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Abstract

Recent evidence has demonstrated that cell-to-cell signaling is a fundamental activity carried out by
numerous microorganisms. A number of specialized processes are reported to be regulated by
density-dependent signaling molecules including antibiotic production, bioluminescence, biofilm
formation, genetic competence, sporulation, swarming motility and virulence. However, a more
centralized role for quorum sensing is emerging where quorum signaling pathways overlap with
stress and starvation circuits to regulate cellular adaptation to changing environmental conditions.
The interplay of these phenomena is especially critical in the expression of recombinant proteins
where elicitation of stress responses can dramatically impact cellular productivity.

Review

Gene expression in bacteria can be regulated by a wide va-
riety of intra- and extracellular signals. In fact, numerous
morphological and physiological changes are induced by
chemical and physical changes in the local environment.
Such adaptive responses involve chemical perception and
information processing that transiently alter gene expres-
sion patterns so as to protect against environmental
threats. The discovery that bacteria themselves can pro-
duce extracellular chemical signals for intercellular com-
munication has evoked a new paradigm for gene
regulation. Now generally termed 'quorum sensing' or au-
toinduction, bacterial cell-to-cell communication enables
population density-based control of gene transcription
via the production, release and sensing of low-molecular
weight compounds. In the majority of cases, the concen-
tration of extracellular autoinducer increases concomi-
tantly with the bacterial cell density. Upon reaching a
'critical’ autoinducer concentration, a signal transduction
cascade is triggered that results in expression of a target

gene(s). Based on this general theme, quorum sensing sys-
tems have evolved as a means for improving a microbe's
access to complex nutrients or environmental niches or
for collectively enhancing its defense capabilities against
other microorganisms or eukaryotic host defense mecha-
nisms.

First described in two species of marine bioluminescent
bacteria, Vibrio harveyi and Vibrio fischeri [1,2], quorum
sensing is now known to be widespread among both
Gram-positive and Gram-negative bacteria (for detailed
reviews the reader is referred to refs [3-7]). For instance,
Gram-positive bacteria utilize post-translationally modi-
fied peptides as quorum signals. These signals are typical-
ly exported to the extracellular milieu via specific ATP-
binding cassette (ABC) transporters and are transduced by
two-component signal transduction systems [8]. The con-
centration of secreted peptide autoinducers increases as a
function of cell density. Eventually, a sensor kinase detects
the peptide quorum signal thereby initiating a phosphoryl
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cascade that ends with the phosphorylation (and thus ac-
tivation) of the cognate response regulator protein. Active
regulator protein is capable of binding target promoter
DNA which, in turn, instigates a change in the expression
patterns of quorum-controlled genes (for a detailed re-
view of peptide-mediated quorum signaling the reader is
referred to refs [9,10]). Examples of Gram-positive quo-
rum signaling include the Streptococcus pneumoniae
ComD/ComE competence system, the Bacillus subtilis
ComP/ComA competence/sporulation system, and the
Staphylococcus aureus AgrC/AgrA virulence system [11-13].

In contrast to Gram-positive bacteria, Gram-negative bac-
teria typically utilize diffusible acylated homoserine lac-
tone (AHL) molecules. This mode of quorum sensing is
mediated by proteins belonging to the LuxI-LuxR families
(for review see ref [14]): LuxI-type proteins direct AHL
synthesis while LuxR-type proteins function as transcrip-
tional regulators that are capable of binding AHL signal
molecules. Once formed, LuxR-AHL complexes bind to
target promoters of quorum-regulated genes. Preferential
binding of an AHL by its cognate LuxR-type protein guar-
antees a high degree of selectivity (AHLs are produced by
over 50 species of bacteria and each differs only in the acyl
side chain moiety) and complexity (a single bacterium
can employ multiple AHL signals and LuxR-type pro-
teins). Examples include the V. fischeri Luxl/LuxR biolu-
minescence system, the Pseudomonas aeruginosa Lasl/LasR-
RhlI/RhIR virulence system and the Agrobacterium tumefa-
ciens Tral/TraR virulence system [14-16].

