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Abstract

Background: While Saccharomyces cerevisiae is a promising host for cost-effective biorefinary processes due to its
tolerance to various stresses during fermentation, the metabolically engineered S. cerevisiae strains exhibited rather
limited production of higher alcohols than that of Escherichia coli. Since the structure of the central metabolism of
S. cerevisiae is distinct from that of E. coli, there might be a problem in the structure of the central metabolism of S.
cerevisiae. In this study, the potential production of higher alcohols by S. cerevisiae is compared to that of E. coli by
employing metabolic simulation techniques. Based on the simulation results, novel metabolic engineering
strategies for improving higher alcohol production by S. cerevisiae were investigated by in silico modifications of
the metabolic models of S. cerevisiae.

Results: The metabolic simulations confirmed that the high production of butanols and propanols by the
metabolically engineered E. coli strains is derived from the flexible behavior of their central metabolism. Reducing
this flexibility by gene deletion is an effective strategy to restrict the metabolic states for producing target alcohols.
In contrast, the lower yield using S. cerevisiae originates from the structurally limited flexibility of its central
metabolism in which gene deletions severely reduced cell growth.

Conclusions: The metabolic simulation demonstrated that the poor productivity of S. cerevisiae was improved by
the introduction of E. coli genes to compensate the structural difference. This suggested that gene
supplementation is a promising strategy for the metabolic engineering of S. cerevisiae to produce higher alcohols
which should be the next challenge for the synthetic bioengineering of S. cerevisiae for the efficient production of
higher alcohols.

Background
The bioproduction of higher alcohols with more than 3
carbon atoms is desirable because they have the preferred
properties of renewable liquid fuels and wide applications
in commodity chemicals. In designing fermentation pro-
cesses for mass production, the development of recombi-
nant microbial strains is a critical first step [1]. The
pioneering achievements were demonstrated by the con-
struction of metabolically engineered Escherichia coli
strains that produce butanols and propanols. Due to
insufficient genetic tools for the natural 1-butanol produ-
cer clostridia [2], E. coli has been engineered for 1-buta-
nol fermentation by introducing the CoA-dependent
clostridial pathway [3-7]. The production of 1-butanol

was preliminary achieved in the range of 0.55 to 1.2 g/L
[4,6,8]. The maximum 1-butanol titer (30 g/L) was
achieved by the introduction of irreversible transenoyl-
CoA reductase and the creation of NADH and acetyl-
CoA driving forces [9,10]. The production of higher alco-
hols, including 1-propanol, 1-butanol, isobutanol, 2-
methyl-1-butanol, and 3-methyl-1-butanol, was also
demonstrated by introducing the keto-acid pathway
[8,11-22]. This implementation resulted in 1-butanol
production of approximately 0.85 g/L [11]. In these stu-
dies, the production of the target alcohols was achieved
by the introduction of the foreign genes required for
their biosyntheses and by gene deletions to modulate the
entire metabolism of the strains.
Based on these successes, a metabolic engineering

study was initiated in baker’s yeast (Saccharomyces cere-
visiae). Yeast is a promising host for cost-effective biore-
finary processes due to its tolerance to various stresses
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during fermentation. Tolerance to high concentrations
of alcohol should be useful for the industrial production
of higher alcohols [23-28]. The constructed yeast strains,
however, exhibited limited production of higher alco-
hols. For instance, engineered S. cerevisiae expressing
enzymes involved in the CoA-depending clostridial
pathway yielded only 2.5 mg/L of 1-butanol [29]. One
technical reason for the low yield is the reduced activity
of the introduced enzymes due to the ectopic expression
of the bacterial genes. Another possible reason is that
there might be a problem in the structure of the central
metabolism of S. cerevisiae. The structure of the central
metabolism of S. cerevisiae is distinct from that of E.
coli in terms of the anaplerotic pathways, cytosolic
acetyl-CoA (AcCoA) biosynthesis, fermentation pro-
ducts, and occurrence of mitochondria (Figure 1). For
the mass production of higher alcohols, these metabolic
pathways must be modified to increase the metabolic
flow towards the synthesis of the target alcohols. This
means that the precursor synthesis, cofactor regenera-
tion, and supply of the building blocks for active cell
growth must be simultaneously achieved by the central
metabolisms while maintaining the carbon and redox

