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Abstract

Background: Plasmid DNA (pDNA) is a promising molecule for therapeutic applications. pDNA is produced by
Escherichia coli in high cell-density cultivations (HCDC) using fed-batch mode. The typical limitations of such
cultivations, including metabolic deviations like aerobic acetate production due to the existence of substrate
gradients in large-scale bioreactors, remain as serious challenges for fast and effective pDNA production. We have
previously demonstrated that the substitution of the phosphotransferase system by the over-expressed galactose
permease for glucose uptake in E. coli (strain VH33) allows efficient growth, while strongly decreases acetate
production. In the present work, additional genetic modifications were made to VH33 to further improve pDNA
production. Several genes were deleted from strain VH33: the recA, deoR, nupG and endA genes were inactivated
independently and in combination. The performance of the mutant strains was evaluated in shake flasks for the
production of a 6.1 kb plasmid bearing an antigen gene against mumps. The best producer strain was cultivated in
lab-scale bioreactors using 100 g/L of glucose to achieve HCDC in batch mode. For comparison, the widely used
commercial strain DH5a, carrying the same plasmid, was also cultivated under the same conditions.

Results: The various mutations tested had different effects on the specific growth rate, glucose uptake rate, and
pDNA vyields (Yp/x). The triple mutant VH33 A (recA deoR nupG) accumulated low amounts of acetate and resulted in
the best Yp,x (4.22 mg/g), whereas Yp/x of strain VH33 only reached 1.16 mg/g. When cultivated at high glucose
concentrations, the triple mutant strain produced 186 mg/L of pDNA, 40 g/L of biomass and only 2.2 g/L of
acetate. In contrast, DH5a produced only 70 mg/L of pDNA and accumulated 9.5 g/L of acetate. Furthermore, the
supercoiled fraction of the pDNA produced by the triple mutant was nearly constant throughout the cultivation.

Conclusion: The pDNA concentration obtained with the engineered strain VH33 A (recA deoR nupG) is, to the best
of our knowledge, the highest reported for a batch cultivation, and its supercoiled fraction remained close to 80%.
Strain VH33 A (recA deoR nupG) and its cultivation using elevated glucose concentrations represent an attractive
technology for fast and efficient pDNA production and a valuable alternative to fed-batch cultivations of
commercial strains.
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Background

Plasmid DNA (pDNA) is an attractive alternative for
immunization and gene therapy against many infectious,
genetic and acquired diseases [1]. The common host for
pDNA production is the bacterium Escherichia coli. Several
E. coli strains have been reported for pDNA production,
such as DH5a [2-4], DH5 [5], DH1 [6,7], ]M108 [8];
SCS1-L [9] and DH10B [10]. Most of the strains used
for pDNA production are selected by its previous use
in laboratory-scale protocols [11,12] and may be not
suitable for process-like conditions. For example, the
typical challenges for high cell-density cultivations
(HCDC) of E. coli remain as obstacles for the fast and
efficient production of pDNA. Among them, aerobic
acetate production is an important drawback, since it
causes a loss of productivity and waste of carbon source
[13]. Aerobic acetate production -known as overflow
metabolism- results from an imbalance between glycolysis
and tricarboxylic acids cycle [13,14]. Some of the strains
commonly used for pDNA production present elevated
overflow metabolism, including E. coli DH5a and DH1
[9]. While the conventional way of avoiding overflow
metabolism is reducing the glucose uptake in the so
called fed-batch mode, the constant supply of glucose
to the bioreactor requires additional equipment, results
in a decrease of growth rate and frequently causes substrate
gradients at the feeding zone in production bioreactors that
trigger undesirable physiological effects [15-17]. We have
previously demonstrated that the substitution of the
natural glucose transport system (PTS) by a constitu-
tively expressed galactose permease under the strong
trc promoter in E. coli allows efficient growth by redu-
cing the glucose uptake rate and consequently decreas-
ing acetate production [18,19]. The modified strain,
named VH33, has been tested for pDNA production
using high initial glucose concentrations in order to reach
high cell-densities in batch mode, yielding the double of
pDNA per gram of cell (Y,,) than the parental strain,
W3110 [20]. In order to increase carbon availability for
nucleotide synthesis, the pykA gene (codifying for pyru-
vate kinase A) was inactivated in VH33, which resulted in
a further increase of 70% of Y, [21]. The possibility of
cultivating VH33 strains and derivatives at high cell-
density in batch mode is a simple and valuable alternative
to fed-batch mode for the fast and efficient production of
pDNA both, at early-stages of product development and
at technical scale.

