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Abstract

Background: Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain
uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and
McoB and ascomycete laccase McoG was investigated.

Results: The laccase-like multicopper oxidases McoA, McoB and McoG from the commonly used cell factory
Aspergillus niger were homologously expressed, purified and analyzed for their biocatalytic potential. All three
recombinant enzymes were monomers with apparent molecular masses ranging from 80 to 110 kDa. McoA and
McoG resulted to be blue, whereas McoB was yellow. The newly obtained oxidases displayed strongly different
activities towards aromatic compounds and synthetic dyes. McoB exhibited high catalytic efficiency with
N,N-dimethyl-p-phenylenediamine (DMPPDA) and 2,2-azino-di(3-ethylbenzthiazoline) sulfonic acid (ABTS), and
appeared to be a promising biocatalyst. Besides oxidizing a variety of phenolic compounds, McoB catalyzed
successfully the decolorization and detoxification of the widely used textile dye malachite green.

Conclusions: The A. niger McoA, McoB, and McoG enzymes showed clearly different catalytic properties. Yellow
McoB showed broad substrate specificity, catalyzing the oxidation of several phenolic compounds commonly
present in different industrial effluents. It also harbored high decolorization and detoxification activity with the
synthetic dye malachite green, showing to have an interesting potential as a new industrial biocatalyst.

Keywords: Aspergillus, Multicopper oxidase, Laccase, Bioremediation, Decolorization
Background
Multicopper oxidases (MCOs) form a family of redox
enzymes that catalyze the reduction of molecular oxygen
into water by a four-electron transfer process. It includes
laccases (EC 1.10.3.2), ascorbate oxidases (EC 1.10.3.3), bili-
rubin oxidases (EC 1.3.3.5) and ferroxidases (EC 1.16.3.1),
which are key enzymes in many biological processes of pro-
karyotic and eukaryotic organisms [1,2]. In fungi, complex
MCO gene families exist, possibly due to the variety of
functions they accomplish. Fungal MCOs are involved in
delignification, morphogenesis, pigment formation, patho-
genesis, competitor interactions and transport of metal ions
[2,3]. Their ability to react with a variety of aromatic com-
pounds, by producing just water as a by-product, makes
them interesting green biocatalysts [2,3]. As such, they can
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become key for sustainable industrial processes, like textile
production or bioremediation [4,5].
The majority of fungal MCOs are distributed, accor-

ding to Hoegger et al. [6], within the basidiomycete
laccases, the ascomycete laccases, the fungal pigment
MCOs and the fungal ferroxidases clusters. Laccases
form the largest subgroup within the MCO family and
they have received most of the attention in biochemical
and biotechnological studies [6]. In particular, basidio-
mycete laccases of several Trametes and Pleurotus spe-
cies, amongst others, have been well characterized [2].
Fungal pigment MCOs, mainly found in ascomycetes

[7], have been reported in several Aspergillus species:
A. nidulans LccD, TilA and YA [8-10]; A. fumigatus
Abr2 [11]; and A. niger McoA, McoB and McoC [12].
Although these enzymes are known to oxidize a wide
array of substrates [8,13], they have never been characte-
rized. Therefore no information is available about their
molecular properties or substrate specificities. Aspergillus
MCOs included in the ascomycete laccases cluster have
Central Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.
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Figure 1 SDS-PAGE (a), elution profiles from a Superdex 200 HR 10/30 column (b) of McoA, McoB and McoG. Reference proteins used to
calibrate the Superdex 200 HR 10/30 column and calculate the McoA, McoB and McoG molecular mass (c). The gel filtration calibration was
performed with the following reference proteins: cytochrome c (12 kDa), myoglobin (18 kDa), α-chymotrypsin (25 kDa), ovalbumin (43 kDa),
bovine serum albumin (68 and 136 kDa), 4-hydroxybenzoate 3-hydroxylase (90 kDa), lipoamide dehydrogenase (102 kDa),
phenol 2-hydroxylase (152 kDa), catalase (232 kDa), ferritin (440 kDa) and vanillyl-alcohol oxidase (510 kDa). McoA, McoB and McoG were also
included in the plot of Kav versus LogMr.
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also received little attention. A significant number of these
enzymes, including: A. nidulans LccA, LccB and LccC [8];
and A. niger McoD, McoF, McoG, McoI, McoJ and McoM
[12], remain uncharacterized. Interestingly, A. niger MCOs
(both, the ones that belong to the fungal pigment MCO
cluster, and to the ascomycete laccase cluster) have a low
similarity to laccases included in the basidiomycete laccases
cluster (around 25% identical). They also differ from the
few deeply characterized ascomycete laccases (i.e. around
25-30% identical to Melanocarpus albomyces laccase, MaL).
Thus, to obtain insight into the possible biotechnological
potential of this particular group of MCOs, more know-
ledge about their catalytic properties is required.
The activity patterns observed in plate assays of ten

