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Abstract 

Background  Genome-scale metabolic models (GEMs) serve as effective tools for understanding cellular phenotypes 
and predicting engineering targets in the development of industrial strain. Enzyme-constrained genome-scale meta-
bolic models (ecGEMs) have emerged as a valuable advancement, providing more accurate predictions and unveiling 
new engineering targets compared to models lacking enzyme constraints. In 2022, a stoichiometric GEM, iDL1450, 
was reconstructed for the industrially significant fungus Myceliophthora thermophila. To enhance the GEM’s perfor-
mance, an ecGEM was developed for M. thermophila in this study.

Results  Initially, the model iDL1450 underwent refinement and updates, resulting in a new version named iYW1475. 
These updates included adjustments to biomass components, correction of gene-protein-reaction (GPR) rules, 
and a consensus on metabolites. Subsequently, the first ecGEM for M. thermophila was constructed using machine 
learning-based kcat data predicted by TurNuP within the ECMpy framework. During the construction, three versions 
of ecGEMs were developed based on three distinct kcat collection methods, namely AutoPACMEN, DLKcat and TurNuP. 
After comparison, the ecGEM constructed using TurNuP-predicted kcat values performed better in several aspects 
and was selected as the definitive version of ecGEM for M. thermophila (ecMTM). Comparing ecMTM to iYW1475, 
the solution space was reduced and the growth simulation results more closely resembled realistic cellular pheno-
types. Metabolic adjustment simulated by ecMTM revealed a trade-off between biomass yield and enzyme usage 
efficiency at varying glucose uptake rates. Notably, hierarchical utilization of five carbon sources derived from plant 
biomass hydrolysis was accurately captured and explained by ecMTM. Furthermore, based on enzyme cost considera-
tions, ecMTM successfully predicted reported targets for metabolic engineering modification and introduced some 
new potential targets for chemicals produced in M. thermophila.
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Conclusions  In this study, the incorporation of enzyme constraint to iYW1475 not only improved prediction 
accuracy but also broadened the model’s applicability. This research demonstrates the effectiveness of integrating 
of machine learning-based kcat data in the construction of ecGEMs especially in situations where there is limited 
measured enzyme kinetic parameters for a specific organism.

Keywords  Enzyme-constrained model, Myceliophthora thermophila, Metabolic engineering, Machine learning, 
Carbon source hierarchy utilization

Background
Myceliophthora thermophila, a thermophilic filamentous 
fungus, thrives at high temperatures (45–50 ℃) which 
possesses a remarkable ability to secrete various glyco-
side hydrolases and auxiliary oxidation enzymes, mak-
ing it an efficient plant biomass degrader [1, 2]. These 
unique characteristics make M. thermophila a highly 
promising candidate for biotechnological applications in 
biomass conversion and high-temperature fermentation 
[2]. Notably, M. thermophila has been engineered to be a 
cell factory for the production of enzyme [3] and various 
chemicals, including fumarate [4], succinic acid, malate 
[5], malonic acid [6], 1,2,4-butanetriol [7] and ethanol [8, 
9]. Additionally, efforts have been made to engineer this 
fungus to be an outstanding consolidated bioprocessing 
(CBP) strain to produce chemicals from biomass sources 
[5, 10].

Genome-scale Metabolic Models (GEMs) are effec-
tive tools for elucidating cellular phenotypes and 
predicting potential engineering targets to guide devel-
opment of industrial strains [11–13]. In 2022, a manu-
ally curated genome-scale metabolic model, iDL1450, 
was constructed for M. thermophila [14]. With the help 
of iDL1450, an optimized rational design for important 
bulk chemicals was simulated and metabolic differences 
under different temperature conditions were analyzed. 
However, GEMs only consider stoichiometric con-
straints, which may not accurately capture the intracel-
lular conditions. To enhance the performance of GEMs, 
the integration of enzyme constraints into the models 
has been explored. Several methods have been devel-
oped to incorporate the enzyme constraints, consider-
ing enzyme concentration, enzyme catalytic efficiency, 
and enzyme molecular weight [15–21]. In 2007, the first 
mathematical framework, Flux Balance Analysis with 
Molecular Crowding (FBAwMC), was established by 
Beg et al. taking into account enzyme constraints based 
on macromolecular crowding [22]. FBAwMC imposes 
constraints on enzyme concentrations at a physical level 
by introducing crowding coefficients, thereby achieving 
an overall constraint on enzyme activity. Subsequently, 
several methods, such as MOMENT [23], GECKO [24], 
AutoPACMEN [25], and ECMpy [17], has been devel-
oped to integrate enzyme constraints into GEMs.

In 2017, based on FBAwMC, Sánchez et al. developed 
the GECKO toolbox, which extends GEMs by adding 
new rows to the S-matrix that represent the enzymes and 
new columns representing each enzyme’s usage [24]. The 
enzyme-constrained GEM (ecGEM) ecYeast7 revealed 
improved predictive performance compared with the 
Yeast7 and identified enzyme limitation as a major driv-
ing force behind enzymatic protein reallocation. Bekiaris 
et al. Combined the MOMENT and GECKO methods to 
introduce AutoPACMEN, a method capable of automati-
cally retrieving enzyme data from the BRENDA [26] and 
SABIO-RK [27] databases, marking a significant step in 
automating ecGEM construction [25]. Additionally, in 
2021, Mao et al. presented ECMpy, an automated method 
for ecGEM construction, which simplified the work-
flow without modifying the S-matrix [17]. ECMpy was 
employed to construct an ecGEM for Escherichia coli, 
demonstrating improved prediction accuracy for vari-
ous cellular phenotypes [17]. Subsequently, ECMpy was 
utilized to develop ecGEMs for Bacillus subtilis [20] and 
Corynebacterium glutamicum [19], providing more pre-
cise predictions and guiding the rational design of micro-
bial cell factories.

