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Abstract

Celiac disease (CD) is an immune-mediated disease, triggered in genetically susceptible individuals by ingesting
gluten from wheat, rye, barley, and other closely related cereal grains. Currently, the estimated prevalence of CD is
around 1 % of the population in the western world and medical nutritional therapy (MNT) is the only accepted
treatment for celiac disease. To date, the replacement of gluten in bread presents a significant technological
challenge for the cereal scientist due to the low baking performance of gluten free products (GF). The increasing
demand by the consumer for high quality gluten-free (GF) bread, clean labels and natural products is rising.
Sourdough has been used since ancient times for the production of rye and wheat bread, its universal usage can
be attributed to the improved quality, nutritional properties and shelf life of sourdough based breads.
Consequently, the exploitation of sourdough for the production of GF breads appears tempting. This review will
highlight how sourdough LAB can be an efficient cell factory for delivering functional biomolecules and food
ingredients to enhance the quality of gluten free bread.

Celiac disease
Celiac disease (CD) is the most common food-induced
enteropathy in humans caused by intolerance to wheat
gluten and similar proteins originating from barley and
rye in genetically susceptible individuals [1]. Previously
regarded as a rare disorder, it is now accepted that CD
is a major health problem affecting around 1 % of the
population in the western world [2,3]. CD has mani-
fested itself in the form of a broad spectrum of clinical
symptoms [4-7] (Table 1), which are associated with a
large variety of changes in the mucosa of the small
intestine [8,9]. The celiac enteropathy is an end-stage
lesion that depends on both genetic and environmental
factors for expression [6] (Figure 1). To the present day,
medical nutrition therapy (MNT) with supportive

nutritional care (particularly in relation to iron, calcium
and vitamin deficiencies) [10,11] is the only accepted
treatment for CD. The current treatment is therefore a
strict gluten-free (GF) diet for life.
Gluten is a heterogeneous mixture of wheat storage

proteins consisting of gliadins and glutenins. Similar
proteins are also present in barley (hordeins) and rye
(secalins) and their effect on the health of celiac patient
are very well documented. Based on their size, electro-
phoresis mobility and differential N-terminal sequence,
gluten is divided into gliadines which are classified as a,
b, g, and ω –gliadins in addition to the high and low –
molecular weight glutenins [12]. Gliadins, also called
prolamins due to their high content of the amino acids
proline and glutamine, are described as the main trig-
gering factor in CD (Table 2) [13]. Dietary gluten repre-
sents a common component of the human diet, not
only in wheat bread but also in a wide range of other
foods. Due to of its visco-elastic properties, gluten plays
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a key role in determining the unique baking quality of
wheat by being responsible for the water absorption
capacity, cohesiveness, viscosity, and elasticity of dough
[14].

Gluten-free diet and bread
Total life-long avoidance of gluten ingestion remains the
cornerstone treatment for CD. Compliance with a strict
gluten-free diet is not easy, because (i) harmful gluten
may contaminate food during processing steps, (ii) it is
socially limiting, (iii) gluten-free products are generally
not widely available and more expensive, are less palata-
ble than conventional wheat bread [15] and (iv) may
lead to nutritional deficiencies. Moreover, a marketing
review found that most of the gluten-free products were
of low quality, exhibiting poor mouth-feel and very
often having off-flavours [16]. For these reasons, the
replacement of the gluten in gluten-free cereal products
is a challenging task for the cereal technologist and
bakers.
In the past decades, there has been a significant

increasing interest in research on the development of
gluten-free bakery products, involving various
approaches. These include the use of: (i) gluten-free

flours such as, rice, sorghum, oats, buckwheat, amar-
anth, quinoa, teff, corn (Table 3), (ii) starches, (iii) dairy
products [17], (iv) protein supplementation i.e. egg pro-
teins [18], (v) gums and hydrocolloids [19] (vi), dietary
fibres [17,20], (vii) the use of functional ingredients, and
(vii) alternative technologies such as, enzymatic proces-
sing [21,22] and high hydrostatic pressure processing
[23]. All these strategies have been showed to improve,
to different extents, gluten free cereal products with a
final product quality similar to their gluten-containing
counterparts. Despite the appealing results obtained so
far, the inclusion of these ingredients/additives in bread
formulations to improve the quality of GF bread pre-
sents several disadvantages. First of all, the GF product
prices are excessive and most of the ingredients/addi-
tives used represent high-cost components with the
average price of GF bread on the market being signifi-
cantly higher than that of conventional bread (http://
www.glutenfree.com/baked-goods/breads/category357)
[24]. Additionally, some of these ingredients, e.g. dairy
powders, and in particular those with the high lactose-
content, are not suitable for coeliacs since a large num-
ber of celiac patients are also lactose intolerant, particu-
larly at the early stages of the disease. Furthermore,
some additives do not meet the consumers’ require-
ments for natural products. Thus, there is an impelling
call for researchers to find alternative technologies for
the production of good quality GF bread. In the next
paragraphs we address how sourdough lactic acid bac-
teria can act as “cell factories” for the production of
functional biomolecules and food ingredients able to