balances. Because the range of possible distributions of
metabolic fluxes is restricted by the structure of the cen-
tral metabolic network, S. cerevisiae may not be able to
supply the required amount of the precursor and the
reducing powers needed for the biosynthesis of higher
alcohols. In such cases, the engineering strategy has to
be revised by further modification of S. cerevisiae
metabolism.
In this study, the potential production of higher alco-

hols by S. cerevisiae is compared to that of E. coli by
employing in silico metabolic simulation techniques
based on flux balance analysis (FBA). FBA is a mathe-
matical approach for analyzing the flow of metabolites
through a metabolic network [30-32]. The distribution
of metabolic fluxes in the metabolic networks can be
analyzed using the stoichiometric model of the meta-
bolic reactions without knowledge of the metabolite
concentrations or details of the enzyme kinetics [33,34].
Although FBA assumes the ideal metabolism conditions
by ignoring all dynamic aspects of metabolic regulations
such as gene expression, feedback regulation, and post-
translational modifications, it has been demonstrated
that FBA can evaluate the performance of a metabolic
network [30,33]. In this report, FBA-based metabolic
simulation was demonstrated by following the strategy
applied for the actual metabolic engineering. After reac-
tions required for the biosynthesis of higher alcohols
were introduced into the metabolic models, FBA-based
metabolic simulations were performed for multiple
gene-deletion mutants to evaluate the capabilities of the
engineered strains to produce higher alcohols. For this
purpose, the backbone metabolic models, which describe
the essential structures of their central metabolism (Fig-
ure 1), were employed to reduce the number of gene-
deletion combinations to be tested. By using the small
backbone models, the performance of all single, double,
triple, and quadruple deletion mutants could be com-
prehensively investigated within a realistic period. The
in silico analysis was applied for the backbone models of
both E. coli and S. cerevisiae to highlight differences
between their metabolic networks. The comparative
analyses revealed that the central metabolism of S. cere-
visiae has limited potential for the efficient production
of higher alcohols in comparison with that of E. coli. It
is also predicted that its poor productivity can be
improved by extension of the central metabolic network.

Results
Construction of backbone models
The backbone metabolic models of E. coli and S. cerevi-
siae were employed for this analysis. The backbone
metabolic models, which describe the essential struc-
tures of the central metabolism, were constructed from
information from both the literature [35-41] and

Figure 1 Structures of central metabolic pathways in (a)
Escherichia coli and (b) Saccharomyces cerevisiae. The backbone
models for E. coli (iBKEco52: an iBioKE. coli metabolic model
containing 52 reactions) and S. cerevisiae (iBKSce50) were
reconstructed on the basis of these pathways. The black and blue
lines represent irreversible and reversible reactions, respectively. The
structure of the pentose phosphate pathway (PPP) is simplified in
the figure. The metabolite for the carbon source (glucose) and
fermentation products are described in plain black font. The
metabolic pathways for the biosynthesis of each higher alcohol are
shown in red. Abbreviations: AcCoA (acetyl-CoA), OAA
(oxaloacetate), PYR (pyruvate), Suc (succinate), and 3 MB (3-methyl-
1-butanol).
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databases [42-44] (Figure 1 and Additional file 1). The
backbone models for E. coli and S. cerevisiae are here-
after designated as iBKEco52 (i.e., an iBioKE. coli meta-
bolic model containing 52 reactions) and iBKSce50,
respectively. In iBKSce50, the metabolic network is com-
partmentalized in the cytosol and mitochondria.
Although the backbone models contain only 50 or 52
reactions, their behavior was similar to that of genome-
scale models of E. coli (iJR904) and S. cerevisiae
(iMM904)[45,46] (Additional file 2). These original
models were modified by the addition of reactions for
the synthesis of each higher alcohol. As shown in Figure
1, the following 6 pathways were tested: (1) 1-propanol
by oxaloacetate (OAA), (2) 1-butanol by AcCoA, (3) 1-
butanol by OAA, (4) isobutanol by pyruvate (PYR), (5)
3-methylbutanol by PYR, and (6) isopentenol from
AcCoA (Additional file 3). By using these models, the
potential production capabilities of higher alcohols were
compared between E. coli and S. cerevisiae.