In this study, we first updated and modified iDL1450 
to a new version called iYW1475. Based on this GEM, 
an enzyme-constrained model for M. thermophila was 
constructed using the ECMpy workflow. During the con-
struction, enzyme turnover numbers (kcat) were gath-
ered in three distinct methods (AutoPACMEN [25], 
DLKcat [28] and TurNuP [29]), resulting in three ver-
sions of ecGEMs (eciYW1475_AP, eciYW1475_DL and 
eciYW1475_TN). After comparison, eciYW1475_TN 
was selected as the final ecGEM version for M. ther-
mophila (ecMTM). Simulation of substrate hierarchy uti-
lization and prediction of metabolic engineering targets 
were performed using ecMTM.

Methods
Measurements of RNA and DNA content in M. thermophila
In order to determine RNA and DNA content in M. ther-
mophila, the wild-type strain ATCC 42464 was grown 
on Vogel’s minimal medium supplemented with 2% glu-
cose (GMM) containing 1.5% agar at 35 ℃ for 7  days 
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to obtain mature conidia. Conidia was inoculated into 
50 mL GMM to a final concentration of 1×106 conidia/
mL in a 250-mL Erlenmeyer flask. Then, liquid cultures 
were incubated under 45 ℃ at 150 rpm in a rotary shaker 
for 20 h. RNA content was quantified using the method 
described in report [30, 31]. A 2 mL sample was collected 
and certificated at 10,000×g for 5  min. The resulting 
pellet was washed three times with 3 mL of cold 0.7 M 
HClO4. Subsequently, the mycelium was resuspended in 
3 mL of 0.3 M KOH and incubated at 37 ℃ for 60 min 
with occasional shaking. Following cooling to room tem-
perature, the samples were neutralized by adding 1.0 mL 
3  M HClO4, followed by centrifugation. The superna-
tant was collected, and the pellet underwent two washes 
with 4 mL of cold 0.5 M HC1O4. The supernatants were 
combined, and the volume was adjusted to 15  mL with 
0.5 M HClO4. Finally, the samples were clarified by cen-
trifugation, and the absorbance A260nm was measured 
using a UV spectrometry (Nanodrop 2000c spectropho-
tometer). For the determination of biomass dry weight, 
mycelium was collected using vacuum filtration, washed 
three times with distilled water, and rapidly frozen in liq-
uid nitrogen. Then the biomass samples were lyophilized 
under − 40 ℃ until a constant weight was achieved.

To measure DNA content, approximately 0.01  g of 
lyophilized mycelium was ground into powder in liquid 
nitrogen in a mortar. Following this, 1  mL extraction 
buffer (200 mM Tris·HCI pH 8.5, 250 mM NaCl, 25 mM 
EDTA, 0.5% SDS) [32] was added and incubated at 60 ℃ 
for 30 min. The sample was subjected to two extractions 
by adding an equal volume of phenol:chloroform:isoamy 
lalcohol (25:24:1, v/v/v) with certification at 10,000×g for 
10 min. The supernatant was mixed with 1/10 volume of 
3 M sodium acetate (pH 5.3) and 2.5 volumes ethanol to 
precipitate DNA at −  20 ℃ for 1  h. After precipitation, 
the DNA was resuspended in TNE (1  M NaCl, 10  mM 
EDTA, 0.1 M Tris·HCl, pH 7.4) and treated with RNase, 
followed by a second precipitation and wash to remove 
degraded RNA. Finally, the DNA content was deter-
mined using a Nanodrop spectrophotometer.

Model update and format modification
Prior to establishing ecGEM, the initial model iDL1450 
underwent comprehensive updates and format modifica-
tions to align with ECMpy requirements. In detail, bio-
mass components were adjusted based on experimental 
data (Additional file  1: Table  S1). Precise corrections 
were applied to RNA, DNA, protein and amino acid con-
tent [33], according to measured data. Subsequently, the 
content of lipids and cell wall was adjusted according to 
literatures [34] and [30], respectively.

Some redundant metabolites were identified by their 
corresponding IDs and names and were manually consol-
idated into singular entities (Additional file 2: Table S2). 
Besides, gene-protein-reaction (GPR) relationships were 
checked and updated based on experiment data from 
previous reports [4, 7, 35] alongside KEGG annotation 
[36], mainly including glycolysis, tricarboxylic acid cycle 
(TCA) and oxidative phosphorylation pathways (Addi-
tional file  3: Table  S3). After the revision, gene number 
was increased from 1450 to 1475 and the initial model 
was renamed iYW1475.

To meet requirement of ECMpy, several changes had 
been made. Primarily, metabolite names were mapped to 
those in BiGG database [37] using KEGG [36] identifier, 
CHEBI IDs [38] and metabolite names (Additional file 4: 
Table  S4). Then the format of modified GEM was con-
verted from XML to JavaScript Object Notation (JSON) 
format. Furthermore, protein IDs in UniProt database 
[39] were collected and integrated into JSON format 
model as a part of gene annotation.