Table 1 Clinical manifestations and related signs of celiac
disease1

Gastrointestinal Symptoms Extraintestinal symptoms

Chronic diarrhoea Infertility or fetal loss

Recurrent pancreaitis Anaemia

Abdominal distension Loss of appetite

Abdominal pain Short stature

Duodenal obstruction Osteomalacia/osteoporosis

Vomiting Fatigue

Constipation Dementia

Flautolence Weakness (myopothy, neuropthy)

Muscle wasting Vitamin deficiency

Steatorrhea Type 1 diabetes

Weight loss Hypo/hyperthyroidism

Anorexia Alopecia areata

Bulky, sticky and pale stools Depression

Failure to thrive Behavioral changes

Late-onset puberty

Epilepsy

Dermatitis herpetiformis

Arthritis

Aphthous stomatis

Dental enamel hypoplasia

Cerebellar ataxia

Myelopathy

Esophageal reflux
1Source : Feighery (1999); Murray (1999); Fasano and Catassi (2001); (Tack et
al., 2010).

Figure 1 The causes of celiac disease
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counteract the problems associated with the production
of high quality GF breads.

GF sourdough fermenting microorganisms
Sourdough is a mixture of flour and water which is fer-
mented with lactic acid bacteria (LAB) and yeasts; these
microorganisms determine its characteristics in terms of
acid production, aroma and leavening properties [25].
Ecological studies on GF sourdoughs indicate that GF

materials harbour novel and competitive LAB and yeasts
strains which are not commonly isolated in traditional
sourdoughs and could serve as suitable candidates for

starter dough development [26-30]. These studies revealed
that Lactobacillus fermentum, L. plantarum, and also L.
paralimentarius are frequently isolated in GF sourdoughs
produced from rice, maize, buckwheat, teff and amaranth.
Furthermore, species such as L. gallinarum, L. graminis, L
sakei and Pediococcus pentosaceus, which are not com-
monly associated with conventional sourdoughs, were part
of the dominant microbiota of the various GF sourdoughs
[24]. Since these particular strains are adapted to the var-
ious GF-systems, they can be applied as promising cell fac-
tory for the delivery of functional biomolecules and food
ingredients in gluten free bread.

Table 2 Immunogenic gliadin peptides

Amino acid sequences Position Immunogenicity

VRVPVPQLQPQNPSQQQPQ a-gliadin: 1–19 +

QNPSQQQPQEQVPLVQQQ a-gliadin: 11–28 +

QVPLVQQQQFPGQQQPFPPQ a -gliadin: 21–40 +

PGQQQPFPPQQPYPQPQPF a -gliadin: 31–49 +

FPGQQQPFPPQQPYPQPQPF a -gliadin: 30–49 +

QPYPQPQPFPSQQPYLQL a -gliadin: 41–58 +

PQPFPSQQPYLQLQPFPQ a -gliadin: 46–63 +

PQPQLPYPQPQLPY a -gliadin: 62–75/(a) +/+++

QLQPFPQPQLPY a -gliadin: 57–68 (a) +/+++

QLQPFPQ a -gliadin: 57–63 (a) +++

LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF a -gliadin: 57–89/(a) +/+++