A. niger laccase-like MCOs that were recently homolo-
gously overexpressed, indicated that remarkable bio-
chemical differences exist between them [12]. Here we
address the biocatalytic potential of three A. niger
laccase-like MCOs: two fungal pigment MCOs (McoA
and McoB), and one MCO belonging to the ascomycete
laccase subfamily (McoG). Their ability to oxidize an
array of aromatic compounds and decolorize different
dyes was evaluated.

Results and discussion
Homologous expression, purification and molecular
properties of A. niger MCOs
In order to bring the first insights about the molecular
properties and biotechnological potential of fungal
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Figure 2 Absorption spectra of McoA and McoB (~1 mg/mL). Embedd
can be observed and compared with 10 mM HEPES buffer (pH 7.0).
pigment MCOs, McoA, McoB and McoC were selected
for their purification and characterization. McoG was
chosen to be investigated in this study as well, because it
showed (together with McoB) the broadest substrate spe-
cificity in plate activity assays [12]. Only McoA, McoB and
McoG could be purified in sufficient amounts and with
enough quality to continue with their characterization.
The three recombinant laccase-like MCOs were purified
to apparent homogeneity from 24 h culture supernatants
(see Material and Methods). Their apparent molecular
masses, observed by SDS-PAGE, were ~110 kDa for
McoA, ~88 kDa for McoB and ~80 kDa for McoG
(Figure 1a), being in all cases higher than the theoretical
expected value (~64 kDa for McoA, ~63 kDa for McoB
and ~65 kDa for McoG). This difference in size may ori-
ginate from post-translational protein processing, such as
glycosylation. Indeed, analysis of the three amino acid
sequences with NetNGlyc 1.0 and GPP Prediction Servers
revealed the presence of several potential N-glycosylation
sites, being more predominant in McoA (data not shown).
Gel filtration, using a calibrated Superdex 200 column, was
performed in order to determine the size and subunit com-
position of the three enzymes. A single peak was observed
for the native form of each MCO, with a relative molecular
mass estimated to be: ~120 kDa for McoA, ~96 kDa for
McoB and ~99 kDa for McoG (Figure 1b and 1c). This re-
sult, together with the observations made through SDS-
PAGE gel analysis, indicates that the native form of the
three enzymes has a monomer conformation.
650 750 850 950
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Table 1 Steady-state kinetic parameters of McoA, McoB and McoG with DMPPDA and ABTS

DMPPDA ABTS

Km (mM) Vmax (ΔΑ550/min mg) Ki (mM) Km (mM) Vmax (ΔΑ420/min mg) Ki (mM)

McoA 3.6 ± 0.2 4.6 × 102 ± 8 n.d. n.d. n.d. n.d.

McoB 0.4 ± 0.1 7.5 × 103 ± 6.0 × 102 22.4 ± 6.4 0.5 ± 0.1 2.9 × 102 ± 4 n.d.

McoG 1.8 ± 0.3 4.4 × 102 ± 40 4.6 ± 0.7 5.6 ± 1.0 2.5 × 102 ± 16 n.d.

n.d. = not detectable.
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Figure 3 Effect of pH in McoA (a), McoB (b) and McoG
(c) activity. The initial rate of enzyme activity was measured with
DMPPDA and ABTS substrates in pH range 2.2 to 8.0.
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Concentrated enzyme solutions (10-15 mg/mL) of
McoA and McoG displayed a blue color, whereas McoB
solution was yellowish (Figure 2). In fact, when compa-
ring the absorption spectra (300-950 nm) of McoA and
McoB, it could be observed that McoB absorbance at
610 nm was relatively low (Figure 2). On the other hand,
McoB showed an increased absorbance at 420-430 nm
when compared with McoA. The available information
about the origin of the yellow color of some characte-
rized MCOs is still very limited [14-18]. Thus, in order
to better understand this phenomenon, more experi-
mental data are needed.