Metabolic simulation of reaction-deleted mutants of E.
coli
As the first step of the analysis, the metabolic perfor-
mance of E. coli was evaluated as a reference for the
comparison. The potential productions of higher alco-
hols by E. coli were determined by employing the FBA-
based metabolic simulations. In the procedure, the
metabolic flux distribution was optimized to maximize
the cell growth rate [30]. It is based on the assumption
that a microbial metabolic system should evolve towards
faster cell growth [47]. As this assumption has been
experimentally supported [48], it is expected that the
product yield will be improved when the production of
higher alcohols contributes to faster cell growth. Here,
the FBA-based metabolic simulations were performed
by maximizing metabolic flux for biomass production
from glucose using the linear optimization method. The
results revealed that no higher alcohols were produced
from glucose in the all modified backbone models of E.
coli. The low productivity demonstrated by the in silico
metabolic models mirrors the poor performance of
actual recombinant E. coli strains just after the introduc-
tion of genes required for higher alcohol biosynthesis
[4,8,29].
To improve the yield of the target alcohols, the dele-

tion of metabolism-related genes has been demonstrated
to regulate the flux balances in the metabolic network
[8,11]. The genes, however, must be deleted with regard
to both the product yield and cell growth because gene
deletion often seriously hampers cell growth. Because
the effects of gene deletions could not be predicted
empirically, FBA-based metabolic simulations were per-
formed to elucidate the optimal combination of genes to
be deleted [49-52].

Via this methodology, the production of higher alco-
hols by E. coli was investigated by performing FBA-
based metabolic simulations for all single, double, triple,
and quadruple deletion mutants generated from the
metabolic model (see Methods for the detailed proce-
dure). In the analysis, reactions instead of genes were
removed from the metabolic models. The simulation
results were verified by comparisons with literature data.
The metabolic engineering of E. coli demonstrated that
the product yield of a recombinant E. coli strain expres-
sing genes for 1-butanol or isobutanol biosynthesis was
enhanced by deletions of genes such as ΔadhE, ΔldhA,
ΔfrdBC, and Δpta as well as ΔadhE, ΔldhA, ΔfrdBC, and
Δpfl, respectively [4,8]. The results were reproduced by
FBA-based metabolic simulations using the modified
backbone models. The 1-butanol and isobutanol yields
were increased to 0.14 and 0.19 (YCmol/Cmol glucose),
respectively, by the deletions of the corresponding
reactions.
In the case of the metabolic simulation for 1-butanol

production, the growth rates and product yields were
predicted for 213,052 multiple deletion models gener-
ated from the E. coli backbone model. Among the 8,668
viable and 1-butanol-producing models, an elite 347
models were considered “proper strains” in which all
deletions contributed to an improvement in the 1-buta-
nol yield (Table 1 and Additional file 4). The perfor-
mances of the proper strains were compared with
respect to the growth speed (x-axis) and 1-butanol yield
(y-axis), as shown in Figure 2a. Although a negative cor-
relation between the growth rate and 1-butanol yield
was observed, several actively growing strains produce a
relatively large amount of 1-butanol. Because these pre-
ferable strains are candidate targets for metabolic engi-
neering, these results confirmed that the central
metabolism of E. coli has promising potential for 1-buta-
nol production as experimentally demonstrated [9,10].
Similar trends were observed for isobutanol (Figure 2c),
1-propanol (Figure 2e), and all other pathways (Addi-
tional file 5).
Using the same dataset, the impact of each deletion was
evaluated. The improvement in 1-butanol yield and the
loss of cell growth caused by each deletion were deter-
mined for all proper strains. The effects were averaged
for each reaction, and the results are shown in Figures
3a-c. The x- and y-axes represent the average loss of
cell growth and average gain of product yield, respec-
tively, caused by deleting the reaction. The results indi-
cated that deletion of genes related to anaerobic
fermentation, such as ldhA and adhE, increased the pro-
duct yield without decreasing cell growth. Other genes,
such as pgi, tended to increase the product yield but
reduce cell growth. These results rationalize the strategy
employed for the metabolic engineering of E. coli. After
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the construction of a metabolic pathway for higher alco-
hol biosynthesis, the product yields were improved by
deleting genes while accounting for the impact on cell
growth.