QLQPFPQPQLPY a -gliadin: 58–69/(a) +/+++

PQPQLPYPQPQLPY a -gliadin: 63–76/(a) +/+++

PFRPQQPYPQPQPQ a -gliadin: 93–106 (a) +

LIFCMDVVLQ a -gliadin: 123–132 +

QQPLQQYPLGQGSFRPSQQNPQAQG a -gliadin: 198–222 +

QYPLGQGSFRPSQQNPQA a -gliadin: 203–220/(a) +/+

PSGQGSFQPS a -gliadin: 205–214 -

PSGQGSFQPSQQ a -gliadin: 205–216/(a) +/+++

SGQGSFQPSQQN a –gliadin: 206–217/(a) +/+++

QGSFQPSQQN a -gliadin: 208–217/(a) -/+++

LQPQQPFPQQPQQPYPQQPQ g-gliadin: 60–79 +

FPQQPQQPYPQQPQ g -gliadin: 66–78 +

FSQPQQQFPQPQ g -gliadin: 102–113/(a) -/+

OQPQQSFPEQQ g -gliadin: 134–153/(a) +/+++

VQGQGIIQPQQPAQL g -gliadin: 222–236/(a) +/+

QQQQPPFSQQQQSPFSQQQQ glutenin: 40–59/(a) -/+

QQPPFSQQQQPLPQ glutenin: 46–60/(a) -/+

SGQGQRPGQWLQPGQGQQGYYPTSPQQSGQGQQLGQ glutenin: 707–742/(a) +/+

PGQGQQGYYPTSPQQSGQ glutenin: 719–736 +

GYYPTSPQQSGQGQQLGQ glutenin: 725–742 +

GYYPTSPQQSG glutenin: 725–735 +

QGYYPTSPQQS glutenin: 724–734/(a) -+

QQGYYPTSPQQSG glutenin: 723–735 +

GQQGYYPTSPQQSG glutenin: 722–735 +

GQQGYYPTSPQQS glutenin: 722–734 +

(a): deamidated

Source (Ciccocioppo et al., 2005)
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Exopolysaccharides (EPS) producing LAB as
hydrocolloid replacer in GF system
The addition of hydrocolloids such as xanthan gum,
guar gum and hydroxypropylmethylcellulose (HPMC) is
essential in gluten-free baking to obtain acceptable pro-
duct quality in terms of volume, texture, and shelf life
[31]. Many lactic acid bacteria (LAB) can produce a
wide variety of long-chain sugar polymers called exopo-
lysaccharides (EPS), which are varied in their chemical
composition, structure and physical properties [32].
These polysaccharides are synthesised extracellularly
from sucrose by glycansucrases, or intracellularly by gly-
cosyltransferases from sugar nucleotide precursors.
LAB isolated from various cereal based sources fre-

quently produce oligo- and homopolysaccharides from
sucrose, which can improve the technological as well as
the nutritional properties of gluten-free breads acting as
prebiotics and hydrocolloids, respectively.
Recently, the applicability of the EPS-producing strains

L. reuteri LTH5448 and Weissella cibaria 10M was
investigated in GF sourdoughs [33]. Both strains were
shown to be suitable as sourdough fermentation starters
for quinoa and sorghum, and during the fermentation
were able to produced levan (fructo-oligosaccharides -
FOS) and dextran (gluco-oligosaccharides - GOS),
respectively. GF breads containing sourdough fermented
by W. cibaria were softer than the ones containing no
EPS. Moreover, GOS produced by W. cibaria were not
digested by baker’s yeast and they were still present in
the final bread. Thus, the consumption of 300 g of sor-
ghum GF bread prepared with W. cibaria 10M would
allow for a significant intake of prebiotic GOS [33].
Recently, Galle at al. [34] screened EPS-forming Weis-
sella strains for their potential use as starter strains in
sorghum and wheat sourdoughs. Independent of which
strain is used, higher amounts of EPS were formed in

sorghum sourdough than in wheat, due to the higher
concentration of glucose in the GF flour. In particular,
the strains Weissella kimchii and W. cibaria MG1 pro-
duced dextrans in concentrations high enough to be use
as potential replacers of non bacteria hydrocolloids,
such as guar gum and HPMC in gluten-free sourdoughs
bread. All together, these studies indicate that EPS-pro-
ducing LAB in sourdough could play a promising role
for the production of GF products with improved qual-
ity characteristics and reduced additives content. How-
ever, more research is needed to identify the most
suitable EPS for the replacement of hydrocolloids in glu-
ten free cereal products.