Construction of ecGEM and calibration of enzyme 
kinetic parameters
The ecGEM was constructed based on iYW1475 using 
the ECMpy workflow (see Fig.  1). Initially, revers-
ible reactions were transformed into pairs of irrevers-
ible reactions, and reactions catalyzed by multiple 
isoenzymes were segregated into distinct reactions. The 
enzyme mass fraction (f) was determined as 0.55, calcu-
lated using Eq. (1) based on unpublished proteomic data 
measured in our lab, where Ai and Aj represent the abun-
dances (mole ratio) of the i-th protein (p_num represents 
proteins expressed in the model) and j-th protein (g_num 
represents proteins expressed in the whole proteome of 
M. thermophila), respectively; MWi is molecular weight 
of an enzyme catalyzing reaction i. Additionally, enzyme 
subunit information was sourced from the ‘Interaction 
information’ section in the UniProt database (see Addi-
tional file 5: Table S5).

For enzyme kinetic parameter data, three methods 
were employed: AutoPACMEN was utilized to col-
lect enzyme kinetic parameter data based on EC num-
bers, and machine learning-based tools (DLKcat [28] 
and TurNuP [29]) were used to predict enzyme kinetic 
parameter information. Finally, the enzyme-constrained 
model was developed by incorporating enzyme con-
straints (see Eq.  2) into GEM, where vi represents flux 
of i-th reaction in the model; σi denotes the saturation 
coefficient for i-th enzyme, with an average value of 0.5 
assigned to all enzymes; ptot represents the total protein 
fraction (0.4653) in M. thermophila and f represents the 
mass fraction of enzymes; kcat,i represents the turnover 
number of the enzyme catalyzing reaction i.
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To enhance the alignment between model predictions 
and experimental data, additional fine-tuning of the 
original kcat values was necessary for the enzyme-con-
strained model. The iterative calibration for kcat was car-
ried out utilizing two methods outlined in ECMpy [17]: 
the enzyme usage method and the 13C flux consistency 
method, relying on measured 13C flux data [33].

Phenotype phase plane (PhPP) analysis
Cells deploy distinct metabolic strategies contingent 
upon varying oxygen and glucose levels. To simulate 
this dynamic cellular responses, PhPP analysis was con-
ducted to explore metabolic behavior [40]. During the 
analysis, uptake flux ranges for oxygen and glucose were 
set to 0–50  mmol/gDW/h and 0–10  mmol/gDW/h, 

(1)f =

p_num∑

i=1

Ai MWi

/
g_num∑

j=1

Aj MW j

(2)
n∑

i=1

vi ∗MWi

σi ∗ kcat,i
≤ ptot ∗ f

respectively. Parsimonious Flux Balance Analysis (pFBA) 
was used for PhPP analysis with the objective of maxi-
mum biomass [41].

Flux variability analysis (FVA)
Flux balance analysis (FBA) using linear programming 
with GEMs might generate diverse optimal solutions for 
the same objective value [42, 43]. To assess the changes in 
solution space after introducing enzyme constraint, flux 
variability ranges between iYW1475 and ecGEM were 
compared using FVA method [43] with some modifica-
tions [19]. Specifically, for reactions involving isozymes, 
the maximal flux variability range within the isozymes 
was used (Eq.  (3)). For reversible reactions in ecGEMs, 
the corresponding flux variability ranges were solved 
using Eq.  (4) [19], where vmax

i,isoj and vmin
i,isoj represent the 

maximum and minimum fluxes, respectively, of the j-th 
reaction among the reactions associated with isozyme 
i; vmax

i and vmin
i  represent the maximum and minimum 

fluxes of reaction i; vmax
i,isoj and vmin

i,REV  represent the maxi-
mum and minimum fluxes of the reversible reaction i.

Fig. 1  Workflow for the construction of eciYW1475_AP, eciYW1475_DL and eciYW1475_TN
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Metabolic adjustment simulation
GEMs or ecGEMs were always employed to investigate 
and explicate metabolic adaptations [15–21]. In this 
study, metabolic adjustment was simulated using ecMTM 
solving by pFBA to maximize biomass production 
with substrate uptake rates ranging from 0 to 5  mmol/
gDW/h. To further elucidate the metabolic adaptation to 
varying glucose uptake rates, detailed explorations were 
performed, encompassing alterations in biomass yield 
(Eq. 5), where vbiomass represents the flux of biomass and 
vglucose denotes the glucose uptake rate, MWglucose is the 
molecular weight of glucose; enzyme efficiency for bio-
mass synthesis ( εbiomass , Eq.  6), where Emin, biomass was 
determined using the minimum enzyme amount algo-
rithm of ECMpy for biomass synthesis; energy synthesis 
enzyme cost (Eq. 7), where Ereaction for ATP production, i rep-
resents the enzyme level of the i-th ATP production reac-
tion, and Vnet_generated_ATP, i represents the flux of the i-th 
ATP production reaction; and oxidative phosphorylation 
ratio (proportion of ATP produced by oxidative phos-
phorylation to the total ATP production) [20].