Kinetic parameters
The kinetic parameters of the three enzymes were
determined using N,N-dimethyl-p-phenylenediamine
(DMPPDA) as substrate and Michaelis-Menten modeling.
For McoB and McoG, kinetic constants were also deter-
mined with 2,2-azino-di(3-ethylbenzthiazoline) sulfonic
acid (ABTS) (Table 1). McoA could not oxidize ABTS, as
reported for LccD from A. nidulans [8] and the laccase
recently characterized from Bacillus sp. ADR [19]. McoB
showed a much higher affinity and activity with
DMPPDA than McoA and McoG. Remarkably, McoB
and McoG activity was reduced at higher DMPPDA
concentrations, presumably due to substrate inhibition
(Table 1). This inhibition was particularly strong in
McoG, as the Ki is close to the apparent Km. McoB has
more affinity for ABTS than McoG, showing a similar Km

as Pleurotus ostreatus POXA1b laccase [20]. The specific
activity of both A. niger enzymes for ABTS is similar to
that reported for several ligninolytic fungi laccases [14]
and higher to the one reported for Melanocarpus albo-
myces laccase [21].

Effect of pH and temperature on A. niger MCOs activity
The pH optima of the A. niger MCOs for the oxidation of
DMPPDA were similar to that of other Aspergillus extra-
cellular enzymes. Initial rate measurements revealed that
McoA activity was highest at pH 5.0, whereas pH 6.0 was
the optimum for McoB and McoG (Figure 3). McoA and
McoB displayed a broader optimal range for catalyzing the
oxidation of DMPPDA than McoG, showing at least 80%



Table 2 Effect of metal salts and inhibitors on McoA,
McoB and McoG activity

Inhibitor Residual activity (%)

McoA McoB McoG
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of their optimal activity in a wide pH range. McoB and
McoG oxidized ABTS in acidic conditions with an
optimum pH of 2.2 (Figure 3). The higher rate of ABTS
oxidation at low pH was already described for other fungal
laccases [22]. Two opposite effects: the difference in redox
potential between the substrate and the T1 copper (that
could increase oxidation of the substrate at high pH
values) and the laccase activity inhibition that results from
hydroxide anion (OH-) binding to the T2/T3 coppers,
could play an important role in determining the optimal
pH of these enzymes [23]. Nevertheless, by continuously
monitoring the delta absorbance (420 nm) during the
incubation of both enzymes with ABTS, it could be
observed that in the pH range of 2.2 to 4.0, the activities
of McoB and McoG decreased faster in time than at
higher pH (data not shown). The remaining activity rates
of both enzymes after 30 min, when compared to their
initial values, were: 11% to 22% for McoB and 7% to 10%
for McoG at the pH range of 2.2 to 4.0, whereas at pH 6.0
McoB kept 93% of its initial activity rate and McoG 100%.
This observation suggests that both enzymes could be less
kinetically stable or more susceptible to product inhibition
at lower pH. The fact that the activity rate of McoB after
30 min at pH 4.0 was two times lower than at pH 4.6
while their initial activity rates were almost the same,
supports this hypothesis.
The temperature optimum of the A. niger MCOs was

determined only for the reaction with ABTS, as DMPPDA
is unstable at high temperature. Also the 4-amino-2,6-
dibromophenol/3,5-dimethylaniline (ADBP/DMA) assay
did not produce reliable results at high temperature,
therefore McoA optimal temperature was not determined,
as no other substrate with a reproducible assay for testing
McoA activity (in a wide range of temperatures) is known
so far. Optimal temperature for McoB and McoG catalysis
was 60°C (Figure 4). The data obtained indicate that McoB
retains at least 80% of its activity from 50 to 75°C, whereas
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Figure 4 Effect of temperature in McoB (red line) and McoG
(green dashed line) activity. The enzyme activity was measured,
using ABTS as a substrate, in the range 20 to 100°C, using 100 mM
sodium acetate buffer (pH 5.0).
McoG shows more than 80% of its activity between
45 and 62°C.

