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Abstract

Background: NAD-independent L-lactate dehydrogenase (L-iLDH) from Pseudomonas stutzeri SDM can potentially
be used for the kinetic resolution of small aliphatic 2-hydroxycarboxylic acids. However, this enzyme showed rather
low activity towards aromatic 2-hydroxycarboxylic acids.

Results: Val-108 of L-iLDH was changed to Ala by rationally site-directed mutagenesis. The L-iLDH mutant exhibited
much higher activity than wide-type L-iLDH towards L-mandelate, an aromatic 2-hydroxycarboxylic acid. Using the
engineered Escherichia coli expressing the mutant L-iLDH as a biocatalyst, 40 g·L-1 of DL-mandelic acid was
converted to 20.1 g·L-1 of D-mandelic acid (enantiomeric purity higher than 99.5%) and 19.3 g·L-1 of benzoylformic
acid.

Conclusions: A new biocatalyst with high catalytic efficiency toward an unnatural substrate was constructed by
rationally re-design mutagenesis. Two building block intermediates (optically pure D-mandelic acid and
benzoylformic acid) were efficiently produced by the one-pot biotransformation system.

Keywords: NAD-independent L-lactate dehydrogenase, Site-directed mutagenesis, Optical resolution, D-mandelic
acid
Background
D-Mandelic acid, an aromatic 2-hydroxycarboxylic acid,
is a valuable chiral building block for the synthesis of
various pharmaceuticals, such as anti-obesity agents,
antitumor agents, penicillins, and semisynthetic cepha-
losporins [1-3]. Chemical processes for mandelic acid
production result in the racemic mixture of both stereo-
specific forms. Several biocatalytic methods, including
lipase catalyzed enantioselective esterification [4], oxi-
doreductase catalyzed enantioselective oxidation, and
microbial mediated enantioselective degradation [5-10],
have been developed to prepare D-mandelic acid from
racemic mandelic acid. Among these routes, oxidative
resolution of racemic mandelic acid is much more
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promising because of its easy manipulation, exclusion of
co-substrate addition, and high yield.
The NAD-independent L-lactate dehydrogenase (L-iLDH)

of Pseudomonas stutzeri SDM is located on the cell
membrane, and quinine, as its electron acceptor, could
be directly regenerated by the membrane electron trans-
port chain [11]. So it may exhibit higher catalytic effi-
ciency than the soluble FMN-dependent α-hydroxyacid
dehydrogenases. Previous report showed that it exhibits
high catalytic efficiency and enantioselectivity toward
small aliphatic 2-hydroxycarboxylic acids such as
L-lactate and L-2-hydroxybutanoate [12]. Cells of
P. stutzeri SDM have been used in the kinetic resolution
of lactate and 2-hydroxybutanoate racemic mixtures to
produce D-lactate and D-2-hydroxybutanoate [13,14].
Considering the similar structures of lactic acid and
mandelic acid, L-iLDH might also be able to catalyze
the kinetic resolution of racemic mandelic acid (Figure 1).
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Figure 1 Scheme for kinetic resolution of 2-hydroxycarboxylic
acids. R is CH3: lactic acid [13]; C2H5: 2-hydroxybutyric acid [14];
C6H5: mandelic acid.
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L-iLDH from P. stutzeri SDM was purified, and then it
was characterized further [12]. It showed rather low ac-
tivity towards L-mandelate [12], which restricts its po-
tential application for the kinetic resolution of racemic
mandelic acid.
In recent years, rational re-design mutagenesis has

emerged as a practical technique for the construction
of biocatalysts with high catalytic efficiencies toward
unnatural substrates, like the re-design of phenylalanine
dehydrogenase [15-19], NAD-dependent L-lactate de-
hydrogenase [20], and D-amino-acid oxidase [21]. In this
study, L-iLDH from P. stutzeri SDM was rationally re-
designed on the basis of the sequence alignment and
active site structure of its homologous enzyme flavocyto-
chrome b2 [22]. The mutant enzyme was expressed in
E. coli, purified, and characterized. L-Mandelate dehy-
drogenation activity of the mutant enzyme was success-
fully enhanced. Whole cells of E. coli expressing the
mutant L-iLDH were then used to perform the kinetic
resolution of racemic mandelic acid.