Notwithstanding the higher production of VH33 and
VH33 ApykA, compared to W3110, its production levels
remain low if compared to commercial strains like
DH5a. In the present work, the genes endA, recA, deoR
and nupG were inactivated in strain VH33 independ-
ently and in combination, in order to increase pDNA
yields. The best engineered strain was cultivated in batch
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mode using 100 g/L of initial glucose to attain high cell-
densities.

Results and discussion

Evaluation of the engineered strains in shake flasks
Initially, the growth profiles and pDNA yields of strains
W3110 and VH33 were evaluated in shake flasks as
described in the Materials and Methods section. Due to
the good productivity and wide use of strain DH5a, it
was also evaluated and used for comparison. When
grown in shake flask, W3110 reached 1.14+0.10 mg/L
of pDNA (Figure 1A) and produced 0.32+0.03 g/L of
acetate (Figure 1B). Strain VH33 produced 2.78 + 0.10 mg/L
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Figure 1 pDNA concentration (A), Acetate concentration (B)
and pDNA supercoiled fraction (C) in shake flask cultivation of
the different strains evaluated. Error bars show the standards
deviation between triplicates.
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of pDNA and only 0.14 +0.01 g/L of acetate (Figure 1A
and 1B). The commercial strain DH5a produced
12.73+0.10 mg/L of pDNA, and accumulated a remark-
ably high amount of acetate, reaching up to 0.62 + 0.04 g/L
(Figure 1B). Regarding the supercoiled fraction, under
shake flask conditions, 50% of the pDNA produced by
strains W3110 and VH33 was supercoiled, whereas for
DH5a cultivations, the supercoiled fraction was around
80% (Figure 1C).

A series of VH33-based mutants were obtained and
tested. First, mutations aimed at increasing the plasmid
stability were performed. The gene end A, coding for a
type I endonuclease was deleted, since it has been pro-
posed that such a mutation increases the stability of
pDNA [22,23]. As shown in Figure 1, neither the amount
of pDNA nor the pDNA supercoiled fraction produced by
VH33 A endA changed with respect to VH33, and no
acetate was detected. These results imply that no relevant
pDNA degradation occurs intracellularly in E. coli, and
that the positive effect of endA deletion could be seen
particularly during downstream operations, although
this was not tested.

A second target gene was the recA, that codes for re-
combinase A. An important cause of plasmid instability
is the formation of plasmid oligomers, which originates
cells with low copy number. Oligomers can be formed
by homologous recombination. In E. coli, the RecBCD
and a variation of RecF pathways are responsible for re-
combination [24]. The latter requires the products of
recA, recE, rec), recO genes [25,26]. Recombination via
RecBCD and RecF pathways is inactivated by mutations
in recA, recB, recC and recD [27]. The formation and
breakdown of oligomers is blocked by mutations in recA
or recF [28]. RecA has also a proteolytic activity that
activates the Cop protein, a repressor of plasmid replica-
tion [27]. In general, it has been reported that recA
mutants display higher stability [29] and often show a
higher pDNA production than parental strains [11,22,30].