A unique hybrid quorum sensing circuit is exemplified by
V. harveyi's ability to regulate bioluminescence. V. harveyi
signalling is built upon two parallel sensory pathways that
channel information to the LuxO response regulator [17-
20]: the first responds to N-(3-oxohexanoyl)-L-homoser-
ine lactone (autoinducer-1 or Al-1), and the second re-
sponds to a recently characterized furanosyl borate diester
(autoinducer-2 or Al-2) which bears no resemblance to
previously identified autoinducers. Synthesis of these au-
toinducers is known to require the luxM and luxS genes for
Al-1 and Al-2, respectively, and LuxS is known to play a
key role in the enzymatic conversion of precursor to Al-2
[21]. In a manner analogous to Gram-positive bacteria, V.
harveyi employs a two-component circuit whereby these
signal molecules are received by a cognate sensor kinase:
LuxN is the sensor for Al-1, while LuxPQ is the sensor for
Al-2 [17,18,22]. Of note, LuxP is homologous to the ri-
bose binding protein (RbsB) of E. coli. A series of intra-
and intermolecular phospho-transfers results in the trans-
mittance of phosphate to the intermediate LuxU phos-
photransferase protein [23]. In turn, the signal is relayed
to the response regulator, LuxO, which, upon interaction
with sigma-54 (c°4), indirectly represses the lux operon
[24]. In addition to regulating light production, LuxO and
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o654 regulate siderophore production and colony mor-
phology, demonstrating that multiple processes are regu-
lated by quorum sensing in V. harveyi [24]. Given that V.
fischeri was also found to possess a luxO-based phosphore-
lay regulatory system [25] is suggestive that a general reg-
ulatory mechanism may exist among bacteria based on
the V. harveyi quorum circuit.

Complexity of quorum systems

The remarkable complexity of quorum-based systems is
exemplified in the variety of different mechanisms for sig-
nal production, signal detection, signal relay and signal
response. For example, while both Vibrio species utilize
quorum sensing to regulate an identical task (i.e. regula-
tion of the luciferase operon controlling luminescence),
each use different signals and signaling mechanisms to
achieve this goal. As outlined above, several unique
modes of sensing are used by different bacteria such as di-
rect autoinducer binding by a response regulator (e.g. V.
fischeri LuxI-LuxR system), two-component signal trans-
duction (e.g. B. subtilis) and even hybrid signaling circuit-

1y (e.g. V. harveyi).

The presence of a number of structurally diverse families
of autoinducers combined with the ability of a single bac-
terium to employ multiple cell-to-cell signaling molecules
results in hierarchical cascades capable of linking quorum
sensing to important cellular processes. Genetic analysis
of V. harveyi has led to the discovery of two autoinducers
(AI-1, N-3-hydroxybutanoyl-L-homoserine lactone and
Al-2, a furanoysl borate diester) comprising a multichan-
nel two-component phosphorelay used to regulate light
production [18]. In the human pathogen P. aeruginosa at
least four chemically distinct quorum signals have been
discovered including N-(3-oxododecanoyl)-L-homoser-
ine lactone (3-ox0-C12-HSL), N-(butanoyl)-L-homoser-
ine lactone, 2-heptyl-3-hydroxy-4-quinolone (PQS) and
diketopiperazine (DKP) [15].

Evidence for the existence of quorum sensing in E. coli

Thus far, only a modest body of evidence exists regarding
quorum-regulated gene expression in E. coli. Some of the
earliest indications that E. coli use quorum sensing arose
from studies using 'conditioned medium' or 'culture fil-
trate' [26]. Conditioned medium (CM) refers to medium
that has previously supported bacterial growth and thus
contains numerous secreted metabolites and signaling
molecules endogenous to the particular strain of bacteria.
One of the first such reports demonstrated that an extra-
cellular factor was capable of regulating cell division by
activating transcription of the major cell division gene
cluster, ftsQAZ from the upstream ftsQ2p promoter [27].
Several other groups have reported that this activation in-
volves the SdiA protein, a homologue of quorum regula-
tory LuxR-type proteins [28,29]. Using CM from late
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exponential and stationary phase cultures, it was shown
that initiation of chromosomal replication in E. coli was
inhibited via a quorum-sensing mechanism [30]. Baca-
Delancey and coworkers used a lacZ reporter screen to
identify four genes (cysK,astD,tnaB, and gabT) that re-
sponded to an unidentified extracellular factor present in
CM [31]. Subsequently, indole was identified as one of
the extracellular factors at least partially responsible for
activating three of these previously isolated genes.