Substrate hierarchy utilization measured in vivo
During cellular growth on various carbon sources, a hier-
archy exists in their utilization. Utilization pattern of five 
carbon sources in M. thermophila was measured in this 
study. For measurement consumption of carbon sources, 
inoculation of M. thermophila ATCC42464 conidia into 
100 mL 1 × Vogel’s minimal medium supplemented with 
five carbon sources (glucose, xylose, galactose, arab-
inose, cellobiose, 0.5% (w/v) for each substrate) to a final 
concentration of 1 × 106 conidia/mL in a 250-mL Erlen-
meyer flask. Then the liquid cultures were incubated at 
45 ℃ and 150 rpm in a rotary shaker. Sample was centri-
fuged at 10,000×g for 5 min and the supernatant was fil-
tered with 0.22-μm cellulose acetate syringe filters before 
analysis. The concentration of cellobiose was determined 

(3)FV i = max(vmax
i,isoj − vmin

i,isoj), j ∈ m

(4)FV i = (vmax
i − vmin

i )− (vmax
i,REV − vmin

i,REV )

(5)Biomass yield =
vbiomass

vglu cos e ∗ MWglu cos e

(6)εbiomass =
vbiomass

Emin, biomass

(7)

Energy sysnthesis enzyme cost =
∑n

i=1

Ereaction for ATP production, i

Vnet_generated_ATP, i

by HPLC (e2695; Waters, Manchester, United Kingdom) 
equipped with a Waters 2414 refractive index (RI) detec-
tor and an Aminex HPX-87H column (Bio-Rad) at 35 ℃; 
5 mM H2SO4 was used as the mobile phase with constant 
flow rate 0.5  mL/min. Other carbon sources concentra-
tions were determined by an ICS6000 high-performance 
anion exchange chromatography system equipped with 
a Dionex CarboPac™ PA200 column (3 × 250  mm), a 
pulsed amperometric detector (HPAEC-PAD) featuring a 
gold working electrode and a silver/silver chloride refer-
ence electrode (Thermo Fisher Scientific, Waltham, MA, 
USA). The column temperature was 30 ℃, the injection 
volume was 10 μL, and the flow rate was 0.3  mL/min. 
The mobile phases were 200 mM NaOH (A) and 10 mM 
NaOH (B).

Substrate hierarchy utilization simulated in silico
In a recent study, Wang et al. developed a coarse-grained 
model to explain the sequential consumption of two 
carbon sources, providing a quantitative framework for 
microbial carbon source utilization [44]. Here, substrate 
hierarchy utilization of carbon sources for M. thermoph-
ila were explained using ecGEM in a quantitative frame-
work. The enzyme efficiency in producing 12 biomass 
precursor metabolites G6P (Glucose 6-phosphate), F6P 
(Fructose 6-phosphate), G3P (Glyceraldehyde 3-phos-
phate), 3PG (Glycerate 3-phosphate), PEP (Phospho-
enolpyruvate), PYR (Pyruvate), ACCOA (Acetyl-CoA), 
OAA (Oxaloacetate), AKG (2-Oxoglutarate), SUCC (Suc-
cinate), E4P (Erythrose 4-phosphate) and R5P (Ribose 
5-phosphate) for five distinct carbon sources was calcu-
lated using ecMTM with substrate carbon atom uptake 
rate setting at 15  mmol/gDW/h. Then a comparative 
analysis was conducted to determine the order of sub-
strate utilization. The enzyme efficiency for substrate 
synthesis precursors ( εbiomass precursor ) is calculated using 
Eq. (8):

where vbiomass precursor and Emin, precursor respectively rep-
resent the flux of biomass precursor and the minimum 
enzyme cost for biomass precursor synthesis.

Prediction of metabolic engineering targets
A distinctive feature of ecGEM lies in its capability to cal-
culate the enzyme cost of reactions, facilitating the iden-
tification of key enzymes within pathways [19]. In this 
study, potential modification targets were identified using 
two methods: one is enzyme cost-based sorting method 
(Method 1) in which the first 15 proteins were classified 
as top-demanded proteins and selected as potential tar-
gets for metabolic engineering; The second is the enzyme 

(8)εbiomass precursor=
vbiomass precursor

Emin, precursor
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cost differences in different conditions (HGLP (high 
growth low product generation)/LGHP (low growth high 
product generation)) method (Method 2, reactions with a 
flux greater than 1 mmol/gDW/h are selected as poten-
tial targets for engineering modifications (HGLP involves 
the flux at biomass = 10%, while LGHP involves the flux 
at biomass = 100%) [19].

Statistical analysis
All experiments were carried out in three independent 
repeated assays.

Results
Model update and format modification
The biomass components in iDL1450 were adjusted 
based on measured data for protein, RNA, and DNA con-
tent. Subsequent modifications of additional components 
were based on literature data, all of which are detailed 
in the supplementary file (Additional file  1: Table  S1). 
After that, 96 duplicate metabolites were identified and 
consolidated into singular entities with identical identifi-
ers and names (Additional file 2: Table S2). Additionally, 
gene-protein-reaction (GPR) rules, particularly reactions 
with ‘and’ relationships, were modified using informa-
tion from literature and KEGG data. A total of 29 reac-
tions with ‘and’ relationships in their GPR associations 
were revised (Additional file 3: Table S3). Through itera-
tive corrections, a refined model, named iYW1475, was 
obtained containing 1475 genes, 2591 reactions, and 
1700 unique metabolites. Additionally, format adjust-
ments were executed to comply with ECMpy criteria, and 
leveraging multiple identifiers mapping, 55.2% of metab-
olite IDs were substituted with BiGG IDs (Additional 
file 4: Table S4). After these updates and format modifi-
cations, iYW1475 was transitioned from XML format to 
JSON format (all workflows are showed in Fig. 1).