As shown in Figure 1A, VH33 A recA produced
7.09+£0.10 mg/L of pDNA, which is 6.2 times more
pDNA than W3110 and 2.5 times more than VH33. More-
over, VH33 A recA retained a low overflow metabolism,
since the acetate accumulated was only 0.08 £0.01 g/L
(Figure 1B). Furthermore, the recA mutation resulted in a
pDNA supercoiled fraction of 68 +8% (Figure 1C). It
has been shown that RecA protein participates in the
regulation on toposiomerase A gene (fopA) [31]. There-
fore, it is possible that recA mutants display a higher
topoisomerase activity, which helps to explain the effect
observed in VH33 A recA. Additionally, a double mutant
VH33 A (recA endA) was obtained in order to evaluate a
possible synergistic effect of both mutations. A shown in
Figure 1, the double mutant produced slightly less pPDNA
(6.25+0.10 mg/L) than the single mutants, whereas the
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pDNA supercoiled fraction and acetate accumulation was
similar to VH33 A recA.

A second group of mutations were performed to in-
crease the synthesis of nucleotides, since the availability
of such building blocks could be a limiting factor for
pDNA synthesis in E. coli. The target genes were deoR
and nupG. The deoR gene codes for a protein that
represses the expression of several genes of the deo
operon that code for enzymes needed for deoxynucleotide
synthesis. Strains lacking deoR display a higher level
of thymine phosphorylase, phosphopentamutase and
deoxyaldolase [32]. Therefore, it was expected that
deoR mutants could produced more pDNA. Yet, no
change with respect to VH33 was observed in pDNA
production or acetate accumulation; whereas pDNA
supercoiled fraction was lower when VH33 A deoR was
evaluated (Figure 1C). The nupG gene codes for a protein
involved in nucleotide transport and catabolism, partici-
pating in the regulation of genes involved in nucleotide
synthesis. It has been shown that nupG mutants can
produce significantly more purine nucleosides than parental
strains [33]. Nevertheless, when nupG was deleted in
VH33, no change in pDNA production was observed
(Figure 1A). Moreover, when both deoR and nupG mutations
were combined in VH33, no positive effect was seen
(Figure 1A). A double mutant VH33 A (recA deoR) was
obtained. This strain produced 12% more pDNA
(7.98 £0.10 mg/L) than VH33 A recA. In contrast, the
double mutant VH33 A (recA nupG) produced the
same amount of pDNA than VH33 A recA (Figure 1A).
Finally, all the three mutations were incorporated in
VH33. The triple mutant VH33 A (recA deoR nupG)
produced 22% more pDNA (8.67+0.10 mg/L) than
VH33 A recA, 300% more than VH33 and 760% more
than W3110 (Figure 1A). This implies that not only the
deletion of genes involved in nucleotide catabolism are
necessary to increase pDNA production, but also increasing
the plasmid stability is needed to see a positive effect.
Another important result is that the triple mutant
strain maintained a very low overflow metabolism and
that the pDNA produced was supercoiled in 70+ 5%
(Figure 1C).

A comparison of the performance of the mutant
strains is shown in Figure 2. Since the productivity of a
process is given not only by the final concentration
obtained, but also by the product yield (Y,,) and specific
production rate (g,), such values were compared in re-
lation with the specific growth rate (4) for W3110,
VH33 and all mutant strains. It is generally assumed
that the specific growth rate of E. coli is inversely pro-
portional to Y, (for a review on this issue, see [1]).
However, such a correlation was not observed by for all the
strains studied here. As shown in Figure 2A, strain VH33
grew slower (0.37+0.01 h™) than W3110 (0.61+0.01 h™)
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Figure 2 pDNA yield on biomass (A), specific pPDNA production
rate (B) and specific glucose uptake rate (C) vs. specific growth

rate (u) of the different strains evaluated. Error bars show the
standards deviation between triplicates.