Extracellular factors present in CM have even been report-
ed to promote the growth of E. coli cells. For instance, Wei-
chart and Kell recently described an autostimulatory effect
of E. coli supernatants which was attributed to a small,
heat-, acid- and alkali-stable, non-proteinaceous, non-
ionic organic molecule [32]. Similarly, a growth-inducing
factor(s) was discovered in CM generated from E. coli
0157:H7 which had been cultured in the presence of an
exogenously supplied eukaryotic hormone, norepine-
phrine (NE) [33]. Analysis of the production kinetics for
this small, heat-stabile autoinducer suggested that it dif-
fers from other well-characterized bacterial autoinducers.
Some doubt on the role of NE and cell-cell signaling is
shed by Winzer et al. who point out that NE is capable of
facilitating the release of the essential nutrient, iron, from
the serum iron-binding glycoprotein, transferrin and
therefore NE may be promoting growth in the serum-con-
taining medium simply by facilitating the sequestration of
iron from transferrin and/or inducing siderophore-based
iron-uptake systems [34]. These authors also note that one
drawback of CM experiments is the presence of a large
number of bacterial products (e.g. secondary metabolites)
which are released to the extracellular milieu [34]. The ac-
tion of exoenzymes used by the cell to degrade media
components for nutrient generation can also affect the
composition of CM. A typical experiment is the addition
of spent culture medium to low-density cells while the ad-
dition of uninoculated or fresh medium serves as the con-
trol. However, since uninoculated medium will certainly
differ quite drastically from spent culture medium, more
appropriate controls must be introduced. For instance,
Delisa et al. used CM generated from wildtype cells and
compared its effect to CM generated from isogenic luxS
mutant cells to determine the effect of luxS on transcrip-
tion [35]. The observation that hundreds of genes were
differentially regulated seems to support (i) the notion
that LuxS plays a central metabolic role and (ii) if so, then
CM of a LuxS-deficient strain will likely differ in many as-
pects from that of the parent ruling out Al-2 as the sole ef-
fector of the transcriptional changes. Most importantly,
follow-up experiments using purified components or ap-
propriate genetic constructs are necessary to isolate the
possible effect of extracellular autoinducers.

http://www.microbialcellfactories.com/content/1/1/5

LuxS-mediated quorum sensing

Discovery of the LuxS/AI-2 signaling system

Perhaps the most important discovery regarding E. coli
quorum sensing was the observation that CM from spent
E. coli (and Salmonella typhimurium) cultures could acti-
vate the Al-2-responsive system of V. harveyi [36]. Shortly
thereafter, the production of the AI-2 quorum molecule
was linked to the luxS gene [21] and eventually the bio-
synthetic pathway for AI-2 synthesis was elucidated
[37,38]. In the cell, S-adenosylmethionine (SAM) is con-
sumed to form S-adenosylhomocysteine (SAH), which in
turn is hydrolysed by the nucleosidase, Pfs, yielding ade-
nine and S-ribosylhomocysteine (SRH). Subsequently,
the LuxS protein, a zinc metalloenzyme recently crystal-
lized by several groups [39-41], converts S-ribosylhomo-
cysteine (SRH) to homocysteine and 4,5-dihydroxy-2,3-
pentanedione (DPD), a precursor probably requiring fur-
ther rearrangement for Al-2 signal activity [37,38]. Both
luxS and pfs are required for Al-2 activity, however expres-
sion of luxS is constitutive while the transcription of pfs is
tightly correlated to AI-2 production and neither is regu-
lated directly by AI-2 [42].

The occurrence of luxS-dependent Al-2 signaling is wide-
spread among both Gram-negative and Gram-positive
bacteria including E. coli (pathogenic and non-pathogenic
varieties), S. typhimurium, Shigella flexneri, Helicobacter py-
lori, Streptococcus pyrogenes, Neisseria meningitides, Actinoba-
cillus actinomycetemcomitans and Porphyromonas gingivalis.
Moreover, 30 of 136 bacterial species contain a highly
conserved luxS homologue [42] and, not surprisingly, a
role for AI-2 in interspecies communication has been pro-
posed [21]. Certainly extensive information charting the
existence of Al-2 signaling in numerous bacterial species
has come forth. However the chemical structure of the sig-
nal itself has until recently remained an enigma. Several
lines of evidence suggested that AI-2 might be a cyclized
carbohydrate resembling ribose. First, the V. harveyi extra-
cytoplasmic receptor of Al-2, LuxP, is homologous to the
ribose binding proteins found in E. coli and S. typhimuri-
um. Second, the S. typhimurium LsrB protein (a LuxP ho-
molog) binds AI-2 [43]. Accordingly, in an effort to
crystallize LuxP, Chen et al. discovered a bound AlI-2 mol-
ecule which was proposed to be a furanosyl borate diester
[44]. In addition, the structural studies confirmed that
LuxP bore similarity to the ribose binding protein.