Construction of ecGEM for M. thermophila
Before integrating enzyme kinetic parameters, reac-
tions in iYW1475 were transformed based on ECMpy 
workflow. After the transformation, the model was 
expanded to 6690 reactions (Table  1). Then, enzyme 
data were collected using AutoPACMEN method, accu-
mulating a total of 4481 kcat data ranging from 10–3 to 
106, leaving 1059 reactions without enzyme data. The 
missing values were filled with median value of all 
AutoPACMEN-collected kcat data (Additional file  6: 
Table  S6). Additionally, the molecular weights of the 
enzymes spanned from 8 to 1800  kDa (Fig.  2B). The 
constructed ecGEM from this workflow was denoted as 
eciYW1475_AP.

However, 19.1% of kcat data cannot be collected 
through the AutoPACMEN method. Furthermore, 
only one kcat value originated from the native spe-
cies, while the remaining values were obtained from 
other species, indicating a low availability of data 
for enzyme kinetic parameters. Therefore, machine 
learning-based methods DLKcat and TurNuP were 
employed to predict kcat data. DLKcat captured 67.7% 
kcat data while TurNuP successfully predicted all kcat 
values for reactions in iYW1475 (Additional file  6: 
Table  S6). Consequently, a second ecGEM was con-
structed using DLKcat predicted data with missing 
values filled in using the median of DLKcat predicted 
kcat, resulting in eciYW1475_DL. Meanwhile, TurNuP-
predicted data was chosen to construct a third ecGEM, 
named eciYW1475_TN. The distribution of kcat values 
(Fig.  2A) indicated a more concentrated kcat distribu-
tion in eciYW1475_TN and eciYW1475_DL, ranging 
from 10−2 to 103 compared to those in eciYW1475_AP.

Next, kcat values were calibrated using enzyme usage 
method until the growth rate approximated the meas-
ured value (Additional file 7: Table S7). After that, the 
13C flux consistency method was employed to ensure 
flux consistency between ecGEM and measured fluxes 
(Additional file  7: Table  S7). After the calibration of 
the kcat values, growth and flux predictions were com-
pared. Results showed that (Fig.  2C) the predicted 
biomass fluxes in eciYW1475_AP and eciYW1475_
TN were both similar to experimental value. However, 
for eciYW1475_DL, the predicted biomass was much 
smaller than the experimental value due to missing 
values being filled with the median value of 7.8391 s−1 
leading to an over-constrained model. Compared with 
eciYW1475_DL and eciYW1475_AP, eciYW1475_
TN indicated a higher consistency with the 13C data 
(Fig.  2C, Additional file  8: Table  S8). Discrepan-
cies were observed between the predicted fluxes 
and the experimental data for eciYW1475_DL and 

Table 1  Basic information of four models

Model Reactions Source of kcat Number of kcat

iYW1475 2591 – 0

eciYW1475_AP 6690 BRENDA or SABIO-RK 4481

Median imputation 1059

eciYW1475_DL 6690 DLKcat 3251

BRENDA or SABIO-RK 52

Median imputation 2237

eciYW1475_TN 6690 TurNuP 5519

BRENDA or SABIO-RK 21
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eciYW1475_AP (Fig.  2C, Additional file  8: Table  S8). 
It was noted that some predicted fluxes for the TCA 
pathway were zero when the glucose uptake rate was 
3.0676  mmol/gDW/h. Considering kcat coverage and 
performance of these three ecGEMs, the revised 
eciYW1475_TN was then used as the final version of 
ecGEM for M. thermophila, named ecMTM. All sub-
sequent simulations were carried out with ecMTM.

Introducing enzyme constraints reduced 
the solution space and improved prediction 
accuracy
When a GEM is given a specific objective, solving it 
through FBA often results in alternate optimal solutions, 
which constitutes a limitation of GEMs [43]. To address 
this challenge and narrow the range of flux variability, 
various strategies, including the incorporation of enzyme 
constraints, have been explored in previous studies [17, 
19–21]. In this study, the cumulative flux variability 

Fig. 2  Basic information of eciYW1475_AP, eciYW1475_DL and eciYW1475_TN. A Cumulative distribution of kcat values for three ecGEMs. B 
Cumulative distribution of molecular weights. C Flux comparison of three ecGEMs
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ranges between iYW1475 and ecMTM were compared 
using Flux Variability Analysis (FVA) with setting glucose 
uptake rate at 10 mmol/gDW/h. Results demonstrated 
that a substantial two-order reduction in the median 
flux variability range after introducing enzyme con-
straints. Furthermore, cumulative distribution indicated 
that there were 5% with totally variable flux (reactions 
that can carry any flux between − 1000 and 1000 mmol/
gDW/h) in iYW1475, while no such extreme variability 
range was observed in ecMTM (Fig. 3A, Additional file 9: 
Table S9).