Results and discussion
Rationally re-designed mutation
L-iLDH is a member of the L-α-hydroxyacid-oxidizing
flavoprotein family, and is therefore related both struc-
turally and by sequence to a number of other enzymes,
including flavocytochrome b2 from Saccharomyces cere-
visiae [22]. The X-ray crystal structure of flavocyto-
chrome b2 has been resolved (PDB ID code 1FCB), and
the active site for 2-α-hydroxyacid dehydrogenation has
been identified [23]. Six amino acids which interact dir-
ectly to the substrate have been pinpointed in the crystal
structure [24], in which four amino acids are highly con-
served in this protein family. However, the other two
residues, Ala-198 and Leu-230 in flavocytochrome b2,
which interact with the alkyl group of substrates, are not
well conserved (Additional file 1 Figure S1). They are
considered important for the substrate specificity of the
enzyme [24]. As an aromatic 2-hydroxycarboxylic acid,
L-mandelic acid is similar in structure with L-lactic acid
except that phenyl group replaces alkyl group (Figure 1).
Double mutation of the Ala-198 and Leu-230 to amino
acids with smaller side chains (Gly and Ala, respectively)
increased the ability of flavocytochrome b2 to utilize L-
mandelate as a substrate [25]. The altered substrate spe-
cificity may result from enlargement of the active site
space to accommodate the phenyl group [25].
Considering the similarity of active site structures of

this protein family, there may also be key residues affect-
ing the substrate specificity of L-iLDH. However, the
overall sequence identity of L-iLDH with flavocyto-
chrome b2 is only 29%, which is relatively low for pro-
viding an accurate model of L-iLDH by homology
modeling. So sequence alignment was performed to
indentify these residues. The result suggests that the cor-
responding residues of flavocytochrome b2 Ala-198 and
Leu-230 are Gly-79 and Val-108, respectively, in L-iLDH
(Figure 2). Gly-79 is the amino acid having smallest side
chain and is the same amino acid as in the mutant flavo-
cytochrome b2 with increasing L-mandelic acid dehydro-
genase activity [25]. However, as the Leu-230 in
flavocytochrome b2, the Val-108 of L-iLDH has a larger
side chain than Ala, which may narrow the active site
space of L-iLDH. Therefore, Val-108 was selected to be
mutated to Ala to increase the L-mandelate dehydrogen-
ase activity of L-iLDH.

Kinetics of V108A L-iLDH
V108A L-iLDH was expressed in E. coli C43 (DE3), and
it was purified using the protocol reported for the wild-
type L-iLDH [12]. The activity of wild-type L-iLDH
for L-mandelate was below the detection limit for a reli-
able measurement with 3-(4, 5-dimethylthiazol-2-yl)-2,
5-diphenyltetrazolium bromide (MTT) as the electron
acceptor [12]. However, when the reaction time was
extended, the oxidation product benzoylformate could be
detected by HPLC, suggesting weak activity of L-iLDH
for L-mandelate. The more sensitive electron acceptor 2,6-
dichloroindophenol (DCIP) was used to determine the
accurate kinetic parameters of the enzyme.
As shown in Table 1, the activity of L-iLDH towards

L-mandelate was low, with a kcat value of only 8.3 ± 1.3 s-1

(compared with a value of 445 ± 44 s-1 for L-lactate).
The Km with L-mandelate as a substrate was 6.8 ± 1.0 mM,
which was 38-fold higher than that of L-lactate. The
V108A mutant enzyme resulted in a 12-fold increase
in the Kcat value with L-mandelate, and the Km was
decreased to 1.6 ± 0.1 mM. Therefore, the catalytic effi-
ciency (based on the kcat/Km value) was increased by
50.8-fold for the V108A mutant compared to the wild-
type enzyme. The catalytic efficiency of the mutant
enzyme with L-lactate had a nearly 10 times lost.
However, the value was still 3.8 folds higher than
with L-mandelate, which differed from the case of
S. cerevisiae flavocytochrome b2, in which the optimum
substrate was altered from L-lactate to L-mandelate by
the double mutation [25]. No reverse action activity or