Production of peptidase for gluten detoxification
During endoluminal digestion, gliadins of wheat, rye and
barley release a family of peptides rich in Pro and Gln,
which are responsible for the inappropriate T cell-
mediated immune response associated with celiac dis-
ease [35] (Table 2). Recently, sourdough LAB have been
considered as cell factories for the production of
enzymes able to decrease the toxicity of wheat and rye
flours over a long fermentation period (12-24 h). Di
Cagno et al. [36] showed that four sourdough LAB
strains - Lactobacillus alimentarius 15M, L. brevis 14G,
L. sanfrancisciensis 7A and L. hilgardii 51B were
selected based on their enzyme substrate specificity and
ability to hydrolyse the 33-mer peptide (corresponding
to a fragment of 57-89 of a 2-gliadin that represents the
most potent inducer of gut-derived human T cell lines
in patients with celiac disease) [37]. The above men-
tioned strains where then used for the production of a
sourdough containing wheat. Breads were produced by
mixing the selected wheat sourdough with untreated GF
flours. The final products showed acceptable quality and
induced no alterations in the baseline values of celiac
patients during in vivo acute challenge test [36]. The
same pool of LAB showed also to be effective in redu-
cing the toxicity of rye flour [38] and, when used in
association with L. sanfranciscensis and fungal protease,
produced non-toxic wheat sourdough bread of accepta-
ble quality [39]. Additionally, VSL#3 probiotic prepara-
tion (VSL Pharmaceuticals, Gaithesburg, MD),
containing Streptococcus thermophilus, Lb. plantarum,
Lb. acidophilus, Lactobacillus casei, Lactobacillus del-
brueckii spp. bulgaricus, Bifidobacterium breve, Bifido-
bacterium longum and Bifidobacterium infantis was also
tested successfully by the same authors [40].
However, even if this approach is not directly applic-

able to the industrial production of gluten-free bread,
the results collected so far strongly indicate that selected
LAB can be used to degrade any potential contaminant
present in gluten-free flours and, at the same time,
improve the nutritional properties of GF-breads [41,42].

Table 3 Grain storage proteins

Storage protein not allowed for CD
patient

Storage protein
allowed CD patient

Wheat (Triticum spp. Including spelt, emmer,
farro, einkorn, kamut, dickel, durums)

Amarantha

Rye (Secale) Buckwheata

Triticale (a Triticum x Secale cross) Corn

Barley (Hordein) Millet

Oat * Quinoaa

Rice

Sorghuma

Soya

Legumesa

Teff
aThese sources contain higher levels of fiber, protein, calcium and iron.

* Most oats have been grown, stored, transported or processed with the
gluten-containing grains and are therefore contaminated with gluten.
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Beyond the gluten detoxifying activity, sourdough-
induced proteolysis was also found to be a key event for
delaying staling of GF breads [43,44]. Improved textural
properties have been reported for sourdough-based sor-
ghum bread [45]. Nonetheless, more investigations are
needed in order to understand which GF flours would
be positively influenced by sourdough treatment, which
fermentation conditions should be applied and which
degree of enzymolysis is required in order to enhance
their baking performances.

Production of antifungal compounds
When conventional wheat bread is compared with GF
bread currently on the market, it becomes apparent that
the majority of the GF products have a very long shelf
life. This increase in shelf life is achieved by using modi-
fied atmosphere packaging (MPA) and/or the addition
of chemical preservatives [46]. The majority of GF pro-
ducts are based on hydrocolloids, which are essential for
structure formation in these products. Hydrocolloids are
able to bind a high amount of water which leads to a
much higher water activity (aw) in GF breads than in
their wheat containing counterparts. This increase in aw
leads to a significant reduction in shelf life which can
mainly be attributed to mould growth. For this reason
the use of MPA and/or chemical preservatives are
necessary. The interest in the concept of food biopreser-
vation, which is the control of one organism by another,
has increased in recent years. LAB with antifungal activ-
ity, preventing growth of bread spoilage fungi, are a pro-
mising alternative to chemical preservation [47-50].
To date, only one study has investigated into the use

of sourdough to extend the shelf life of GF bread. In
this study, Moore et al. [44] used the antifungal strain L.
plantarum FST 1.7 [48] to produce GF sourdough from
a mixture of brown rice, corn starch, buckwheat, and
soya flours. Results showed that fermenting 20% of the
GF flours with L. plantarum FST 1.7 could retard the
onset of staling in respect to chemically acidified GF
control breads. Furthermore, the sourdough retained its
inhibitory activity in the bread, where the growth of
Fusarium culmorum was retarded by up to 3 days when
compared to the control bread. This study clearly indi-
cates that the production of GF sourdough with antifun-
gal properties can be regarded as a valuable alternative
to the use of chemical additives for retarding staling and
prolonging shelf life of GF breads. However, further
research is needed to identify the optimal sourdough
starter and fermentation conditions for achieving GF
bread of improved shelf life and quality.