In experimental condition, growth rate of M. ther-
mophila is 0.2573  h−1 with maximum glucose uptake 
rate of 3.0676 mmol/gDW/h when abundant oxygen and 
glucose are supplied [33]. The PhPP analysis of iYW1475 
exhibited linear growth as a function of carbon source 
and oxygen uptake rates (Fig. 3B), which was inconsistent 

with experimental observations. In contrast, ecMTM 
constrained the maximal growth rate with increasing car-
bon source availability (Fig.  3C), indicating a significant 
reduction in the solution space. All these results sug-
gest that incorporating enzyme constraints into GEMs 
make the simulation results closer to realistic cellular 
phenotypes.

Simulating metabolic strategy adjustment
Enzyme-constrained models provide valuable insights 
into how cells adjust their metabolic pathways based 
on enzyme resources in response to increasing carbon 
source uptake. Previous studies have employed ecGEMs 
to simulate the metabolic adjustments in Yeast [24] and 
E. coli [17], elucidating overflow metabolism phenom-
ena in these organisms. Simulation of metabolic strategy 
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Median flux variability reduction

Totally variable flux

Fig. 3  Simulation of solution space and growth rate. A Cumulative distribution of flux variability at high growth rates for iYW1475 and ecMTM. 
Simulation of growth rates at different glucose and oxygen uptake rates using iYW1475 (B) and ecMTM (C)
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adjustment were conducted with a glucose uptake rate 
ranging from 0 to 6 mmol/gDW/h.

The results illustrated that metabolic pathways were 
dynamically adjusted with an increase in glucose 
uptake rate. These adjustments can be divided into sub-
strate-limited, metabolic adjustment stage, and meta-
bolic overflow stage (Fig. 4A). In the first stage (glucose 
uptake rate less than 2.5  mmol/gDW/h), the growth 
rate exhibited a linear relationship with glucose uptake, 
aligning with the behavior observed in iYW1475 
(Fig.  4A, B). In the second stage (glucose uptake rate 
2.5 to 5  mmol/gDW/h), due to the enzyme resource 
constraint, growth rate was decreased compared with 
iYW1475 along with the gradual increase of substrate 
supply (Fig.  4B). Meanwhile, metabolic pathways were 
adjusted to these with higher enzyme efficiency and 
more carbon loss resulting in lower biomass yield 
(Fig. 4B, C). Moving on to the third stage, as substrate 
supply continued to increase, a shift towards a more 
enzymatically efficient ethanol production pathway was 

observed. This shift resulted in an increase in ethanol 
production flux from 0 to 2.17 mmol/gDW/h. Overall, 
the results depicted a trade-off between enzyme effi-
ciency and growth rate.

To investigate energy pathway regulation strate-
gies during metabolic adjustments, energy synthesis 
enzyme costs and oxidative phosphorylation rates were 
calculated [20]. Cells showed a preference for energy-
efficient respiratory oxidative phosphorylation at low 
growth rates, particularly in the substrate limited stage 
(Fig. 4D, Additional file 10: Table S10). However, as the 
glucose uptake rate increased during the metabolic 
adjustment stage, the ratio of oxidative phosphoryla-
tion with high enzyme consumption decreased, result-
ing in a decline of enzyme cost for energy synthesis 
(Fig. 4D, Additional file 10: Table S10). Due to enzyme 
limitation, more energy was produced through the gly-
colysis pathway. The regulation of the energy pathway 
indicated that enzyme limitation is a major driving 

Fig. 4  Simulation of metabolic adjustments. A Metabolic flux map of the three stages. B Comparison of metabolic adjustments between iYW1475 
and ecMTM. C Trade-off phenomenon simulated by ecMTM. D Energy synthesis enzyme cost and energy production ratio of oxidative 
phosphorylation simulated by ecMTM
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force for the reallocation of enzymatic proteins for 
energy production.

Simulation of substrate hierarchy utilization
As a highly efficient cellulose and hemicellulose 
degrader, M. thermophila exhibits proficiency in uti-
lizing various oligosaccharides and monosaccharides 
derived from plant biomass hydrolysis. The primary 
degradation products include cellobiose, glucose, 
xylose, arabinose and galactose [45]. Investigating the 
preferential utilization of five substrates in M. ther-
mophila, essential for environmental adaptation, was 
performed by simulating hierarchical substrate utili-
zation using ecMTM from the perspective of enzyme 
efficiency (substrate carbon atom uptake was scaled to 
15 mmol/gDW/h). According to the assessment princi-
ples [44], if the enzyme efficiency for synthesizing bio-
mass precursors from one substrate is higher than that 
from another substrate, the former is sequentially con-
sumed before the latter; otherwise, they are deemed to 
be simultaneously consumed (co-utilization).

There are mainly two pathways for cleaving cellobi-
ose in M. thermophila, namely, hydrolytic pathway and 
phosphorolytic pathway [35] (Fig. 5A). In the hydrolytic 
pathway, β-glucosidase catalyzes one cellobiose molecule 
into two molecules glucose, while in the phosphorolytic 
pathway, cellobiose phosphorylase converts one cellobi-
ose molecule into one glucose molecule and one glucose-
1-phosphate (G1P) molecule. Glucose generated in these 
pathways is further catalyzed into G6P with consum-
ing ATP whereas G1P, produced in the phosphorolytic 
pathway, is catalyzed into G6P by phosphoglucomutase 
without ATP consumption. In comparison to the hydro-
lytic pathway, 11 biomass precursors, excluding PYR, are 
synthesized from one cellobiose molecule through the 
phosphorolytic pathway, which consumes one less mol-
ecule of ATP. This reduction in ATP usage saves enzyme 
resources by 12.5% (in the case of G6P), as ATP produc-
tion involves large amounts of enzyme resource through 
oxidative phosphorylation (Additional file 11: Table S11). 
As a result, there is a higher enzyme efficiency in synthe-
sizing 11 biomass precursors from cellobiose compared 
with glucose (Fig. 5B). However, the hydrolytic pathway is 
chosen for pyruvate synthesis from cellobiose since ATP 
production and consumption are balanced through this 
pathway. The cellobiose hydrolytic pathway requires an 
additional β-glucosidase, accounting for 4.5% of the total 
enzyme resources, leading to lower enzyme efficiency 
in PYR synthesis compared with glucose. Meanwhile, 
enzyme efficiencies for synthesizing all the 12 biomass 
precursors with cellobiose and glucose are higher than 
those with xylose, galactose and arabinose. Therefore, 