Effect of potential inhibitors on A. niger MCOs activity
The effect of ten compounds on the activity of the puri-
fied MCOs was tested (Table 2). McoA, McoB and
McoG were strongly inhibited by 1 mM NaN3 as
reported for many laccases [24]. Different concentrations
of CuSO4 (0.1, 0.5, 1.0 and 2.5 mM) also highly inhibited
McoG activity, whereas McoA and McoB inhibition was
more moderate, and similar between both enzymes. The
presence of additional copper ions to the ones present in
the catalytic site of MCOs have been reported to be an
inhibition factor [25]. Organic solvents methanol, etha-
nol and acetone, at a final concentration of 50% (v/v),
also caused a severe inhibition (between 54 and 89%) of
the three enzymes. In contrast, salts 50 mM CaCl2, 50
mM MgCl2, and 100 mM NaCl produced a lower inhibi-
tory effect, particularly in McoB, which retained high
levels of activity (from 76 to 91%). In the presence of 50
mM EDTA, partial inhibition was observed for McoA
and McoB, whereas activity of McoG was two-fold
increased. EDTA might activate McoG by chelating
metal ions, different than copper, that could be bound to
the enzyme causing a partial inhibition of its activity.
SDS (1 mM) did not produce any inhibitory effect. In
contrast, it slightly stimulated A. niger MCOs activity, as
reported for other phenol oxidases [26]. The reduction
capacity of the reaction product by the inhibitors was
not determined in this study, hence it cannot be dis-
carded that this phenomenon occurs with some of the
compounds tested. Therefore, additional substrates or
NaN3 (1 mM) 5.0 ± 0.3 20.0 ± 1.3 16.6 ± 4.2

EDTA (50 mM) 93.8 ± 1.8 82.9 ± 9.8 202.8 ± 33.9

CaCl2 (50 mM) 63.7 ± 0.4 76.4 ± 4.2 53.3 ± 8.6

MgCl2 (50 mM) 81.3 ± 0.1 91.0 ± 0.3 78.2 ± 0.5

NaCl (100 mM) 72.5 ± 4.1 83.8 ± 4.2 62.0 ± 9.5

CuSO4 (0.1 mM) 83.0 ± 10.2 73.1 ± 10.9 14.2 ± 6.5

CuSO4 (0.5 mM) 51.3 ± 8.1 41.9 ± 1.6 2.9 ± 2.0

CuSO4 (1 mM) 36.2 ± 6.7 43.0 ± 3.1 n.d.

CuSO4 (2.5 mM) 31.6 ± 6.4 36.2 ± 3.8 n.d.

SDS (1 mM) 109.0 ± 1.0 139.0 ± 10.1 143.7 ± 27.0

MetOH (50%) 46.1 ± 4.4 29.8 ± 1.3 21.9 ± 5.5

EtOH (50%) 10.8 ± 1.2 34.6 ± 1.1 13.9 ± 4.0

Acetone (50%) 28.8 ± 0.4 46.1 ± 4.2 24.1 ± 1.6

The 100% specific activity of McoA, McoB and McoG was 72.3±1.3 U/mg,
236.1±12.6 U/mg and 57.5±10.6 U/mg, respectively. n.d. = not detectable.
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oxygen consumption measurements could be assayed in
order to confirm these results.

Biocatalytic potential with natural and synthetic
substrates
To gain more insight into the substrate specificity of
McoA, McoB and McoG, their specific activities with a
variety of aromatic compounds were determined by
measuring oxygen consumption (Table 3). All three
enzymes catalyzed the oxidation of ADBP, phenol and
hydroquinone. McoA and McoB were active with ferulic
acid and McoB also oxidized 2,6-dimethoxyphenol,
vanillic and syringic acid. Only McoG reacted with the
non-phenolic cinnamic acid, and was also active with
2,6-dimethoxyphenol. None of the three enzymes was
active with p-coumaric acid and vanillin under the tested
conditions. Compounds like hydroquinone, ferulic acid,
vanillic acid and syringic acid are generated during lignin
decomposition [27,28], and, together with phenol, they
are present in the effluent of different industries, like
olive oil mill or pulp and paper among others [29,30].
Therefore McoB might be a good candidate to be used
in pre-treatment processes of these types of wastewaters.
The inability of McoA to oxidize 2,6-dimethoxyphenol