and its Y, value was 2.4 times higher than that of W3110.
Notwithstanding the higher y of W3110, its g, value was
much lower than that of VH33 (Figure 2B). The important
difference in specific glucose consumption rate (g;)
(Figure 2C) is in agreement with the molecular design of
VH33 to reduce overflow metabolism. The deletion of
genes related to nucleotide catabolism increased the growth
rate of VH33 (up to 32% in the case of VH33 A deoR),
whereas Y, remained relatively unchanged (Figure 2A),
which in turn resulted in a decrease of g, (Figure 2B) and
was accompanied by a large increase of gs (Figure 2B). Due
to the fact that the biomass yield in glucose (Yy/) did not
change for these mutants compared to VH33 (data not
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shown), it could be hypothesized that glucose was con-
sumed faster in order to synthesize more nucleotides, but it
was not reflected in an increase of pPDNA production since
the regulation of plasmid replication is still present as recA
gene was not deleted in this strain. As described earlier, the
most important changes were seen when recA gene was
deleted from VH33. The sole deletion of recA had a slight
effect on growth rate but increased Y, in 283%. Conse-
quently, g, increased considerably, compared to VH33
(from 0.45+0.05 to 1.15+0.09 mg/g h) (Figure 2 A-B).
Interestingly, g, changed slightly as a result of this mutation
(Figure 2C), but Y, decreased from 0.52+0.01 to
043 +0.01 g/g, suggesting that more carbon was directed to
energy generation necessary for pPDNA synthesis.

Although the double mutants VH33 A (recA deoR)
and VH33 A (recA nupG) did not produce more pDNA
than the single mutant VH33 A (recA), they consumed
glucose faster than the other mutants (Figure 2B), prob-
ably by the same reason that was proposed above.
Slightly higher Y, values were observed for the double
mutants compared to VH33 A (recA). However, the Y,/
of the double mutants were also slightly lower (9%) than
for VH33 A (recA) (data not shown), which explains the
unchanged final pDNA concentration. Nevertheless, the
q, values of these mutants, particularly VH33 A (recA
deoR) was higher than that of VH33 A (recA). Finally the
triple mutant reached the highest Y, (4.12 +0.20 mg/g)
and g, (1.46+0.10 mg/g h) values of all the mutant
strains. Based on these results, the triple mutant strains
VH33 A (recA deoR nupG) was selected for evaluation in
high cell-density cultivations in batch mode.

Cultivation in small-scale bioreactors

The performance of strain VH33 A (recA deoR nupG)
under well defined conditions was evaluated in small-
scale bioreactors. Such experiments allowed the attain-
ment of high cell-densities in batch mode, something
that cannot be achieved in shake flask due to the lack of
pH and dissolved oxygen tension control. Two groups of
cultivations were carried out: using low (5 g/L) and high
(100 g/L) initial glucose concentrations. For comparison,
the commercial strain DH5a was cultivated under the
same conditions. Results of cultivations using low initial
glucose concentration can be seen in Figure 3. The
results of bioreactor cultivation using 5 g/L of initial
glucose are similar to those of shake flask: DH5a strain
produced 13.09 + 0.34 mg/L of pDNA and 0.66 + 0.02 g/L
of acetate, which started to accumulate 4 h after inocu-
lation (Figure 3A). The pDNA supercoiled fraction was
nearly constant and higher than 80%, and the Y, value
also remained relatively constant between 5-6 mg/g
(Figure 3A). VH33 A (recA deoR nupG) produced
8.8+0.22 mg/L of pDNA while maintaining a supercoiled
fraction close to 80% and a relatively constant Y, of
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Figure 3 Growth profile of strains DH5a (A) and VH33 A (recA deoR nupG) (B) in batch cultivations with an initial glucose concentration
of 5 g/L. Top panels: glucose, biomass and acetate concentrations. Bottom panels: pDNA yield on biomass, pDNA concentration and pDNA
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around 4 mg/g (Figure 3B). This latter result is interesting
since previous results of VH33 showed a decrease of Y,
throughout the batch cultivation [20]. The plasmid stabil-
ity in the triple mutant strain is an additional advantage
provided by the deletion of recA. However, pDNA produc-
tion was higher in DH5a cultivations under low glucose
concentrations.