Metabolic simulation of reaction-deleted mutants of S.
cerevisiae
In order to evaluate a performance of the in silico analy-
sis using the backbone model of S. cerevisiae, iBKSce50,
predicted growth rates of all single-reaction-deleted
mutants were compared with the experimental data.
The published phenotype data demonstrated that an
inviable phenotype was observed for single gene-deleted
mutants including Δpgi1, Δfba1, Δtpi1, Δpgk1, Δpyk1,
and Δrki1 among the genes included in iBKSce50
[53-55]. Most results could be reproduced by the FBA-
based metabolic simulation using iBKSce50 (Additional
file 6). By using the backbone model of S. cerevisiae,
iBKSce50, the potential metabolic performance of S. cer-
evisiae was also evaluated using the same procedure for
E. coli, and the results were compared with that of E.
coli. The FBA-based metabolic simulations for all single,
double, triple, and quadruple deletion mutants indicated
that the number of proper strains was smaller than that
for E. coli for all target alcohols (Table 1). In particular,
for the case of acetyl-CoA-derived higher alcohols, no
or very few target-producing strains were observed (Fig-
ure 2a and Table 1). Exceptionally good results were
observed for isobutanol, probably because the redox bal-
ance required for isobutanol biosynthesis is similar to
that for ethanol (Figure 2c). In the case of the other
pathways, such as that towards 1-propanol, actively
growing and target-producing strains were not observed
among the proper strains (Figure 2e). It was also

demonstrated few genes could be deleted without
decreasing cell growth (Figure 3d-e). These results sug-
gest that the strategy employed for the engineering of E.
coli metabolism should not be effective for a construc-
tion of S. cerevisiae over-producing higher alcohols.

Properties of the metabolic network
The in silico simulations suggest that the central meta-
bolism of E. coli could take many states of flux distribu-
tion because there are large variations in yield and
growth performance among deletion strains (Figures 2a-
c). In contrast, the central metabolism of S. cerevisiae
has rather limited or restricted metabolic behaviors. To
support these observations, the natures of E. coli and S.
cerevisiae metabolic networks were compared using ele-
mentary mode analysis. The analysis decomposes a com-
plex metabolic network into many pathway subsets
comprising a minimal set of enzymes that can support
the steady-state operation of cellular metabolism (ele-
mentary mode)[33,36,56]. Because 1 elementary mode
represents an independent cellular physiological state,
the number of generated elementary modes reflects the
flexibility of the metabolic network. The numbers of ele-
mentary modes of the E. coli and S. cerevisiae backbone
models were 34,880 and 690 respectively, suggesting
that the behavior of the central metabolism of S. cerevi-
siae is more restricted than that of E. coli (Table 2).
As the difference should be derived from the nature of

the metabolic networks, 2 structural properties–network
density and characteristic path length–were compared
between the E. coli and S. cerevisiae backbone models
[56,57]. Here, a substrate-product pair was considered a
pair of nodes connected by an undirected edge. The net-
work density represents the density of reactions among

Table 1 The numbers of proper strains among all single, double, triple, and quadruple deletion mutants generated
from the backbone models for E. coli (iBKEco52) and S. cerevisiae (iBKSce50, iBKSce50Δmit, and iBKSce50+7)

Target higher alcohols Number of proper strains
Total (single/double/triple/quadruple deletion mutants)

iBKEco52 iBKSce50 iBKSce50Δmit iBKSce50+7

1-propanol from OAA 458
(0/11/85/362)

40
(2/16/14/8)

108
(4/27/50/27)

467
(4/23/128/312)

1-Butanol from AcCoA 347
(1/17/87/242)

1
(1/0/0/0)

49
(2/7/17/23)

192
(33/22/44/93)

1-Butanol from OAA 501
(0/10/89/402)

71
(0/10/30/31)

120
(3/25/59/33)

373
(2/17/116/238)