(as observed before) nor ABTS is a remarkable result, as
a significant number of reported laccases react with
these two common substrates [24]. Nevertheless, as
discussed in the “Kinetic parameters” section, other
laccases from eukaryotic and prokaryotic sources are not
active with ABTS as well. Also, other laccases have been
reported to be inactive with laccase model substrates.
For instance, the Agaricus bisporus laccase [31] is unable
to convert syringaldazine and EpoA, from Streptomyces
griseus, does not oxidize syringaldazine and guaiacol
[32]. The range of substrates oxidized varies from one
laccase to another [33]. It has been suggested that dif-
ferences in substrate access to the T1 copper site of
laccases could imply different substrate affinities [34]. In
Table 3 Substrate specificity of McoA, McoB and McoG

Substrate (1 mM) McoA (U/mg)

ADBP 7.1 × 103 ± 1.6 × 102

Phenol 1.7 × 103 ± 4.1 × 102

2,6-dimethoxyphenol n.d.

Hydroquinone 6.6 × 102 ± 3.2 × 102

Cinnamic acid n.d.

Vanillin n.d.

p-Coumaric acid n.d.

Vanillic acid n.d.

Ferulic acid 3.9 × 102 ± 1.1 × 102

Syringic acid n.d.

n.d. = not detectable.
order to study and understand if this factor could have
influence in the narrow range of substrate specificity of
McoA, the availability of its three-dimensional structure
would be desirable.

Dye decolorization
The A. niger recombinant MCOs were able to oxidize dif-
ferent synthetic dyes (50 mg/L). Degree of decolorization,
after 3 and 20 h of incubation at 55°C, was variable in each
case (Figure 5). The three enzymes were able to decolorize
bromocresol purple, amido black 10B, crystal violet and
bromothymol blue. McoB and McoG also reacted with
malachite green, whereas none of them was able to
decolorize blue dextran. McoA and McoG decolorized the
different dyes up to ~20%. McoB showed the best de-
colorizing ability with bromocresol purple (41% of
decolorization after 20 h) and in particular with malachite
green (83% decolorization after 20 h).
Environmental pollution caused by malachite green

(MG) is a serious problem, as this dye has carcinogenic
and mutagenic properties, is hardly biodegradable and
still widely used by different industries [35,36]. To gain
further insight in the ability of McoB to decolorize MG,
higher concentrations of this compound were used.
Figure 6 illustrates that McoB shows good decolorization
capacity when the dye is present at 50 mg/L or 100 mg/L.
In both cases 80% of decolorization occurs already after 3
h, and reaches 90% after 20 h. In addition, McoB decolo-
rized around 80% malachite green in a 200 mg/L solution,
and around 65% in a 400 mg/L solution.
The MG decolorization ability of McoB, when the dye is

present at a final concentration of 50 mg/L, is similar to
the one reported recently from a new laccase from
Trametes sp. 48424 [37], and better than that of the
laccase from the white-rot fungus Ganoderma lucidum
[38]. The direct decolorization of MG during the cultiva-
tion of several basidiomycete and non-basidiomycete fungi
has been also investigated, but the reported efficiencies in
McoB (U/mg) McoG (U/mg)

13.0 × 103 ± 5.6 × 102 75.6 × 103 ± 2.3 × 103

3.1 × 103 ± 7.9 × 102 2.9 × 103 ± 3.1 × 102

7.0 × 103 ± 4.1 × 102 4.9 × 103 ± 2.9 × 103

6.1 × 103 ± 4.4 × 102 4.5 × 103 ± 1.2 × 102

n.d. 7.3 × 102 ± 5.2 × 102

n.d. n.d.

n.d. n.d.

2.3 × 102 ± 20 n.d.

3.1 × 103 ± 1.1 × 102 n.d.