The second group of cultivations aimed at attaining
high cell-densities in batch mode using an initial glucose
concentration of 100 g/L. The growth profile of DH5a at
100 g/L of initial glucose is shown in Figure 4A. As it
can be seen, acetate accumulated up to 9.5+0.8 g/L.
The growth rate was only 0.17 +0.02 h™, which means a
decrease of more than 60% compared to conditions of
low glucose concentration. Growth ceased at 18 h, when
acetate concentration was around 9 g/L and glucose
concentration was still above 10 g/L. Growth cessation
can be attributed to the elevated acetate concentration,
which is known to be toxic for E. coli at concentrations of
5 g/L [34]. In consequence, Y,/ was only 0.19+0.03 g/g,
which represented a decrease of 50% compared to low
glucose concentration cultivations. The pDNA supercoiled

fraction was not affected by these conditions (Figure 4A),
but the Y, value was approximately 30% lower than culti-
vations with 5 g/L of glucose and decreased throughout the
cultivation (Figure 4A). As a result of the low yields and
high acetate accumulation, the pDNA produced by DH5«
reached only 70 + 4 mg/L (Figure 4A).

As shown in Figure 4B, strain VH33 A (recA deoR
nupG) produced a relatively low amount of acetate
(2.2+0.1 g/L), as expected from its engineered glucose
transport system. Noticeably, the specific growth rate
decreased to (0.15+0.02 h™'), which is a reduction of
nearly 50% compared to conditions of low glucose
concentration. Such a decrease in growth rate has been
observed before [18-20,35] and attributed to the elevated
osmolality of the highly concentrated medium. Also, Y,/
decreased to 0.40 £ 0.03 g/g, which represented a reduc-
tion of around 17% with respect to low glucose conditions.
Yet, high cell-densities were attained, since biomass
reached a concentration of 40 g/L. Additionally, the pDNA
supercoiled fraction was not significantly affected by these
cultivation conditions, since it remained relatively constant
at around 75% throughout the cultivation (Figure 4B). In
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Figure 4 Growth profile of strains DH5a (A) and VH33 A (recA deoR nupG) (B) in batch cultivations with an initial glucose concentration
of 100 g/*. Top panels: glucose, biomass and acetate concentrations. Bottom panels: pDNA yield on biomass, pDNA concentration and pDNA
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contrast, the Y, was close to 3 mg/g during the first 15 h
of cultivation, and increased thereafter to around 4 mg/g
until the end of the batch, probably due to a decreased
osmotic stress due to the lower glucose concentration
(60 g/L from 15 h). As a result of the most favorable
growth performance, compared to DH5a cultivations (less
acetate accumulated), the maximum pDNA concentration
reached by VH33 A (recA deoR nupG) was 186 + 15 mg/L.
Such pDNA concentration is, to the best of our

knowledge, the highest ever reported for a batch cultiva-
tion of E. coli. Some of the highest pPDNA concentrations
reported for batch mode, are shown in Table 1. As it can
be seen, the two highest concentrations attained prior to
the present work, employed cultures with very rich media
that can either sensibly increase production costs (in the
case of amino acids and nucleotide additions) or reduce
the reproducibility of the process and generate a consider-
able amount of foam (in the case of complex media),

Table 1 Some of the highest pDNA concentrations reached in batch cultivations

Reference Strain used Cultivation medium Carbon source pDNA concentration
(concentration) reached (mg/L)
[36] DH5a Defined, supplemented with glutamate Glycerol (52 g/L) 45
[37] JM109 Defined, supplemented with 20 aminoacids and Glucose (5 g/L) 60
nucleotides
[38] HB101 Complex, supplemented with yeast extract, Glucose (20 g/L) 109
casaminoacids, torula yeast RNA and RNase A
[39] DH5a Complex, supplemented with casein peptone and yeast  Sucrose (10 g/L) and 52
extract glycerol (10 g/L)
[20] VH33 Mineral Glucose (100 g/L) 40
This work  VH33 A (recA deoR nupG) Mineral Glucose (100 g/L) 186
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Table 2 Sequences of the oligonucletides used for chromosomal inactivation