Isobutanol from PYR 501
(1/14/83/403)

38
(2/15/21/0)

85
(4/25/30/26)

276
(2/18/81/175)

3-Methyl-1-butanol from PYR 208
(2/13/51/142)

46
(1/15/21/9)

98
(4/25/46/23)

94
(2/5/33/54)

Isopentenol from AcCoA 330
(0/5/55/270)

0
(0/0/0/0)

104
(0/12/51/41)

166
(2/10/54/100)

The “proper” strains were defined as viable target-producing strains in which all deletions contributed to the improvement of product yields. The growth rates
and product yields were determined by FBA-based metabolic simulations. iBKSce50Δmit is an hypothetical S. cerevisiae model derived by merging the cytosolic
and mitochondrial networks into one compartment. iBKSce50+7 is a model of iBKSce50 expanded by the addition of 7 E. coli reactions.
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metabolites, and it should be 1 when all metabolites are
connected with each other. The observed network den-
sities of the E. coli and S. cerevisiae backbone models
were 0.117 and 0.092, respectively, indicating that the
metabolites in the E. coli network are more densely con-
nected by the metabolic reactions (Table 2). The charac-
teristic path length indicates the average distances of all
of the metabolite-metabolite pairs. For example, the dis-
tance between glucose and glucose-6-phosphate is 1

because they are directly connected by the reaction cata-
lyzed by hexokinase. The determined characteristic path
lengths suggest that the metabolites in E. coli are more
closely connected, as the characteristic path length of E.
coli is smaller than that of S. cerevisiae (Table 2).
Although a relationship between those properties and
higher alcohol production is unclear, the results suggest
that the smaller number of elementary modes of S. cere-
visiae backbone model is, at least in part, derived from
the lesser network density and longer characteristic path
length of the metabolic network.

Improvement of the higher alcohol productivity of S.
cerevisiae by the addition of E. coli genes
To increase the network density and reduce the charac-
teristic path length of the central metabolic network of
S. cerevisiae, the metabolic structure was modified by
considering 2 structural features. Because the metabolic
networks of S. cerevisiae are compartmentalized into the
cytosol and mitochondria, translocations of NADP+,
NADPH, and acetyl-CoA between these compartments
were prohibited in the backbone model (Figure 1). Here,
a hypothetical metabolic network of S. cerevisiae was
constructed by merging the cytosolic and mitochondrial
networks and was designated iBKSce50Δmit. The net-
work density and characteristic path length of iBKS-
ce50Δmit were improved to 0.113 and 2.664,
respectively, by which the number of elementary modes
was also increased to 5,859 (Table 2). Another structural
difference between E. coli and S. cerevisiae is the occur-
rence of various shortcuts in E. coli such as pyridine
nucleotide transhydrogenase, the anaplerotic pathways,
the Entner-Doudoroff pathway, and acetyl-CoA synth-
esis by pyruvate formate-lyase. To supplement these
metabolic functions in S. cerevisiae, the 7 E. coli reac-
tions encoded by pntAB, edd, pfl, pps, maeD, ppc, and
mdh were added to the backbone metabolic model of S.
cerevisiae as cytosolic reactions. The expanded model
was designated as iBKSce50+7. Other reactions, such as
those related to the TCA cycle and those catalyzed by
large protein complexes, were arbitrarily removed from
the inserted reactions. The expanded model exhibited
improved network properties and a larger number of
elementary modes (Table 2).
To test the effects of those modifications, the FBA-

based metabolic simulations were performed again using
iBKSce50Δmit and iBKSce50+7 (Figure 2b, d and 2f).
The results revealed that the metabolic performances of
these models were improved in terms of the numbers of
proper strains (Table 1) as well as the target production
(Figure 2b, d and 2f). For instance, the deletion strains
of iBKSce50ΔmitΔpdc (YCmol/Cmol glucose: 0.445, relative
growth rate: 1.0) and iBKSce50+7Δpgi (YCmol/Cmol glucose:
0.347, relative growth rate: 0.88) were able to produce