glucose and cellobiose are first co-utilized showing a 
preferential utilization for the other three sugars.

Concerning galactose and xylose, the synthesis enzyme 
efficiency with the former is higher than that of the lat-
ter for 10 biomass precursors and is lower for 2, indicat-
ing a co-utilization relationship between the two sugars 
(Fig. 5B). Additionally, all enzyme efficiencies for the 12 
precursors with xylose and galactose are higher than that 
of arabinose, resulting in arabinose being utilized last. 
Compared with xylose, there are two additional enzyme 
reactions for biomass precursor synthesis using arabinose 
which constitute 4.7% (in the case of G6P) of the total 
enzyme resources, resulting in lower enzyme efficiency 
(Additional file  11: Table  S11). Overall, these simula-
tion results are consistent with experimental measure-
ments illustrated in Fig. 5C. The quantitative simulation 
elucidates the hierarchical utilization of different carbon 
sources derived from plant biomass in this fungus from 
the perspective of protein resource allocation.

Exploration of metabolic engineering targets 
based on enzyme cost
GEMs function as valuable predictive tools for identify-
ing potential targets in metabolic engineering. In the case 
of B. subtilis, an ecGEM was applied to identify novel 
gene deletion targets, resulting in an increased yield of 
poly-γ-glutamic acid [18]. Based on enzyme costs, two 
methods (outlined in Method section) were employed 
to predict potential targets for three products: ethanol, 
malate and fumarate. The biosynthetic pathways for these 
three products were illustrated in Fig. 6A. In total, 12 out 
of 32 previously overexpressing targets were predicted 
by ecMTM using the first method as depicted in Fig. 6B. 
Modifying these 12 targets showed notable improve-
ments in the production of target chemicals [4, 5, 8, 9].

Target prediction method 2 presents a modification 
strategy that includes both enhancing and weakening 
targets (Additional file 12: Table S12). Six enhancing tar-
gets for ethanol were successfully predicted and verified 
by overexpression target genes [8, 9]. Among these pre-
dicted targets, both pdc (pyruvate decarboxylase encod-
ing gene) and adh (alcohol dehydrogenase encoding 
gene) were identified by these two methods, representing 
the final crucial steps in ethanol synthesis. Overexpress-
ing PDC, which decarboxylates pyruvate to acetaldehyde, 
and ADH, which reduces acetaldehyde to ethanol, can 
directly enhance the ethanol synthesis capability. This 
strategy has been supported by previous studies [8, 9]. 
Additionally, two new enhancing targets, eno and gapdh, 
were predicted but have not been modified yet.

For malate, four enhancing targets were identified, 
including pyc (pyruvate carboxylase encoding gene), 
mdh (malate dehydrogenase encoding gene), and hxt 
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(hexose transporter encoding gene), predicted by both 
methods. In microbes, PYC catalyzes the conver-
sion of pyruvic acid to oxaloacetic acid with the fixa-
tion of CO2; the oxaloacetic acid is then converted into 
malate by MDH. PYC and MDH are two key steps in 
produce of malate through the reductive tricarboxylic 
acid (rTCA) pathway in cytoplasm [5]. Due to limited 
experiments on fumarate, only two predicted targets by 
these two methods were verified, leaving the remaining 

targets serve as potential objectives for fumarate 
modification.

Notably, among the predicted targets, hxt and eno were 
shared by these three chemicals. HXT is responsible for 
transporting glucose, a key factor in increasing glucose 
uptake. This has been confirmed by studies showing that 
overexpressing HXT can elevate ethanol and malate yield 
[5, 8, 9]. As a vital step of glycolysis, ENO is regarded 
as a key enzyme due to its low kcat. Therefore, eno is a 
potential target to increase precursor metabolite flux 

Fig. 5  Substrate hierarchy utilization simulation. A Substrate utilization pathways for five carbon resources. Metabolites with red background 
represent 12 biomass precursors. B Simulation of substrate hierarchy utilization. Numbers represent enzyme efficiency. C Measured data 
of substrate utilization
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from glycolysis for enhancing product synthesis, which is 
worth trying in future.

In the results predicted by method 2, putative oxaloac-
etate transporter was identified as a weakening target 
which contributes to the enhancement of malate and 
fumarate production. Knocking out this target in Asper-
gillus carbonarius has been shown to boost malate 

production [46], making it a prospective modification 
target for improving malate synthesis. In addition, most 
of predicted weakening targets for these three products 
were focused on the respiratory chain, suggesting that 
modifying these reactions may allocate more enzyme 
resources for product synthesis.