1.6 × 103 ± 1.1 × 102 n.d.
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Figure 5 Decolorization of different dyes (50 mg/L) by McoA
(a), McoB (b) and McoG (c). Purified enzymes were used to
decolorize bromocresol purple, amido black 10B, crystal violet,
malachite green, blue dextran and bromothymol blue.
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similar conditions (e.g. incubation time, MG concentration)
were lower than the ones achieved by means of using the
purified enzymes [39-42]. In addition, McoB was also able
to oxidize higher concentrations of MG. Similar results,
have not been reported for other fungal laccases, although
recently the Pseudomonas sp. strain DY1, grown in the
presence of the dye, has been shown to be a very efficient
tool for MG degradation, in concentration ranges from 100
mg/L to 1000 mg/L [35]. MG successful degradation (50
mg/L) by other bacterial species has been also reported
[43,44]. However, in none of the cases the enzymes
involved in the biodegradation process were identified. The
results obtained in the present study suggest that McoB
could be used in bioremediation processes of this com-
pound. To confirm this, the toxicity of MG transformation
compounds should be assessed, as its biodegradation
pathway varies depending on the biological treatment, and
thus the generated intermediates and final products [35,38].
The fact that decolorization of MG was achieved with no
need of mediators would mean an additional advantage for
the use of McoB, as synthetic mediators may be expensive,
toxic, and inhibit the enzyme activity at higher concentra-
tions [45,46]. Nevertheless, natural mediators have also
been shown to effectively enhance the transformation of
MG in combination with a fungal laccase [38].

Fungicide activity of MG and its transformation products
Malachite green toxicity spectrum is wide, affecting
microorganisms (including fungi) and higher eukaryotes
[46]. A. niger N593 strain was chosen as a model to eva-
luate the toxicity of MG transformation products after
incubation of the dye with McoB. Initially, A. niger was
grown in agar plates containing 0.25 mg/L, 0.5 mg/L,
1 mg/L, 2 mg/L and 4 mg/L of MG previously treated
with McoB (called hereafter DMG) or with 10 mM
HEPES buffer pH 7.0 (used as a non detoxification con-
trol) for 3 h. A MG concentration of 0.25 mg/L affected
significantly the radial growth of A. niger, whereas 1 mg/L
initially inhibited it. However, with the latter MG concen-
tration, a poor growth was observed after 72 h of A. niger
incubation. MG concentrations of 2 and 4 mg/L com-
pletely inhibited A. niger growth. On the other hand, equal
concentrations of DMG did not affect A. niger growth
(Figure 7a).
The toxicity of higher concentrations (6 mg/L, 10 mg/L

and 20 mg/L) of MG and DMG, obtained by incubating
MG with McoB for 20 h was also tested. As expected, MG
completely inhibited A. niger growth, whereas a negative
effect of DMG in the radial growth of A. niger was hardly
observed (Figure 7b). Furthermore, the radial growth and
the mycelium appeareance 72 h after inoculation in
complete medium with DMG was not different to the one
observed in the control condition, where no dye was
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Figure 7 A. niger radial growth in complete medium agar plates
in the presence of 0.25 mg/L, 0.5 mg/L, 1 mg/L, 2 mg/L and 4 mg/
L of malachite green or malachite green decolorized with McoB
for 3 h (a); and in the presence of 6 mg/L, 10 mg/L and 20 mg/L of
malachite green or malachite green decolorized with McoB for 20
h (b and c). The radial mycelium growth was measured 24 h after
inoculation. The picture illustrates the appearance of A. niger N593
strain, grown in complete medium in the presence of different
concentrations of MG or DMG, 72 h after inoculation.
MG= malachite green; DMG= decolorized malachite green.
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added (Figure 7c). These results show that the compounds
generated after MG decolorization by McoB have a lower
toxic effect in A. niger when compared with the one pro-
duced by the untreated dye. Therefore, McoB could be a
good candidate to be used in detoxification processes of
MG. The ability of McoB to detoxify MG without the
need of redox mediators is an advantage over other MG
detoxification processes reported [38,46].
The different biocatalytic properties of the A. niger
MCOs determined in this study are remarkable. McoA
and McoB, showing 56% of sequence identity, are
severely divergent in their biochemical features. The
potential applications in wastewaters pre-treatment pro-
cesses and dye decolorization, along with the fact that
yellow MCOs are far less well characterized than their
blue counterparts, makes more challenging to continue
with a deeper characterization of McoB. In this sense, it
would be interesting to test its suitability for applications
related to the food industry, as A. niger is a safe produc-
tion organism and many of its enzymes are considered
generally recognized as safe (GRAS) by the United States
Food and Drug Administration [47]. Also, the possibility
to use industrial A. niger strains to overproduce the na-
tive form of McoB could overcome issues related to pro-
duction yields and stability [48], that can occur during
heterologous expression of recombinant proteins, and
are less expected in homologous expression systems [6].
Interestingly, the production yields of this enzyme have
been recently optimized, together with those of other A.
niger MCOs [49]. By improving the performance of the
glucoamylase expression system, A. niger strains able to
accumulate extracellular McoB up to 42% of the total
secreted protein were generated [49].