Gen Oligonucleotide 5'-3' Sequence

recA recAl GTTGCGGCCTAAAGAGACATCTACTCTCGCTTCCGCATCG-ATGGGAATTAGCCATGGTCC
recA recA2 CAACAGAACATATTGACTATCCGGTATTACCCGGCATGAC-TGTAGGCTGGAGCTGCTTCG
endA endAl AAGCGCGTTGCACATACGGGTTATGATTGCCCTGCACCTT-CATGGGAATTAGCCATGGTC
endA endA2 GGCCCGGCGTTGGCCGAAGGTATCAATAGTTTTTCTCAGG-TGTAGGCTGGAGCTGCTTCG
nupG nupG1 ATGTGCTTTTTCAAACACTCATCCGCATCACGATGTGAGG-TGTAGGCTGGAGCTGCTTCG
nupG nupG2 TTGAACATCGCCATGAACGCGAAGGCCAGAACCACGGAGT-ATGGGAATTAGCCATGGTCC
deoR deoR1 CACGTCGCGAAGAGCGTATCGGGCAGCTGCTGCAAGAATT-TGTAGGCTGGAGCTGCTTCG
deoR deoR2 TTTACTGTGGTCGACAACCAGCACATGCTTTTGCGCCATC-ATGGGAATTAGCCATGGTCC

which can be an important concern in large-scale cultiva-
tions. If pDNA yields of VH33 A (recA deoR nupG) were
to be improved, simple additions to the used media, such
as glutamate or casaminoacids would be a simple alterna-
tive. Additional cell engineering strategies could also be
implemented to improve pDNA production.

Conclusions

Cultivation of the engineered strain VH33 A (recA deoR
nupG) using high glucose concentrations allowed the
attainment of high cell-densities in batch mode and the
production of high amounts of pDNA. Further strategies
are needed to reduce some undesired effects of high
glucose-concentrations, like the reduction in yields and
growth rate. Overall, the present study represent a
useful option to avoid, through cell engineering strategies,
traditional cultivation problems such as overflow me-
tabolism and presence of substrate gradients.

Materials and methods

E. coli strains and plasmids

E. coli W3110 (ATCC 27325), VH33 (AptsH, Aptsl, Alacl,
lacZ::loxP), DH5a (endAl, recAl, gyrA96, thi, hsdR17,
relAl, supE44, AlacU169, ®80, lacZAM15) and P1 vir
phage where laboratory collection material. For assess-
ment of pDNA production, a 6.1 kb plasmid named
pHN was used. Plasmid pHN was constructed from the
pcDNA3.1(+) plasmid (Invitrogen), which contains the
pUC origin of replication and an ampicillin resistance
gene. A viral haemagglutinin-neuraminidase gene was
cloned under transcriptional control of the cytomegalo-
virus promoter. pHN plasmid is being evaluated as a
DNA vaccine against mumps in humans [40].

Gene deletions

Gene knock-outs were carried out by recombination
using plasmid pKD46 as previously described [41].
Chloramphenicol markers in plasmids were amplified by
PCR to knock out endA, recA, nupG and deoR genes,
respectively, and are reported in Table 2. PCR products
carrying antibiotic markers and homologous region

(40 bp) were electroporated into E. coli W3110 carrying
pKD46 where lambda recombinase was fully induced by
growth on L-arabinose during cultivation at 30°C. 2 h
after electroporation and incubation at 37°C, cells were
spread on LB agar plates containing chloramphenicol
(30 mg/mL). Among candidate colonies, specific gene
disruptions were identified by PCR with primers which
can hybridize upstream or downstream of deleted endA,
recA, nupG and deoR genes, respectively. The primers
sequences are depicted in Table 3. The disrupted genes,
carrying the drug markers, were transferred to VH33
strain by standard P1 transduction [42]. Gene disrup-
tions in the VH33 strain were reconfirmed by PCR.