Fig. 6  Metabolic engineering targets prediction for ethanol, malate and fumarate in M. thermophila. A Depicts the biosynthetic pathways 
for ethanol, malate and fumarate in M. thermophila. B Metabolic engineering targets for three products predicted using ecMTM. The targets 
reported in the literature are highlighted in orange. The reactions uccr (Ubiquinol-cytochrome c reductase complex), rs (RNA synthesis complex), 
and rnd (Respiratory-chain NADH dehydrogenase complex) are involved multiple genes
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Discussion
In this research, an enzyme-constrained model ecMTM 
was constructed based on iDL1450 under the ECMpy 
framework. Enzyme turnover number kcat is a fundamen-
tal parameter in the quantitative study of enzyme activ-
ity and is crucial for understanding cellular metabolism, 
physiology, and resource allocation [15–21]. Several 
databases such as BRENDA, UniProt, and SABIO-RK 
offer enzyme parameter queries, while automated pipe-
lines like AutoPACMEN facilitate the automated acquisi-
tion of kcat data for ecGEMs. Besides, kcat values can be 
predicted through methods based on machine learning 
algorithms, such as DLKcat and TurNuP. During con-
struction of ecMTM, three versions of ecGEMs were 
developed using kcat values obtained through AutoPAC-
MEN, DLKcat and TurNuP. After comparison, ecGEM 
constructed using TurNuP-predicted data performed 
better in several aspects and was selected as the final 
version of ecGEM for M. thermophila. Nowadays, the 
machine learning based methods has gradually used in 
ecGEMs with improved performance [28, 47].

The constructed ecMTM demonstrated improved 
accuracy in simulating strain behavior compared to 
iYW1475. Incorporating enzyme constraints into 
iYW1475 notably reduced the solution space, yielding 
predictions closer to experimental observations. How-
ever, there are still some disagreements that could not 
explain by ecMTM. In particular, metabolic strategy 
adjustment simulations within the model revealed an 
ethanol overflow, as was observed in yeast ecGEM [24]. 
Although ethanol overflow is important for biofuel pro-
duction from plant biomass, it is not observed in M. ther-
mophila wild type strain. These discrepancies suggest 
that factors beyond enzyme constraints influence cell 
phenotype. Nonetheless, metabolic adjustment simula-
tion provided insight into potential strategies to increase 
ethanol flux.

Due to enzyme resource limitations and quantified 
enzyme efficiencies, ecMTM could predict hierarchy 
substrate utilization in a quantitative perspective. M. 
thermophila typically found in low-carbon-content soil 
environments requires lignocellulolytic enzymes for lig-
nocellulose degradation [48]. In this niche, the utilization 
of carbon sources with low cost of enzyme is important 
for the survival of M. thermophila. Hierarchy substrate 
utilization was determined in liquid shake flask and 
simulated with ecMTM. The simulation unveiled the 
enzyme-cost-driven hierarchy in substrate utilization 
by M. thermophila. In previously research, Ramkrishna 
et  al. [49] developed a cybernetic model to simulate 
mixed-substrate growth dynamics of E. coli. This model 
utilizes dynamic equations to describe the rates of indi-
vidual reactions in metabolic pathways, taking into 

account substrate concentration, enzyme concentration 
and enzyme activity. It requires a large amount of experi-
mental data to fit model parameters. On the other hand, 
Enzyme efficiency method determines the hierarchical 
utilization of carbon sources by calculating the enzyme 
efficiency for biomass precursors without relying on 
complex dynamic equations or experimental data. Nev-
ertheless, it ignores the dynamic regulation processes in 
metabolic pathways. Therefore, the cybernetic model is 
better suitable for studying the dynamic regulation pro-
cesses of metabolic pathways in biological systems, while 
the enzyme efficiency method is more suitable for pre-
dicting substrate hierarchy utilization.

Based on enzyme costs, metabolic engineering targets 
were predicted using ecMTM. Notably, the first predic-
tion method revealed several shared targets across the 
three products, including hxt and eno. Similarly, the 
second prediction method predominantly highlighted 
targets within the glycolysis pathway to enhance these 
products. These predictions underscore the pivotal role 
of glucose transport and the rapid glycolysis flux in driv-
ing the production of these specific products.

After integration of enzyme constraints, the predictive 
capabilities of GEM were significantly enhanced. As we 
all know, biological systems are extremely complex with 
various constraints and hierarchical regulations. Enzyme 
constraints, though influential, might not comprehen-
sively capture the intricacies of these systems. Further-
more, M. thermophila exhibits special phenotypes, such 
as thermophily and excellent ability of cellulose deg-
radation. To elucidate these characteristics, it may be 
necessary to introduce additional constraints, such as 
temperature constraints, or development of comprehen-
sive metabolic network models like ME models [50] and 
etcGEM models [51].

Conclusion
In this study, an enzyme-constrained genome-scale meta-
bolic model ecMTM was constructed for M. thermophila 
within ECMpy framework using machine learning-based 
kcat data predicted by TurNuP. Simulation results demon-
strated that enzyme constraints could reduce the model’s 
solution space, leading to more realistic pathway predic-
tions. The ecMTM successfully predicted and elucidated 
the hierarchical utilization of five carbon sources derived 
from lignocellulose. Moreover, key enzymes were iden-
tified for three chemicals, providing rational metabolic 
engineering modifications to increase the yield of valu-
able compounds.
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