Conclusions
This study reports the first biochemical characterization
of A. niger MCOs. The purified McoA, McoB, and
McoG enzymes showed clearly different substrate speci-
ficities. Yellow McoB turned out to be the most efficient
biocatalyst, showing broad substrate specificity and high
decolorization activity with the synthetic dye malachite
green. The lower fungicide activity of decolorized MG
suggests that McoB can be an interesting biocatalyst for
bioremediation processes involving this dye.

Methods
Strains, media and culture conditions
A. niger N593 strains expressing recombinant McoA,
McoB and McoG, were used as cell factories to produce
the three enzymes [12]. Complete medium plates were
used for spores preparation and fungicide activity tests.
Minimal medium [50] liquid cultures (containing 50
mM of maltose and 0.1 mM of CuSO4) were used for
MCOs production. Liquid cultures were performed at
30°C and 250 rpm in an orbital shaker, in 2 L erlenmeyer
flasks containing 800 mL of minimal medium inoculated
with 1 × 106 spores/mL.

Purification of A. niger MCOs
All MCO proteins were purified from filtered supernatants
of 24 h cultures. Ammonium sulfate was applied at 100%
saturation in 3 L of culture supernatant containing McoA.
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After centrifugation, the recovered pellet was dissolved in
50 mL of 20 mM Tris-HCl buffer (pH 7.5). The resulting
solution was dialyzed against 20 mM Tris-HCl buffer
(pH 7.5) and then concentrated using an Amicon Ultra-15
Centrifugal Filter device. The resulting solution was ap-
plied to a Resource Q 1mL column (GE Healthcare)
installed in an Äkta purifier FPLC system (GE Healthcare).
A linear gradient of NaCl from 0 to 1 M in 20 mM Tris-
HCl buffer (pH 7.5) was performed in a total volume of
200 mL, at a flow rate of 1 mL/min.
McoB and McoG purification started with a binding step

using Streamline Q XL agarose particles (GE Healthcare).
Prior to the binding step, 1.5 L of culture supernatants
containing McoB and McoG were diluted five times in
de-mineralized water. 50 mL of Streamline Q XL resin was
added to each solution, and stirred during 3 h at 4°C. Pro-
teins were eluted from the resin with 50 mL of a 1 M NaCl
solution in 20 mM Tris-HCl buffer (pH 7.5). McoB and
McoG solutions were concentrated in an Amicon Ultra-15
Centrifugal Filter device and the NaCl concentration was
severely reduced through several washing steps with 20
mM Tris-HCl buffer (pH 7.5). McoB and McoG were
further purified on Resource Q, using the same protocol as
described for McoA. Purified enzymes were stored at
-80°C in 10 mM HEPES buffer (pH 7.0).
Analytical methods
Protein concentration was determined using the Bradford
reagent (Bio-Rad) and bovine serum albumin as standard.
SDS-PAGE was carried out using Precast Polyacrylamide
(12%) Mini Gels (Thermo Scientific). Page Blue Protein
Stain (Fermentas) was used for SDS-PAGE gels staining.
Glycosylation sites in McoA, McoB and McoG amino

acid sequences were predicted using NetNGlyc 1.0
(http://www.cbs.dtu.dk/services/NetNGlyc/) and GPP
Prediction Servers (http://comp.chem.nottingham.ac.
uk/glyco/index.html).
Analytical gel filtration was performed on a Superdex