Genes and phenotypes controlled by LuxS/Al-2 signaling system

Although the role of AI-2 in V. harveyi as a density-de-
pendent signal for regulating bioluminescence has been
well established, the function of AI-2 in other bacteria has
yet to be clarified. Extensive screens for AI-2 controlled
genes in S. typhimurium uncovered a single, previously un-
identified operon (lysRACDBFGE operon) whose prod-
ucts include an ATP binding cassette (ABC)-type
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transporter proposed to uptake Al-2 into the cells [43]. It
was recently demonstrated that the type III secretion sys-
tem is activated at the transcriptional level by CM contain-
ing AI-2 [45]. Subsequently, transcriptional profiling
experiments demonstrated that large numbers of genes
were up-regulated and down-regulated by CM containing
Al-2 in enterohemorrhagic (EHEC) E. coli O157:H7 and
the same has been confirmed in E. coli K12 [35,46]. Fol-
low-up experiments validated that expression of a LysR-
type regulator (QseA) and a two-component system (Qse-
BC) were controlled by CM containing Al-2 [47,48]. QseA
was found to be part of the regulatory cascade that con-
trols EHEC and enteropathogenic (EPEC) virulence genes
while QseBC was shown to be involved in the regulation
of flagella and motility genes in both EHEC and K12. Al-
though additional experiments are needed (such as using
purified AI-2 instead of CM or demonstration that QseA-
BC can bind AI-2 directly), these findings are noteworthy
as QseA, B and C are potentially the first members of a sig-
nal transduction pathway responding to Al-2 in an organ-
ism other than V. harveyi.

While a number of genes targeted by Al-2 have emerged,
the identification of an obvious phenotype(s) controlled
by AI-2 has proven much more enigmatic. For instance,
Sperandio et al. reported two distinct phenotypes for E.
coli O157:H7 luxS mutants: 1) faster growth rate for the
luxS mutant; and 2) decreased motility in the luxS mutant
relative to the wild-type strain [45]. In apparent contrast,
luxS mutants of E. coli K12, H. pylori and Campylobacter je-
juni all grow at a rate indiscernible from the wild-type
strain while S. pyogenes luxS mutants grow slower than
wild-type (DeLisa and Bentley, unpublished observations;
[49-51]). In the case of motility, E. coli K-12 and C. jejuni
luxS mutants display decreased motility on semi-solid
agar while H. pylori motility is unaffected by the IuxS le-
sion (L. Wang and Bentley, unpublished observations;
[49,50]).

Similar discrepancies exist regarding the role of uxS in the
pathogenesis of various bacterial species. For example, P.
gingivalis luxS mutants display decreased levels of viru-
lence determinants including two cysteine proteases and
haemagglutin, but loss of luxS did not attenuate virulence
in a murine lesion model of P. gingivalis infection [52].
Similarly, both C. jejuni and S. flexneri luxS mutants show
no attenuation of virulence using in vivo models [49,53].
However, N. meningitidis requires a functional copy of
luxS for full meningococcal virulence; strains with a luxS
deletion are defective for bacteremic infection, a prerequi-
site of meningococcal pathogenesis [54]. With so many
incongruous findings, one is left to ask how AI-2 could be
involved in so many diverse phenotypes across many dif-
ferent bacterial species? One possibility put forth by Steve
Winans is that perhaps Al-2 was originally a secreted me-

http://www.microbialcellfactories.com/content/1/1/5

tabolite in numerous bacteria that was co-opted by indi-
vidual species to be used as an intercellular signal
[34,38,55]. Thus, AI-2 has evolved several diverse, species-
specific roles while simultaneously remaining a 'universal'
signal recognizable across numerous species of bacteria.

Density-dependent signaling or metabolic barometer?