Figure 2 Metabolic simulations of multiple deletion mutants
generated from the backbone models of E. coli (iBKEco52) and
S. cerevisiae (iBKSce50, iBKSce50Δmit, and iBKSce50+7). The
product yield and cell growth performance of the proper strains are
shown for the production of 1-butanol from AcCoA (a and b),
isobutanol from PYR (c and d), and 1-propanol from OAA (e and f).
Open circles represent the data obtained from E. coli (iBKEco50);
closed red, blue, and orange circles represent the data of original
(iBKSce50), merged (iBKSce50Δmit), and expanded (iBKSce50+7)
models of S. cerevisiae, respectively. iBKSce50Δmit is an hypothetical
S. cerevisiae model derived by merging the cytosolic and
mitochondrial networks into one compartment. iBKSce50+7 is a
model of iBKSce50 expanded by the addition of 7 E. coli reactions.
The cell growth rate data were represented by relative values. A cell
growth rate level determined from the wild type model was
arbitrary set at 1.
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1-butanol with better yields than the most of E. coli
models (Figure 2d). The comparison of the flux distribu-
tions at the fixed oxygen consumption rate condition
revealed that although the metabolic balance required
for 1-butanol biosynthesis could not been attained by
the original S. cerevisiae model (iBKSce50, Figure 4a), a
significant amount of 1-butanol could be generated in
the merged model iBKSce50ΔmitΔpdc (Figure 4b) and
in the expanded model (iBKSce50+7Δpgi, Figure 4c) by

using the modified metabolic functions in these models.
Similar preferable results were observed for all pathways
investigated (Figure 2d and 2f and Supplementary Data
S5).

Discussion
The comparative in silico analyses performed in this
study indicated that E. coli and S. cerevisiae have distinct
potentials for higher alcohol production that originate
from structural differences in their central metabolic
networks (Figure 1). As demonstrated by the FBA-based
metabolic analyses, the behavior of the central metabo-
lism of E. coli appears more flexible than that of S. cere-
visiae. Here, the flexibility of the metabolic network
indicates the variety of flux distributions taken by the
metabolic network. Thus, after the introduction of the
genes required for the biosynthesis of higher alcohols,
productivity could be improved by gene deletions that
restrict the range of flux distributions to produce the
target alcohols (Figure 2). However, because the central
metabolism in S. cerevisiae has limited flexibility, further
gene deletions after the introduction of foreign genes

Figure 3 Effects of the deletion of each reaction in the modified backbone models of E. coli (iBKEco52) and S. cerevisiae (iBKSce50)).
Average loss of cell growth and average gain of product yields caused by the deletion of each reaction in the modified backbone models of E.
coli for the production of (a) 1-butanol by AcCoA, (b) isobutanol by PYR, and (c) 1-propanol by OAA are shown in the figure. Effects of the
modified backbone models of S. cerevisiae for producing (d) isobutanol and (e) 1-propanol are also presented. The results for the production of
1-butanol by AcCoA by S. cerevisiae are not shown because there was only 1 target-producing model.

Table 2 The network properties of the backbone models
for E. coli (iBKEco52) and S. cerevisiae (iBKSce50,
iBKSce50Δmit, and iBKSce50+7)

Network properties Backbone models

iBKEco52 iBKSce50 iBKSce50Δmit iBKSce50
+7

Number of nodes 44 50 44 52

Network density 0.117 0.092 0.113 0.095

Characteristic path
length

2.577 2.92 2.664 2.790

Number of
elementary modes

34,880 690 5,859 25,427
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usually results in a serious reduction in cell growth (Fig-
ure 2 and 3). These results suggest that the strategy
employed for the metabolic engineering of E. coli would
be ineffective for S. cerevisiae.
The FBA-based metabolic simulations performed in

this study, however, ignored the detailed aspects of
metabolic regulations [30,47]. Because the kinetics of
enzymatic reactions and the regulation of those activities
were not considered, the results of the FBA-based analy-
sis often over- or underestimated the role of metabolic
pathways. This means that the FBA-based metabolic
simulations could not predict the exact behavior of the
metabolism of the microbe. To avoid these problems,
metabolic performances derived from central metabolic
networks were evaluated by employing the backbone
metabolic models. Additionally, the production of higher
alcohols in all single, double, triple, and quadruple dele-
tion mutants were comprehensively determined to com-
pare the overall trends of the metabolic performances of
E. coli and S. cerevisiae. A possible drawback of the
backbone model is the oversimplification of the meta-
bolic network by omitting important metabolic func-
tions. Although the details of yeast metabolism remain

unclear, we reconstructed the backbone model by con-
sidering various studies and database informations
[35-44].