LAB with antimycotoxigenic activity
Different cereals (rice, maize, millet, sorghum) and pseu-
docereals (amaranth, buckwheat and teff) are widely

utilized, with other functional ingredients, in the formu-
lation of gluten-free products, especially for the produc-
tion of gluten-free bread [45,51-54]. All these alternative
grains are mainly produced in tropical and sub tropical
regions, where climate and poor storage conditions are
conducive to fungal growth and mycotoxin production
[55]. Mycotoxin (e. g. Trichothecene, Zearalenone,
Fumonisine, Ochratoxin, Aflatoxin, Deoxynivaleon) con-
tamination in maize, rice, sorghum, millet, buckwheat,
teff, have been widely reported [53,55-58]. The occur-
rence of mycotoxins in gluten-free grains is regarded as
a major economical problem [59] and is also potentially
dangerous particularly for people suffering of CD. LAB,
and in particular the species belonging to the genera
Lactobacillus, have long been known to possess antimy-
cotoxigenic activity against the most harmful mycotox-
ins like Zearalenone, Fumonisine, Ochratoxin, Aflatoxin
and Deoxynivaleon.
El-Nezami et al.[60] report, that two food-grade Lac-

tobacillus rhamnosus GG and L. rhamnosus LC705
were able to reduce the contamination of zearelenone
(ZEN) and its derivates a’-zearalenol (a’-ZOL) by up
to 55% (w/w) using binding sites on the bacteria sur-
face. When the two toxins were tested in combina-
tions, binding of individual toxins was compromised
indicating the possibility of the two toxins sharing
similar surface binding sites. Similarly, L. rhamnosus
strains GG and LC705 are also shown to effectively
bind aflatoxin B1 [60]. Additionally, many other strains
of LAB, such as L. acidophilus VM20 [61], L. acidophi-
lus CH-5, L. plantarum BS, L. brevis and L. sanfrancis-
ciensis [62] have been reported to bind ochratoxin A
(OTA) in a strain specific manner causing its decrease
by up to 95% . This allows reduction in the absorption
of these toxins from the intestine and hence reducing
their estrogenic effects in humans.
Thus, even though further studies in gluten-free bread

systems are required, the potential antimycotoxigenic
activity of LAB places them in a promising position for
developing a new approach for detoxification of myco-
toxins in GF products.

Phytase producing LAB
Phytic acid is the major storage form of phosphorous in
grains and it binds minerals such as Ca, Fe, K, Mg, Mn
and Zn, and therefore making them insoluble and thus
unavailable for adsorption in the intestinal tract of
humans [63]. Phytic acid is therefore considered an anti-
nutritional factor, especially for celiac patients who suf-
fer from micronutrient deficiencies. GF flours/
ingredients show a wide range of phytate contents,
examples are: 0.12 % rice, 0.25% pearl millet, 0.47 amar-
anth, 0.70% teff, 0.77% lupin, 0.92% corn, 1.13% oats,
1.18% quinoa, 1.33% soybean [64]. In wheat grain the
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level of phytate is around 1.2%. Since phytate is mainly
found in the aleurone layer, the content of phytate in a
specific flour is very much depends on the milling
regime applied. During bread-making, phytic acid can
be degraded by phytases whose activity is influenced by
temperature, pH, fermentation time and by the presence
of certain additives [65]. Studies conducted on whole
wheat show that the moderate decrease in pH caused by
sourdough fermentation is sufficient to significantly
reduce the phytate content of bread produced from
whole wheat flour. Recent studies also showed that phy-
tate can be synthesized by microorganisms, e.g LAB [66]
and yeast [67].
De Angelis et al., [66] reported a reduction in phytic

acid content of about 64-74% in a wheat dough fermen-
ted with L. sanfranciscensis CB1 compared to a control
sourdough. To date, no work has been published on
phytase activity in GF sourdough breads. Yet, phytase
activity has been investigated during fermentation of
some GF crops. In particular, fermentation of sorghum
and pearl millet was shown to induce a decrease in the
phytic acid content and two phytase-positive strains, i.e.,
L. plantarum and L. fermentum, were isolated from fer-
menting pearl millet [68].

