metabolome
is rare both in diversity and biological activities [5,16,17].
Their secondary metabolites present structural elements
not commonly produced by other microbes such as un-
usual hybrids of polyketides and non-ribosomally made
peptides [5,18]. In fact, around 40% of the described
myxobacterial compounds represent novel chemical
structures [9]. Furthermore, most small molecules from
myxobacteria are not glycosylated as opposed to pro-
ducts derived from actinomycetes [19] and they target
molecules that are often not targeted by metabolites
from other microbes. Examples include inhibitors of
mitochondrial respiration and eukaryotic protein synthe-
sis, carboxylase and polymerase inhibitors and molecules
that affect microtubule assembly [17]. Although the rea-
sons why myxobacteria display such a large array of sec-
ondary metabolites are still not well understood, it has
been argued that they confer a competitive advantage in
the soil environment and are used to modulate cell-cell
interactions within the population [20], to protect eco-
logical niches in their competitive environment [17], and
used as weapons for predation [13].

This level of chemical complexity requires an equally
complex regulatory network to function, altogether en-
hancing the survival and competitivity of both the indi-
vidual and the population [10]. This is reflected in the
genetic space employed by myxobacteria for their sec-
ondary metabolism. One of the largest bacterial genome
reported to date belongs to the myxobacterium Soran-
gium cellulosum with around 20 secondary metabolite
loci and probably more to be discovered [15]. Another
well studied myxobacterium, Myxococcus xanthus, has
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Figure 1 Image of fruiting bodies from the myxobacterium

Chondromyces crocatus (courtesy of Hans Reichenbach).
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around 18 secondary metabolite gene clusters accounting
for around 9% of its genome [21] which is more than
some species of actinomycetes with around 6% of gen-
ome coverage for secondary metabolite loci [22,23].
Given this large space on the level of the genome, the
known diversity between different myxobacteria and the
vast number of different bacterial strains available in
various collections, there seems to be an immense room
for exploration and exploitation.

The amount of different small molecules from myxo-
bacteria targeting other soil bacteria and fungi, around
29% and 54% respectively, and their higher production
rates during exponential growth seems to reinforce the
idea of a broad use of secondary metabolites for hunting
[13,17]. Any predatory microorganism would benefit
greatly from such a diverse armament but why would a
large amount of these metabolites be active against
human diseases and pathogens? An attractive explan-
ation is that many of these products target shared pro-
cesses or structural features conserved throughout
evolution [24-26]. For example, the LSm1l-7 protein
complex in mammalian cells was shown to be required
for efficient hepatitis C virus (HCV) translation and rep-
lication [25]. The Brome mosaic virus (BMV), a plant
virus that can replicate in yeast, utilizes the respective
yeast homologues for the same processes [27-29]. Like-
wise, the bacteriophage Qf3, a plus-strand RNA virus as
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HCV and BMYV, requires Hfq, the homologue of LSm1 in
bacteria for its expansion [30]. Thus there is a functional
conservation of cellular and viral regulatory elements
across kingdoms and virus groups that may be exploited
for antiviral drug development. Indeed, a recent screen
against processing body proteins that include the LSm1-
7 complex revealed several hits from a myxobacterial
metabolite library that overlapped with antiviral activities
(Martinez et al., unpublished). To learn more about the
bioactivity profile of these potent compounds, systematic
testing in a broad panel of bioassays as offered by e.g.
academic consortia such as EU-OPENSCREEN would be
strategically worthwhile. However, to develop a metabol-
ite hit into an applicable pharmaceutical compound is
not an easy task, especially given the complexity of their
natural product chemistry, side effects and poor bioavail-
ability. Therefore, to make better use of nature’s pharma-
ceutical factories, new technologies such as engineering
of microorganisms to synthesize complex molecular
structures, in silico tools to predict the target profile and
anticipate potential side effects of those metabolites, and
targeted delivery strategies for example via nanoparticles
are under the spotlight and will play an increasing role
in the future [31-35].
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