Conclusions
If the stylized analysis performed in this study bears any
resemblance to the real metabolism of E. coli and S. cer-
evisiae, the implications of this study for metabolic engi-
neering of S. cerevisiae are radical. Due to its limited
flexibility, the central metabolism of S. cerevisiae could
not reach the flux distributions required for the effective
production of higher alcohols. The comparison of the
properties of metabolic network indicated that the cell
compartmentalization and the lack of several shortcut
reactions are possible causes of the low flexibility (Table
2). This implies that the functionality of the central
metabolism of S. cerevisiae has to be supplemented by
the addition of reactions (Table 2). Thus, the metabolic
simulation demonstrated that the modified backbone
model of S. cerevisiae possessing 7 E. coli reactions
(iBKSce50+7) and the merged compartment (iBKS-
ce50Δmit) had excellent production capabilities for the
target alcohols (Figure 2b, d and 2f). Although the

Figure 4 Optimized flux distribution for 1-butanol synthesis by the gene-deleted S. cerevisiae models. The flux distributions of (a) the
original model (iBKSce50), (b) the merged model with the PDC reaction deleted (iBKSce50ΔmitΔpdc), and (c) the expanded model with the PGI
reaction deleted (iBKSce50+7Δpgi) are shown in the figure. The oxygen uptake rate is set at 1.0. The steps represented by bold font indicate the
reactions playing a role for 1-butanol production.
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conclusion indicates a theoretical possibility for higher
alcohol production, it is suggested that further modifica-
tion of yeast metabolism requires the introduction of
multiple genes and the coordinated regulation of their
expression (Figure 4). Although the introduction of a
single reaction to the central metabolism of S. cerevisiae
has been attempted [58,59], an innovative engineering
methodology is required for implementing the strategy
to the actual S. cerevisiae metabolism. This is the next
challenge for the synthetic bioengineering of S. cerevi-
siae for the efficient production of higher alcohols.

Methods
Model construction
The genome-scale models of E. coli (iJR904 GSM/GPR)
[45] and S. cerevisiae (iMM904)[46] were downloaded
from http://gcrg.ucsd.edu. The backbone models of E.
coli (iBKEco52) and S. cerevisiae (iBKSce50) were recon-
structed using the information from the literature
[35-41] and the databases including EcoCyC (http://eco-
cyc.org/)[42] and YEASTNET (http://www.comp-sys-
bio.org/yeastnet/)[43,44] (Supplementary Data S1). Ele-
mentary mode analysis was performed by the aid of
METATOOL5.1 [60].

FBA-based metabolic simulation
The FBA-based metabolic simulation was performed
via previously described methods [32] using MATLAB
R2010b and glpk version 4.42 to perform the linear
programming methods. The metabolic simulations
were performed using the following procedure. (1) The
linear programming was executed using the reactions
for biomass production or growth rate as the objective
function. The carbon source was fixed to be glucose
consumed at 10 mmol gDW-1 h-1 in all analyses. (2)
To avoid indefinite results, the flux for target produc-
tion is minimized under the maximum growth rate
condition. (3) The growth rates and target productiv-
ities were determined at 16 different oxygen uptake
rates (0.1, 1, 2...,15 mmol). Those averages were con-
sidered the metabolic performance of the metabolic
models. When the levels of growth speed were more
than 1% of that of wild type, those deletion mutants
were considered viable. The target-producing strains
indicated the viable mutants producing target alcohols
in yields exceeding YCmol/Cmol glucose = 0.01. Because
most deletions in the target-producing strains are
silent or have adverse effects, we defined “proper”
strains as target-producing strains in which all dele-
tions contributed to the improvement of product yield.
The network density and the characteristic path length
were determined with the aid of Network Analyzer
version 2.7 [57].
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