It is clear that AI-2 signaling regulates the expression of
numerous genes and is involved in determining pheno-
types, but exactly what Al-2 is signaling is a murky subject.
Emerging evidence indicates that Al-2 may not be a densi-
ty-dependent signal, but rather a metabolic gauge or waste
product [34,38,55]. When first reporting on the discovery
of Al-2, Bassler and colleagues reported that Al-2 activity
was nonexistent late in the growth phase when the density
of the culture was presumably highest. It was also noted
that AI-2 release to the medium was dependent on the
presence of glucose in the culture medium and could be
affected by factors that are known to impact cellular me-
tabolism. Contrarily, very little AI-2 was released by car-
bon-limited bacteria leading the authors to postulate, for
the first time, that AI-2 may provide a signal of the meta-
bolic potential of the growth environment. It was later
demonstrated that carbon-limited S. typhimurium can
scavenge Al-2 from the growth medium raising the possi-
bility that AI-2 may be used as a nutrient [43]. Winzer et
al. observed that P. aeruginosa is capable of removing Al-2
activity, further evidence that AI-2 may be a metabolized
nutrient under certain conditions [38]. Thus, akin to ace-
tate, Al-2 is produced and released to the medium in the
presence of preferred carbohydrates and is metabolized
when primary nutrients are depleted. Intriguingly, a direct
overlap between Al-2 and acetate has been observed re-
cently by Kirkpatrick et al., who reported that the LuxS
protein is upregulated when high levels of acetate are sup-
plied exogenously to the growth medium [56].

Strong evidence supporting the metabolic gauge nature of
AI-2 comes from chemostat experiments where Al-2 accu-
mulation was shown to accumulate linearly with growth
rate and was independent of culture density [57]. In other
words, as E. coli cells grow, they produce Al-2 and the fast-
er they grow (via glucose and additional medium compo-
nents) the faster the rate of AI-2 production on a per cell
basis. This can be explained by the fact that AI-2 synthesis
is stoichiometrically linked to SAM utilization. As SAM is
primarily utilized when the choline moiety of phospholi-
pids is synthesized, AI-2 is indirectly linked to membrane
biosynthesis and thus to cellular growth rate. In fact, AI-2
was seen to upregulate a number of genes specifically in-
volved in membrane and cell-surface architecture [35].
Additionally, the AI-2 responses to culture perturbations
(e.g. heat shock, osmotic shock, amino acid starvation
and expression of heterologous protein) were described as
indicative of a shift in metabolic activity [57]. The need for
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bacteria to communicate their metabolic activity, espe-
cially given the abundance of specific receptors which
have evolved to probe the environment, perhaps lies in
the intercellular nature of AI-2 signalling. There may be an
inherent advantage for one species to detect the emer-
gence of another. Also, and more importantly in the con-
text of exploiting microbes as cell factories, the stress
placed on host cells by heterologous production of nu-
merous protein products resulted in significant loss of Al-
2 signaling [57,58]. That is, the production of proteins
was perhaps 'signalled' to the population by a dramatic re-
duction in AI-2.

Hierarchy of quorum cascades: overlap with cellular stress
responsive circuits

Quorum sensing is a high cell density phenomenon in
most microorganisms. However, recent evidence is shed-
ding light on a more central role for quorum sensing in
the adaptation of cells to stress and starvation. In certain
contexts, quorum signals may even directly signal entry
into stationary phase [59]. One of the first indications that
quorum sensing systems overlap with stress-related cir-
cuits in E. coli came from the experiments of Huisman and
Kolter [60]. At the heart of this work was the demonstra-
tion that expression of the stationary phase sigma factor,
o5, in E. coli was induced by homoserine lactone (HSL), a
metabolite synthesized from intermediates in threonine
biosynthesis. Recall also that, although not found in E. co-
li, acylated homoserine lactones (AHLs) are one of the pri-
mary signals used in density-dependent expression
systems of numerous bacteria. The authors suggest that
synthesis of HSL may serve as a general signal of starva-
tion. In fact, 63 is regulated by a number of proteins and
small metabolites, including cAMP, UDP-glucose, ppGpp
as well as HSL, which provide a link between the nutri-
tional status of the cell and the induction of stationary
phase [61].