Figure 2 Sequence comparison of L-iLDH with wild-type and mutant flavocytochrome b2. L-iLDH: NAD-independent L-lactate
dehydrogenase from P. stutzeri SDM [12]; FCB2: flavocytochrome b2 from S. cerevisiae [22]; MFCB2: double-mutant of flavocytochrome b2 with
increased L-mandelate degrading activity [25]. The positions of Gly-79 and Val-108 of L-iLDH are indicated by red arrows. The figure was
generated with Clustal X [26] and ESPript [27].
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activity with D-mandelate of the mutant L-iLDH was
detected. D-Mandelate competitively inhibited V108A
L-iLDH activity towards L-mandelate. The Ki value
was estimated to be 5.5 ± 0.5 mM (Additional file 2
Figure S2). Effect of the mutation on stability of the
mutated enzyme in comparison with the wild-type
enzyme was also investigated. Within the selected
range, no remarkable change of the enzyme stability as
function of temperature and pH was observed (Add-
itional file 3 Figure S3).

Feasibility in co-production of D-mandelic acid and
benzoylformic acid
Since the mutant L-iLDH was shown to oxidize L-mandelate
to benzoylformate, the feasibility of kinetic resolution of
DL-mandelic acid by the enzyme was further studied.
E. coli, a non-native microbe for the degradation of
mandelic acid, was selected as a suitable host for the
kinetic resolution of DL-mandelic acid. To verify that
the engineered E. coli strains exhibited mandelic acid
oxidation activity, the capacity for L-mandelic acid oxi-
dation of the 2 E. coli strains expressing wild type
or V108A L-iLDH was detected and compared. As
shown in Figure 3A, by using 12.5 g dry cell weight
(DCW) L-1 of E. coli expressing V108A L-iLDH as the
biocatalyst and 10 g·L-1 of L-mandelic acid as the
Table 1 Kinetics of wild-type (WT) and V108A L-iLDH

Substrate WT L-iLDH

Kcat (s
-1) Km (mM) Kcat/Km (mM

L-Lactate 445 ± 44 0.18 ± 0.01 2472

L-Mandelate 8.3 ± 1.3 6.8 ± 1.0 1.2

All experiments were carried out at 30°C in 1 mL of 50 mM Tris–HCl (pH 7.5), with D
electrons transferred per second per molecule of enzyme. Km values are expressed
substrate, L-mandelic acid in the reaction system was
degraded completely within 20 h. By contrast, 2.7 g·L-1

of L-mandelic acid remained after 28 h of reaction with
the same reaction system by using the cells expressing
wild-type enzyme. Furthermore, when using racemic
mandelic acid as the substrate, about half of total mande-
lic acid could not be degraded (Figure 3B), which
was determined to be the D-enantiomer (Additional
file 4 Figure S4). The inhibition effect of D-mandelic
acid may have on the rate of reaction was further inves-
tigated. Different concentrations of D-mandelic acid
(from 0 g·L-1 to 30 g·L-1) were added to reaction system
containing 10 g·L-1 L-mandelic acid, and biocatalyst
activity was evaluated after 4 h of reaction. The result
showed that D-mandelic acid did not affect the catalytic
efficiency remarkably (Additional file 5 Figure S5). These
results suggest that the whole-cell biocatalyst of E. coli
expressing V108A L-iLDH has the potential to produce
highly pure D-mandelic acid and benzoylformic acid
from racemic mandelic acid.

Optimization of biocatalysis conditions
To increase the efficiency of whole-cell biocatalysis
in the kinetic resolution of DL-mandelic acid, the biocon-
version conditions were optimized. Benzoylformic acid
could be degraded by microbial cells as other 2-keto-acids
V108A L-iLDH
-1s-1) Kcat (s

-1) Km (mM) Kcat/Km (mM-1s-1)

185 ± 36 0.8 ± 0.1 231

97 ± 13 1.6 ± 0.1 61

CIP (0.0625 mM) as the electron acceptor. Values for kcat are expressed as
in terms of mM of substrate.