200 HR 10/30 column (GE Healthcare), using a similar
protocol to the one previously described [51].
Enzyme activity determination
All chemicals were purchased from Sigma and Invitrogen.
McoA, McoB and McoG activity was determined using
similar conditions as previously described [12], by measur-
ing the initial oxidation rate (ΔΑ), during a period of 6
min, of 6.0 mM ABTS at 420 nm and 2.5 mM DMPPDA
at 550 nm (pH 5.0). Enzyme kinetics were determined
measuring the oxidation rate of, at least, 10 different solu-
tions of ABTS and DMPPDA, in concentrations ranging
from 0.125 to 15 mM. The kinetic parameters of the three
enzymes were determined by Michaelis-Menten analysis
using the Sigma Plot 8.0 Software for Enzyme Kinetics.
Vmax values were expressed in Δabsorbance/min mg
protein.

Effect of pH and temperature on MCO activity
The pH-dependent activity of McoA, McoB and McoG
with ABTS (6.0 mM) or DMPPDA (2.5 mM) was mea-
sured in McIlvaine's buffer ranging from pH 2.2 to 8.0
as mentioned in the “Enzyme activity determination”
section. The temperature-dependent activity of McoB
and McoG was measured from 30 to 100°C by end point
determination. Reaction mixtures (in closed microcentri-
fuge tubes) were incubated at different temperatures for
6 min with ABTS (6.0 mM) in 100 mM sodium acetate
buffer (pH 5.0). After an incubation step on ice of 5 min,
the absorbance of the samples was measured at 420 nm.

Effect of inhibitors on MCO activity
The activity of McoA, McoB and McoG with 2.5 mM
DMPPDA in 100 mM sodium acetate buffer (pH 5.0)
was measured at 23°C in the absence and presence of
1.0 mM NaN3; 1.0 mM SDS; 50 mM EDTA, CaCl2, and
MgCl2; 100 mM NaCl; different concentrations of
CuSO4 (0.1, 0.5, 1.0 and 2.5 mM) and 50% methanol,
ethanol and acetone.

Substrate specificity
The activity of McoA, McoB and McoG with the follo-
wing aromatic compounds was investigated: ADBP,
phenol, 2,6-dimethoxyphenol, hydroquinone, vanillin,
p-coumaric acid, vanillic acid, ferulic acid, syringic acid,
and cinnamic acid. Quantification of substrate specificity
was achieved through direct measurement of oxygen
consumption. For this purpose an Oxytherm (Hansatech
Instruments) was used. All reaction mixtures contained
1 mM of substrate and 100 mM sodium acetate buffer
(pH 5.0), and reactions were performed at 23°C. One
unit of enzyme activity (U) was defined as the amount of
enzyme that oxidizes 1 μmol of substrate per min.

Dye decolorization
Bromocresol purple (440 nm), amido black 10B (600
nm), crystal violet (560 nm), malachite green (600 nm),
blue dextran (600 nm) and bromothymol blue (440 nm)
were incubated with 100 μg/mL MCO in 100 mM
sodium acetate buffer (pH 5.0) at 55°C for 20 h. As a
negative control, the different dyes were incubated with
an equal volume of 10 mM HEPES buffer (pH 7.0). The
degree of dye decolorization was measured 3 and 20 h
after the incubation started.

Fungicide activity of MG and its transformation products
A malachite green solution (100 mg/L) was incubated
with McoB or an equal volume of 10 mM HEPES buffer
(pH 7.0), for 3 and 20 h, following the conditions

http://www.cbs.dtu.dk/services/NetNGlyc/
http://comp.chem.nottingham.ac.uk/glyco/index.html
http://comp.chem.nottingham.ac.uk/glyco/index.html
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mentioned in the “Dye decolorization” methods section.
After the 3 h incubation, DMG and MG were mixed
with Aspergillus complete medium in 24 well agar plates
to reach the following concentrations: 0.25 mg/L, 0.5
mg/L, 1 mg/L, 2 mg/L and 4 mg/L. Similarly, after 20 h
incubation, complete medium agar plates were prepared
with DMG and MG at the following concentrations: 6
mg/L, 10 mg/L and 20 mg/L. DMG and MG toxicity
was measured by their ability to inhibit or reduce A.
niger mycelium radial growth after an incubation period
of 24 h. In order to monitor toxicity effects and major
growth delays produced by DMG or MG, the mycelium
growth was monitored for two weeks.
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