Along similar lines, several groups have reported that a
substance present in conditioned medium was capable of
upregulating expression of rpoS [29,62]. Sitnikov et al. fur-
ther observed that conditioned medium and several exog-
enous autoinducers could upregulate the cell division
genes ftsQA in an SdiA-dependent fashion [29]. Note that
SdiA (suppression of division inhibitor A) is homologous
to the LuxR transcriptional activator of V. fischeri. The up-
regulation of ftsQA in this context resulted in the acquisi-
tion of a more resistant spherical shape [27] and would
presumably serve to increase the cells resistance to stress
in general. Importantly, whether there is an interaction
between sdiA and luxS (or any other quorum component
for that matter)in the cell remains an open question. Sur-
rette and Bassler found that the sdiA and luxS systems op-
erate independently, while DelLisa et al. observed that Al-
2 could stimulate a two or threefold increase in sdiA using
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microarray technology and continuous culture, respec-
tively [35,57,63]. Thus, while it seems that there is an in-
teraction between the two systems, it is relatively weak
and possibly indirect [64]. It has even been suggested that
SdiA does not respond to any endogenous signal but rath-
er senses AHLs produced by other bacteria in mixed bac-
terial populations [65]. The work of Kanamaru et al. [66]
is partially in agreement with this hypothesis as they re-
ported that SdiA from enterohaemorrhagic E. coli could
bind non-native AHLs in vitro but did not appear to bind
endogenous Al-2.

In addition to oS-dependent responses, emerging evidence
also suggests that autoinduction may also overlap with
632 and c54-mediated responses in bacteria. For example,
studies on the regulation of the V. fischeri lux genes in E.
coli have demonstrated a link between LuxR-mediated
quorum sensing and the o32-mediated stress circuit. The
luminescence response of E. coli containing the lux genes
to exogenously added autoinducer is highly dependent on
the level of the LuxR protein. In turn, expression of the
LuxR protein increases at the onset of late exponential
phase and is dependent on the expression of rpoH and the
groE system [67]. Several o32 stress genes also appear to
play a role in AI-2 signaling. For instance, DelLisa et al. re-
ported that groEL andgroES mutants of E. coli produced
considerably higher levels of Al-2 while dnaK, dnaJ, and
grpE mutations resulted in a significant attenuation in Al-
2 activity [57]. Whether the role of these genes in the AI-2
pathway is direct or indirect remains to be determined.

In the case of 64, the linkage appears much more direct.
Based on studies of luminescence regulation in V. harveyi
it was demonstrated that LuxO, in response to AHL or Al-
2, functions as an activator protein via interaction with the
alternative sigma factor, 54 (encoded by rpoN) [24]. Tt
was suggested that LuxO, together with 654, activates the
expression of a negative regulator of luminescence. In E.
coli, significant Al-2 triggered induction of ygeV, a putative
o>4-dependent transcriptional activator, and yhbH, a ¢4
modulating protein, suggesting that >4 may be involved
in autoinduction in this bacterium [35]. Although, to date
it is not known whether E. coli possess the same pathway
described above for V. harveyi. Interestingly, increased lev-
els of Bacillus cereus YhbH, which is strongly induced in re-
sponse to environmental stresses and energy depletion via
both B and !, could be observed within 2 h in both at-
tached cells and planktonic cultures growing in the pres-
ence of glass wool, indicating that this protein plays an
important role in regulation of the biofilm phenotype
[68]. Since biofilm formation is commonly regulated by
quorum sensing, it is intriguing that E. coli YhbH responds
to Al-2 and one possible role for this interaction might be
to regulate the phenotypic transition from planktonic
growth to biofilm formation.
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Quorum sensing as a target for metabolic engineering
The emerging link between quorum sensing, cellular me-
tabolism and stress-responsive circuits raises the possibil-
ity of targeting quorum pathways for improving cellular
productivity. Huisman and Kolter identified RspA (regula-
tor of stationary phase A) as a mulitcopy repressor of rpoS
expression and cS-dependent gene expression [60]. They
hypothesized that the effect of RspA on rpoS expression
could result from the degradation of a metabolite that sig-
nals starvation. They further supposed that the metabolite
was a lactone, as the RspA protein resembled a lactonizing
enzyme (chloromuconate cycloisomerase). Although E.
coli do not appear to produce an extracellular AHL quo-
rum signal, it is possible that HSL serves as a metabolic
signal or even toxic by-product used to regulate rpoS ex-
pression. In seemingly unrelated work, Weikert et al. engi-
neered a strain of bacteria via directed evolution that
exhibited improved physiological properties such as high-
er specific growth rate, increased biomass yields and im-
proved resistance to a variety of stresses [69].
Unexpectedly, they found that rspA was upregulated in the
mutant strain and that overexpression of rspAB in wild-
type cells could partially mimic the complex mutant phe-
notype [70]. Most importantly, they demonstrated that
multicopy expression of rspAB resulted in a nearly 3-fold
improvement in recombinant -galactosidase production.
The authors suggest that RspA-dependent reduction of lac-
tone byproducts of amino acid metabolism such as HSL
might be responsible for the improved phenotype of the
mutant strain. Whether these findings are attributable to
HSL acting as a specific signal with a corresponding recep-
tor or simply as a toxic by-product of metabolism is still
unclear.