Figure 3 Identifying the feasibility of co-production of D-mandelic acid and benzoylformic acid by E. coli expressing V108A L-iLDH.
(A) Comparison of capacities for degrading L-mandelic acid of E. coli strains expressing wild-type or V108A L-iLDH. (▴) The catalytic process of
the E. coli strain expressing wild-type L-iLDH; (▪) The catalytic process of the E. coli strain expressing V108A L-iLDH. (B) The catalytic process of the
E. coli strain expressing V108A L-iLDH with racemic mandelic acid as the substrate. (▴) Concentration of racemic mandelic acid; (▪) Concentration
of benzoylformic acid. Values are the mean ± SD of 3 separate determinations.
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(Figure 3B and Additional file 6 Figure S6). The degrad-
ation decreased the bioconversion ratio and produced
some by-products. EDTA was added at a concentration of
20 mM in the reaction system, which removed bivalent
ions necessary for 2-keto-acid decarboxylase-catalyzed
reactions [28] and then prevents the degradation of ben-
zoylformic acid (Additional file 6 Figure S6).
Since pH and temperature are parameters that often

limit enzyme activity and stability in technical applica-
tions, studies addressing the effects of temperature and
pH on whole-cell catalysis were performed. The optimal
pH was found to be 7.0 after adjusting the pH of the re-
action system from 4.0 to 10.0 (Figure 4A). The effect of
the reaction temperature was examined in the range of
16°C to 58°C after 4 h and 10 h of reaction. As shown in
Figure 4B, with increasing temperature, higher activity of
the biocatalyst was observed over the short term, as
shown by the benzoylformic acid production after 4 h of
reaction. However, the activity decreased more rapidly at
Figure 4 Optimization of pH and temperature for biocatalysis. (A) Op
represent the production of benzoylformic acid in 4 h. Shaded bars represe
± SD of 3 separate determinations.
higher temperatures, as shown by the benzoylformic acid
production after 10 h of reaction. The optimal reaction
temperature was chosen to be 42°C, which optimized
enzyme activity and stability. Either the lower activity at
lower temperature or the lower stability at higher
temperature may cause a decrease of overall L-mandelic
acid degrading capacity of the biocatalyst, which will then
decrease the production capacity of D-mandelic acid.
The optimal concentration of DL-mandelic acid for

the biotransformation was then determined (Table 2).
When the biocatalyst was prepared from 25 g (DCW) L-1

of E. coli, the biotransformation efficiency only decreased
slightly as the DL-mandelic acid concentration increased.
A higher substrate concentration will result in higher
concentrations of products and simplifies the downstream
process. The reaction with 40 g·L-1 of DL-mandelic acid
as the substrate exhibited relatively high concentrations
of benzoylformic acid and D-mandelic acid with high
optical purity.
timization of pH. (B) Optimization of temperature. Unshaded bars
nt the production of benzoylformic acid in 10 h. Values are the mean



Table 2 Effect of DL-mandelic acid concentration on the biotransformation

DL-Mandelic acid concentration (g·L-1)

10 20 30 40 50

Reaction time (h) 8 18 30 42 54

Benzoylformic acid concentration (g·L-1) 4.8 9.8 14.3 19.1 15.6

Biotransformation efficiency (g·L-1·h-1) 0.62 0.55 0.50 0.47 0.46

Residual L-mandelic acid (g·L-1) < 0.005 9.6

Residual D-mandelic acid (g·L-1) 5.0 10.1 15.1 20.1 25.2

Enantiomeric excess (%) > 99.5 45.0

Values are the mean of 3 separate determinations.
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As shown in Figure 5, under optimal conditions,
a concentration of 20.1 g·L-1 D-mandelic acid and
19.3 g·L-1 benzoylformic acid was obtained from 40 g·L-1