Cultivation media

Cultivation medium had the following composition (in g/L):
KyHPO,, 17; KH,PO,, 5.3; (NHy)2SOy, 2.5; (NH)CL, 1;
sodium citrate, 1; MgSO,4-7H,0, 1; ampicillin disodium
salt, 0.1; thiamine hydrochloride, 0.01 and 2 mL of a
stock solution of trace elements [20] per L of medium.
The medium was supplemented with 5 or 100 g/L of glu-
cose, which was sterilized separately and added to the cold
medium. For shake flasks cultivations, 3-(N-morpholino)
propanesulfonic acid (MOPS) was added as a buffer at a
final concentration of 20 mM. Ampicillin disodium salt
(0.1 g/L) was used as selective pressure in all shake flask
and bioreactor cultivations.

Table 3 Sequences of the oligonucleotides used for
chromosomal insertions comprobation

Gen Oligonucleotide 5'-3’ sequence

recA recAl ATGGGAATTAGCCATGGTCC
recA recA2 TGTAGGCTGGAGCTGCTTCG
endA endAl CGTGGCTGACCAGCTCATCT
endA endA2 TGCAGGTCGCTTCACGACTC
nupG nupGl1 CTTCGCGGATTATCTGCTGA

nupG nupG2 GTGGCAGGATTATCCGACAT
deoR deoR1 GTCCGGTAATGACGCCTGTA
deoR deoR2 CAACGACTTGCCTGTATTGG
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Precultures development

Cryo-preserved E. coli cells were cultivated in 250 mL
baffled shake flasks containing 50 mL of the described
medium, including 0.1 g/L of ampicillin disodium salt
and 5 g/L of glucose. Precultures were maintained at 37°C
and 200 rpm in an orbital shaker for 18 h. Cells were
taken during exponential growth phase, and 100 mL of
the preculture were centrifuged at 4000 rpm for 10 min at
4°C. The resulting pellet was resuspended in 10 mL of
fresh mineral medium and this concentrated biomass was
used to inoculate a 3 L bioreactor. The initial biomass
concentrations for low cell-density cultivations (5 g/L of
initial glucose) were 0.25+0.1 g/L. In the case of high
cell-density cultivations the initial biomass concentration
were 2.0+0.2 g/L.

Shake flask cultivations

Shake flasks cultivations were conducted at 37°C and
200 rpm in an orbital shaker. Samples for glucose and
acetate analyses were taken every h. Samples for pDNA
analyses were taken at glucose exhaustion. All the culti-
vations were performed by triplicate. The final pH was
above 6.8 for all the cultivations.

Bioreactor cultivation

E. coli strains were cultivated in a BioFlo 110 Modular
Fermentor System (New Brunswick Scientific, Edison, NJ)
using a set of 3 L bioreactors. A working volume of 1.6 L
was used. AFS-Biocommand Bioprocessing Software (New
Brunswick Scientific) was used for data logging and ope-
rational parameters control. Temperature was set at 37°C
and dissolved oxygen tension (DOT) was maintained above
30% with respect to air saturation by increasing stirrer
speed (from 200 to 900 rpm) and enriching air with
pure oxygen in order to ensure fully aerobic conditions.
In addition, gas flow rate was manually varied from 0.75
to 2 vvim when necessary to contend with the high oxygen
demand in batch cultures. A 15% NH,OH solution was
used to control pH to 7.2. Silicone-based antifoaming
agent was added on demand. All batch cultures were fol-
lowed until glucose depletion. All batch cultivations were
run by duplicate.

Analytical methods

Acetate concentration was determined by HPLC as
previously described [18]. Glucose concentration was
determined off-line with an YSI 2700 biochemical
analyzer (Yellow Springs Instruments, Yellow Springs,
OH). Dry cell weights were obtained from cells pellet
samples dried at 65°C for at least 18 h. pDNA was
extracted from 2 mg of wet biomass using the Qiagen
Spin Mini Prep kit (Hilden, Germany), following the
instructions of the manufacturer and eluting the pDNA
in 70 pL of TE buffer at 70°C. DNA concentration was
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measured spectrophotometrically at 260 nm using a
Nanodrop UV spectrophotometer ND-1000 (NanoDrop,
Willmington, DE). The pDNA supercoiled fraction was
analyzed by image analyses of agarose gels electrophoresis
as described earlier [20].
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