In another study, DelLisa et al. hypothesized that AI-2 sig-
naling in E. coli was an important molecular determinant
in recombinant cultures of bacteria [58]. It was seen that
recombinant protein expression resulted in decreased Al-
2 activity, which is likely a result of two factors. First, de-
pressed Al-2 levels could result from the decline in culture
growth rate typically observed during heterologous pro-
tein production [71,72], as Al-2 and culture growth rate
are linearly correlated. Second, the ppGpp-mediated strin-
gent response, elicited by a failure of tRNA aminoacyla-
tion to keep up with the demands of protein synthesis,
induces several biosynthetic operons, including those for
threonine and methionine [73]. This induction, an out-
come of the stringent response triggered by heterologous
protein production, would be expected to divert interme-
diates away from Al-2 synthesis. The finding that AI-2 ac-
tivity is significantly attenuated following amino acid
starvation [57] is consistent with this proposal. Based on
this logic, we reasoned that exogenous Al-2 addition
would change the 'apparent' environmental robustness
(or growth rate potential) experienced by the cells to sig-
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nificantly higher levels earlier in the growth phase. Re-
markably, restoration of AI-2 activity levels using either
conditioned medium or co-overexpression of [uxS (in a
luxS mutant) resulted in a 3-4-fold increase in soluble ac-
cumulation of a recombinant protein [DeLisa, Valdes and
Bentley, submitted for publication].

Additional roles for quorum sensing in the production of bi-
otechnologically relevant molecules

In addition to the synthesis of recombinant proteins, quo-
rum sensing systems play a critical role in the production
of many secondary microbial metabolites which are com-
mercially and industrially significant. In fact, it has been
shown that quorum sensing serves as the key regulatory
mechanism that controls the production of a wide range
of molecules possessing antimicrobial activity including:
(i) the polyketide antibiotic mupirocin produced by Pseu-
domonas fluorescens NCIMB and used clinically as a topical
treatment for staphylococcal infections [74]; (ii) the anti-
microbial metabolite bacteriocin produced by lactic acid
bacteria and used as a food additive [75]; and (iii) the po-
tent beta-lactam carbapenems with a broad spectrum of
activity against both Gram-positive and Gram-negative
bacteria [76]. In the latter case, these types of antiobiotics
are naturally produced metabolites and have been isolat-
ed from species of Streptomyces, Erwinia andSerratia. In Er-
winia and more recently in Photorhabdus luminescens,
carbapenem biosynthesis is transcriptionally controlled
by a quorum sensing mechanism. Specifically, Erwinia use
the signal 3-ox0-C6-HSL to regulate the expression of the
carABCDEFGH gene cluster responsible for carbapenum
production [76]. Interestingly, a halogenated furanone
produced by Delisea pulchra was found to inhibit this
process by disrupting 3-oxo-C6-HSL quorum sensing
[77]. P. luminescens use a similar strategy to regulate ex-
pression of the ¢pm operon. However, this operon and
thus carbapenum biosynthesis was regulated by a luxS-
like signaling mechanism whereby luxS could repress cpm
gene expression at the end of exponential growth [78]. As
quorum sensing allows synchronized, population-wide
production of antimicrobial peptides as a function of cell
density, production strategies capitalizing on the regulato-
1y effects of quorum signals (both protagonistic and an-
tagonistic) should prove to be quite rewarding.

Conclusions

Metabolic engineering has been used to introduce novel
biochemical pathways and realign metabolic fluxes in mi-
croorganisms to improve product yields [79-81]. Unfor-
tunately,  concurrent  host-specific ~ physiological
perturbations, such as altered specific growth rate, and
pleiotropic metabolic effects derived from the desired
genotypic changes can limit overall productivity. There-
fore, alternative approaches to "cell condition" or dynam-
ically change intracellular architecture in response to
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environmental cues have been explored. One of the first
such approaches was genetic knockout of loci (e.g. rpoH,
degP) known to affect heterologous product stability [82].
More recently, transient down-regulation of a target gene
(rpoH) using antisense technology was used to increase ac-
tivity of a recombinant enzyme [83]. Alternately, strate-
gies that promote a host response (as opposed to deletion
or inhibition) have been implemented. For instance, ex-
ternal induction of heat shock or cold shock in a manner
designed to favorably change intracellular conditions (i.e.
increased chaperone activity or decreased protease activi-
ty) has been utilized for improved product yields [84,85].
Likewise, altering the protein folding environment by ad-
dition of reducing (or oxidizing) reagents such as dithio-
threitol (DTT) [86,87] or by coexpressing redox regulating
proteins, such as DsbC [88] has been demonstrated.