of DL-mandelic acid after 42 h in a batch bioconversion.
The biotransformation produced high enantiomeric ex-
cess (> 99.5%) of D-mandelic acid (Figure 6) at high
concentrations of D-mandelic acid and benzoylformic
acid. Kinetic resolution of DL-mandelic acid also could
be performed by other biocatalysis processes. However,
the processes using lipase or nitrilase resulted in rather
low D-mandelic acid concentrations [1-4,29-31]. Enan-
tioselective oxidation of the L-enantiomer from racemic
mandelic acid to prepare D-enantiomer is an attractive
procedure because it uses inexpensive starting material
and has high product yield. Although Pseudomonas sp.
[5-7] and Alcaligenes sp. [8-10] have been previously
used to produce D-mandelic acid by this route, the sim-
ple active conversion system in this study is a promising
alternative because E. coli is much easier to operate, the
D-mandelic acid degrading activity is totally excluded,
and resulting in high yields of the 2 building-block
Figure 5 Time course of the kinetic resolution of racemic
mandelic acid by whole cells of E. coli expressing V108A L-
iLDH. (♦) L-mandelic acid; (▪) D-mandelic acid; (□) benzoylformic
acid. Accurate concentrations of benzoylformic acid and mandelic
acid in the reaction mixture were analyzed by HPLC at the indicated
times. Values are the mean ± SD of 3 separate determinations.
intermediates (D-mandelic acid and benzoylformic acid)
by a one-pot biotransformation method.

Conclusions
In this work, L-iLDH was rationally re-designed on the
basis of sequence alignment and the active site structure
of a homologous enzyme; a new biocatalyst with high
catalytic efficiency toward an unnatural substrate was
successfully constructed. A one-pot biotransformation
system producing 2 building block intermediates was
established using the biocatalyst. Under optimal condi-
tions, a concentration of 20.1 g·L-1 of D-mandelic acid
with high enantiomeric excess (> 99.5%) and 19.3 g·L-1

of benzoylformic acid was obtained from 40 g·L-1 of DL-
mandelic acid.

Materials and methods
Enzymes and chemicals
Restriction enzymes were purchased from TaKaRa Bio
Inc (China). FastPfu DNA polymerase and T4 DNA lig-
ase were purchased from Transgen Biotech (China) and
MBI (USA), respectively. D-mandelic acid, L-mandelic
acid, racemic mandelic acid, benzoylformic acid, and
2,6-dichloroindophenol (DCIP) were all purchased from
Sigma-Aldrich (USA). Isopropyl-β-D-1-thiogalactopyra-
noside (IPTG), dithiothreitol (DTT), and phenylmetha-
nesulfonyl fluoride (PMSF) were obtained from Merck
(Germany). All other chemicals were of reagent grade.

Site-directed mutagenesis and enzyme expression
To construct the mutant enzyme with valine-108 chan-
ged to alanine (V108A L-iLDH), site-directed mutagen-
esis was performed using the MutanBEST Kit (TaKaRa).
The lldD gene coding for the wild-type L-iLDH was sub-
cloned into the pMDTM18-T vector (TaKaRa) to con-
struct the pMDTM18-T-lldD vector. The mutation was
introduced using the following primers: 50TTCACC-
CTTTCCACCGCGTCGGTCT30 and 50GGGAATCCC-
TTTCTTGTCTGCCGC30 to amplify the entire sequence
of pMDTM18-T-lldD. The linear PCR products were
then cyclized using the ligase from the MutanBEST Kit.
The mutant lldD gene (confirmed by automated DNA



Figure 6 Analysis of optical purity of mandelic acid by HPLC. (A) Sample at the beginning of the biotransformation. (B) Sample at the end of
the biotransformation.
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sequencing) was subcloned into the HindIII and XhoI
restriction sites of the pETDuet-1 expression vector with
a T7 promoter. Plasmid purification, DNA manipulation,
and transformation were performed by the standard
methods described by Sambrook et al. [32]. E. coli DH5α
and C43 (DE3) were used for general cloning and expres-
sion procedures, respectively. Lysogenic broth (LB)
medium was used for E. coli cultivations. Ampicillin was
used at a concentration of 100 μg· mL-1.
The expression and purification procedure of wild-

type L-iLDH from recombinant E. coli has been
described previously [12]. The same procedure was used
to express and purify the V108A mutant of L-iLDH.
The purified enzymes were concentrated by ultrafiltra-
tion, desalted with Sephadex G-25, and then stored in
100 mM sodium phosphate buffer (pH 8.0, containing
0.1% Triton X-100) at −20°C. The expressed and purified
enzyme was confirmed by sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE).