Generation of aroma compounds using LAB
The addition of sourdough to bread product can
strongly influence the flavour profile of the bread. This
flavour modification is dependent on the raw material,
type of starter cultures, fermentation and baking condi-
tion applied [69]. Among these factors, LAB and yeast
play a pivotal role in the generation of volatile metabo-
lites in the final cereal products. The fermentation of
GF flours by LAB has been shown to induce the pro-
duction of flavour compounds. One example is the fer-
mentation of sorghum for the production of towga
where different flavouring compounds were generated
during the fermentation. The flavour changes were
attributed to the production of alcohol and diacetyl [70].
Diacetyl was produced in high concentration when the
fermentation was carried out with L. plantarum and
Pediococcus pentosaceus and alcohols were produced in
significant amount if Issatchenkia orientalis was used in
combination with L.brevis or L.plantarum. The L. plan-
tarum /yeasts co-fermentation also induced the produc-
tion of aldehydes. Finally, Edema and Sanni [29] showed
that maize flours fermented with mixed cultures con-
taining L. plantarum lead to an increased diacetyl con-
tent when compared to a control. Thus, even if further
studies are required, sourdough technology might be a
promising tool to produce flavour enhancing com-
pounds which will improve the poor sensorial quality of
GF breads.

Production of bioactive compounds
Sourdough fermentation is well recognized as a useful
aid rendering cereal products palatable. Moreover, the
sourdough process represents an important tool in
increasing the extractability of bioactive compounds
from various raw materials or in releasing functional
biomolecules which are part of the LAB/yeast metabo-
lism. However, beyond the potential of sourdough fer-
mentation, the type of raw material (cereal,
pseudocereals, and legumes) used is seen of key impor-
tance for the optimal delivery of bioactive compounds
for human nutrition.
To date, only one research study has investigated the

use of LAB to ferment GF flours for the production of
functional bread enriched with bioactive compounds. In
this study Coda et al., [71] used L. plantarum C48 and
Lactococcuslactics subsp. lactis PU1, selected for the
capacity to synthesizing GABA ( g- Aminobutyric acid),
through sourdough fermentation of common wheat,
durum wheat, rye, spelt, oat, buckwheat, rice, amaranth,
millet, chickpea, soy and quinoa flours. g- Aminobutyric
acid (GABA), acts as the chief inhibitory neurotransmit-
ter of the central nervous system [72]. Other physiologi-
cal functions of GABA are induction of anti-
hypertensive, prevention of diabetes, diuretic and tran-
quiliser effects [73]. The highest biosynthesis of GABA
was detected when buckwheat (643 ± 13 mg/Kg) and
quinoa (415 ± 10 mg/Kg) were fermented with Lb. plan-
tarum C48. Lc. lactis subsp. lactis PU1 revealed the best
results when amaranth (816 ± 11 mg/Kg) and chickpea
(1031 ± 9 mg/Kg) where used as substrates. A blend of
selected flours was also fermented with two GABA-pro-
ducing strains; the best performance was found when
Lb. plantarum C48 was applied with a GABA produc-
tion equal to 989 ± 10 mg/kg. On the contrary, when
common wheat and durum wheat flours were used as a
substrate, Lc. lactis subsp. lactis PU1 showed the worse
performance producing 70 ± 15 mg/Kg and 84 ± 26 mg
/Kg of GABA respectively.
In conclusion, the use of a blend of buckwheat, amar-

anth, chickpea and quinoa flours subjected to sourdough
fermentation by selected GABA-producing strains repre-
sent a promising potential tool for enhancing the nutri-
tional quality of GF-bread.

Conclusions
Many factors have contributed to the increased preva-
lence of celiac disease, which has emerged as the most
common food intolerance worldwide that can be diag-
nosed at all ages. Even though, in the past decade, an
impressive effort has been made to development poten-
tial therapeutic solutions for CD [74], the only currently
available and safe treatment for CD consists of the
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dietary exclusion of grains containing gluten and the
supportive nutritional care in case of mineral and vita-
mins deficiencies in celiac patients [10]. Gluten is an
essential structure-building protein, contributing to the
appearance, crumb structure, and consumer acceptabil-
ity of many baked products. Therefore, the biggest chal-
lenge for food scientists and bakers in the area of GF
products is probably the production of high quality GF
bread. Sourdough fermentation positively influences all
aspects of bread quality such as texture, aroma, nutri-
tional properties and shelf life. Recently, sourdough has
been successfully applied for the improvement of the
quality of GF bread due to the complex metabolic activ-
ity of the sourdough lactic acid bacteria. The examples
presented in this review demonstrate that LAB might be
considered as “burgeoning” cell factories for the deliver-
ing of functional biomolecules and food ingredients for
the production of high quality GF cereal products.
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