To date, there have been no reports on the use of quorum-
sensing or autoinducers for improving recombinant pro-
tein yield in any expression system. In related work, Lee
and Shuler utilized Catharanthus roseus conditioned medi-
um (CM) to improve the production of two secondary
metabolites, ajmalicine and catharanthine, and further at-
tributed the enhancing effects of CM to an unidentified
factor produced and secreted by C. roseus suspension cul-
tures [89]. Further, Nozawa et al., showed that CM can en-
hance lipopolysaccharide production in E. coli [90].
However, the direct demonstration of a quorum-specific
strategy had until recently not been shown.

Since it appears that AI-2 communicates both cell density
and metabolic potential of the growth environment [36],
AI-2 mediated quorum sensing will likely have a role in
biotechnological processes. For example, we showed that
the SdiA activated ftsQp2 promoter could be used to drive
protein expression without addition of exogenous induc-
ers [DeLisa, Valdes and Bentley, submitted for publica-
tion]. We also demonstrated that production of Al-2 was
highly dependent on groEL and groES, as well as the 632 se-
questering complex dnaK/dnaJ/grpE. Based on this evi-
dence, it was postulated that AI-2 production and
degradation overlaps chaperone-assisted folding path-
ways within the cell [57]. In fact, we found that altering
Al-2-mediated autoinduction could enhance the yield of
several heterologous proteins. Improvement in protein
yield was achieved by repeated or continuous condition-
ing of protein-expressing cultures through addition of
conditioned medium containing high levels of AI-2 or
through co-expression of plasmid-encoded luxS [DelLisa,
Valdes and Bentley, submitted for publication]. In the ab-
sence of a specific mechanism, we propose that Al-2-stim-
ulated enhancement of protein yield is perhaps a
consequence of a link to chaperone-assisted folding path-
ways and/or proteolytic pathways.

http://www.microbialcellfactories.com/content/1/1/5

Determination of the chemical structure of bacterial Al-2
is a milestone for researchers studying both mechanistic
and applied aspects of bacterial quorum sensing. In the
context of cellular productivity, extracellular signalling
cascades are likely to play an important role in the cellular
productivity of microorganisms. Since AI-2 appears to
'‘communicate' the metabolic potential of the bacterial
growth environment, strategies designed to alter the pat-
tern of communication can be used to alter the physiology
of each individual cell. Determining how the signalling
patterns should be altered to obtain a desired cellular out-
put is not a trivial matter. However, the explosion of data
(and modelling efforts) regarding the genetic and bio-
chemical details of autoinduction in E. coli and numerous
other bacterial species should promote improved under-
standing.

In particular, the development of signal transduction
pathways as targets for metabolic engineering is likely to
find widespread appeal as the importance of global regu-
lators becomes more developed. That is, effective meta-
bolic engineering strategies that define and manipulate
control points must begin to incorporate a hierarchical
structure corresponding to the same structure already
present in microorganisms. In the absence of such a hier-
archical structure, both near and distant pleiotropic effects
that plagued early metabolic engineering studies [79] will
likely continue to confound researchers. Among the at-
tractive targets that build on this objective are sigma fac-
tors in bacteria [83] and molecular regulators or
associated complexes (e.g., chaperones) that control mac-
romolecular synthetic processes. Also attractive are signal
transduction pathways that converge on global transcrip-
tional regulators (e.g., quorum circuitry, as reviewed
here), which thereby indirectly control the assembly of
holoenzymes and other key metabolic controllers. These
targets first enable a favourably altered global landscape
that can then be fine-tuned by manipulating specific met-
abolic enzymes and pathways of enzymes. Finally, in-
creased knowledge of these regulatory circuits (e.g.
quorum) and the role of the individual proteins within
the circuit should help to enable additional strategies for
cross-wiring or inverse metabolic engineering [91] of the
quorum circuit for improved cellular function.
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