Biochemical assays
The activities of wild-type and mutant L-iLDH were
determined at 30°C in 1 mL of 50 mM Tris–HCl, pH
7.5, 0.0625 mM DCIP, and the enzyme. Protein amounts
of wild-type enzyme and V108A L-iLDH mutant used
to assay the kinetic parameters towards L-lactate were
0.05 μg and 0.2 μg, repectively; 4.0 μg and 1.0 μg
proteins of wild-type and V108A L-iLDH were used
to assay the kinetic parameters towards L-mandelate,
respectively. The reaction was started by the addition of
L-lactate or L-mandelate, and the rates of DCIP reduc-
tion were determined by measuring the absorbance
change at 600 nm [33]. To study effects of temperature
and pH on enzyme stability, the enzyme was incubated
at different temperature for 0.5 h or at different pH for
2 h, and then assayed with 1.25 mM L-lactate as sub-
strate. MTT was used at a concentration of 0.2 mM
instead of 0.0625 mM DCIP as electron acceptor in the
assay of pH stability, since the molar extinction coeffi-
cient of DCIP changes with different pH. The rate of
MTT reduction was determined by measuring changes
in absorbance at 578 nm [34]. One unit of L-iLDH activ-
ity was defined as the amount reducing 1.0 μmol of elec-
tron acceptor per minute under the test conditions.
Protein concentration was determined by the Lowry
method with BSA as a standard [35].

Biocatalyst preparation
Recombinant E. coli C43 (DE3) cells were grown at 37°C
on a rotary shaker (180 rpm) in LB medium containing
ampicillin (100 μg·mL-1) to an OD620 of 0.6. Expression
of the recombinant gene was induced by adding 1 mM
IPTG at the same temperature for 6 h. After induction,
the cells were harvested by centrifugation at 6,000 × g
for 10 min at 4°C and then washed twice with 0.85%
NaCl. The whole cells resuspended in ddH2O were used
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as the biocatalyst for the kinetic resolution of DL-man-
delic acid.

Optimization of biotransformation conditions
To optimize the biotransformation conditions, 20-mL
samples of the reaction mixture in a 100-mL flask were
used. Ethylenediaminetetraacetic acid (EDTA) was added
to a concentration of 20 mM in the reaction system. The
biocatalysts were prepared from 12.5 g (DCW) L-1 of E.
coli C43 (DE3) expressing the V108A mutant L-iLDH
for the optimization of pH and temperature. The pH
was adjusted from 4.0 to 10.0. The temperatures ranges
were from 16°C to 58°C. The activity of whole-cell bioca-
talyst was judged by the concentration of benzoylformic
acid produced. The DL-mandelic acid concentrations were
10.0–50.0 g·L-1, and the biotransformation was performed
at 42°C at pH 7.0 for 12–54 h with 25 g (DCW) L-1

of biocatalyst.

Analytical methods
Accurate concentrations of mandelic acid and benzoyl-
formic acid were analyzed by high-performance liquid
chromatography (HPLC, Agilent 1100 series, USA) using
an Aminex HPX-87H column (Bio-Rad, USA) and the
eluent using 10 mM H2SO4 solution at a flow rate of
0.4 mL·min-1. Samples from reaction systems during
biocatalysis were centrifuged at 140,000 × g for 5 min
to remove cells, and the supernatant was filtered by
0.22 μm pore size membrane filter for HPLC analysis.
Stereoselective assays of D-mandelic acid and L-man-

delic acid were performed by HPLC analysis using a
chiral column (DAICEL CHIRALCEL OJ-RH, Japan)
and a tunable UV detector at 205 nm. The mobile phase
consisted of 90% H2O (with 0.1% acetic acid added) and
10% acetonitrile (v/v) pumped at 0.4 mL·min-1 (15°C).
Samples were prepared by the same procedure as
using Aminex HPX-87H column. The optical purity of
D-mandelate was expressed as enantiomeric excess
(ee value), which was defined as the ratio of
D�mandelic acidð Þ� L�mandelic acidð Þ
D�mandelic acidð Þþ L�mandelic acidð Þ x100%.

Additional files

Additional file 1: Figure S1. The active site structure of
flavocytochrome b2. The figure is generated according to the molecular
structure of flavocytochrome b2 at 2.4 Å resolution (PDB code 1FCB) [23]
with PyMOL (The PyMOL Molecular Graphics System, Version 0.99rc6,
Schrödinger, LLC). The pyruvate ligand, as oxidation product of L-lactate,
is shown in orange. The residues interact directly to the substrate are
shown in blue. The residue labels in parentheses are the corresponding
residues of L-iLDH, which are identified by sequence alignment.

Additional file 2: Figure S2. Inhibition of V108A L-iLDH by
D-mandelate. Purified V108A L-iLDH (1 μg) was incubated in the
reaction mixture contained 0.0625 mM DCIP and 50 mM Tris–HCl (pH 7.5)
at 30°C. The reaction was started with different L-mandelate
concentrations at variable D-mandelate concentrations. ▪, no
D-mandelate; •, 6.25 mM D-mandelate; ▴, 12.5 mM D-mandelate; ▾,
25 mM D-mandelate; ◂, 37.5 mM D-mandelate. The patterns of
double-reciprocal plots indicate a competitive inhibition. The Ki value was
estimated to be 5.5 ± 0.5 mM.

Additional file 3: Figure S3. The stability of wild-type and V108A
L-iLDH as function of temperature and pH. (A) The effect of
temperature on the enzyme stability. The enzyme was incubated at
different temperature ranging from 16°C to 58°C for 0.5 h and then
assayed. The enzyme activity without treatment (store at 4°C) was
defined as 100%. ▪, wild-type L-iLDH; •, V108A L-iLDH. (B) The effect of pH
on the enzyme stability. The enzyme was incubated at different pH
ranging from 3.0 to 11.0 for 2 h and then assayed. The buffers were:
0.2 M Na2HPO4-0.1 M citric acid buffer for pH 3.0-8.0; 50 mM
Glycine-NaOH buffer for pH 8.0-12.0. The enzyme activities of wild-type
and V108A L-iLDH without pH treatment (stored in 100 mM sodium
phosphate buffer, pH 8.0) was defined as 100% severally. MTT was used
at a concentration of 0.2 mM instead of 0.0625 mM DCIP as electron
acceptor in the assay of pH stability, for the molar extinction coefficient
of DCIP changes with different pH. ▪, wild-type L-iLDH; •, V108A L-iLDH.
Values are the mean ± SD of 3 separate determinations.

Additional file 4: Figure S4. HPLC analysis of the chiral products of
the reaction catalyzed by V108A L-iLDH. (A) Authentic D-mandelic
acid; (B) authentic L-mandelic acid; (C) reaction mixture at the beginning
of the reaction (solid line), after 4 h (short dot line), and after 10 h
(dash dot line). The biotransformation was carried out using 12.5 g (DCW)
L-1 of E. coli expressing V108A L-iLDH as the biocatalyst and 10 g·L-1

DL-mandelic acid as the substrate. The analytical methods are described
in the “Materials and methods”.

Additional file 5: Figure S5. The inhibition effect of D-mandelic acid
on the whole-cell biocatalyst activity. Different concentrations of
D-mandelic acid (from 0 g·L-1 to 30 g·L-1) were added to reaction systems
containing 10 g·L-1 L-mandelic acid. The activity of whole-cell biocatalyst
was judged by the concentration of benzoylformic acid produced within
4 h of reaction. Values are the mean ± SD of 3 separate determinations.

Additional file 6: Figure S6. HPLC analysis of the products from the
reaction catalyzed by V108A L-iLDH. (A) Authentic mandelic acid; (B)
authentic benzoylformic acid; (C) reaction mixture after 8 h of reaction
without adding EDTA; (D) reaction mixture after 8 h of reaction with
20 mM EDTA added. The biotransformation was carried out using 25 g
(DCW) L-1 of E. coli expressing V108A L-iLDH as the biocatalyst and
10 g·L-1 DL-mandelic acid as the substrate. The analytical methods are
described in the “Materials and methods.”
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