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Abstract
Background The continuous progress in nanotechnology is rapid and extensive with overwhelming futuristic 
aspects. Through modernizing inventive synthesis protocols, a paradigm leapfrogging in novelties and findings are 
channeled toward fostering human health and sustaining the surrounding environment. Owing to the overpricing 
and jeopardy of physicochemical synthesizing approaches, the quest for ecologically adequate schemes is 
incontestable. By developing environmentally friendly strategies, mycosynthesis of nanocomposites has been alluring.

Results Herein, a novel architecture of binary CuO and TiO2 in nanocomposites form was fabricated using 
bionanofactory Candida sp., for the first time. For accentuating the structural properties of CuTi nanocomposites 
(CuTiNCs), various characterization techniques were employed. UV-Vis spectroscopy detected SPR at 350 nm, and 
XRD ascertained the crystalline nature of a hybrid system. However, absorption peaks at 8, 4.5, and 0.5 keV confirmed 
the presence of Cu, Ti and oxygen, respectively, in an undefined assemblage of polygonal-spheres of 15–75 nm 
aggregated in the fungal matrix of biomolecules as revealed by EDX, SEM and TEM. However, FTIR, ζ-potential 
and TGA reflected long-term stability (− 27.7 mV) of self-functionalized CuTiNCs. Interestingly, a considerable and 
significant biocide performance was detected at 50 µg/mL of CuTiNCs against some human and plant pathogens, 
compared to monometallic counterparts. Further, CuTiNCs (200 µg/mL) ceased significantly the development of 
Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans biofilms by 80.3 ± 1.4, 68.7 ± 3.0 and 55.7 ± 3.0%, 
respectively. Whereas, 64.63 ± 3.5 and 89.82 ± 4.3% antimicrofouling potentiality was recorded for 100 and 200 µg/ml 
of CuTiNCs, respectively; highlighting their destructive effect against marine microfoulers cells and decaying of their 
extracellular polymeric skeleton as visualized by SEM. Moreover, CuTiNCs (100 and 200 µg/ml) exerted significantly 
outstanding disinfection potency within 2 h by reducing the microbial load (i.e., total plate count, mold & yeast, total 
coliforms and faecal Streptococcus) in domestic and agricultural effluents reached >50%.
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Background
Despite the all Earth’s spheres are occupied with micro-
bial populations that exert their best in serving ecosys-
tem beneficially, other indigenous indwellers are also 
pathogenic. Even though some pathogens don’t injure 
humans directly, they are soil-borne, water-borne and 
air-borne pathogens, and their perils thereupon touch 
near or far human health, the ambient ecosystem and 
even the economy [1]. Soil-borne pathogens or phyto-
pathogens, including bacteria, fungi, viruses, protozoa 
and nematodes, are widely disseminated in soil, causing 
lethal alterations in all plant growth phases, post-harvest 
and throughout storage. Thereby, any phytopathogenic 
infection would influence adversely fruits/vegetables’ 
nutritional value, organoleptic quality, half-life and sub-
sequently devastation in crops followed by greater eco-
nomic losses. Let alone the ability of phytopathogens to 
produce mycotoxins and other fungal metabolites that 
directly defeat human health by causing teratogenicity, 
carcinogenicity, hepatotoxicity, nephrotoxicity, reproduc-
tive disorders and immunosuppression [2].

In the same context, inadequate irrigation practices, 
infested farm animal feces and poor human handling 
are the substantial reasons for food-borne microbial 
contamination throughout the whole agricultural and 
subsequent industrial stages till practical consumption. 
Similarly, the improper water disinfection procedures 
and unintended mixing of sewage with drinking water 
pipelines and groundwater generate water-borne diseases 
[3]. Worthwhile, the pathogenic microbes could exist as 
planktonic (free-floating) or sessile (biofilm) phases. Via 
such later prophylactic mode (i.e., biofilm), the cells pose 
a superior resistance to biocidal agents and environmen-
tal stressors; consequently, more complications would 
face all stages of agriculture, the food processing indus-
try, water purification plants and marine industry, as well 
as medical fields, where the biofilms eradication become 
a necessity, else while heavy benignity and economic 
losses would be recorded [4, 5].

Irrespective of the particular contamination pathways, 
taxonomic identities, or varieties involved, microbial 
pollution can eventually become bioavailable through 
food chains resulting in dietary exposure and exerting 
undesirable detrimental impacts on human health and 
socioeconomics. Hereby, the implementation of proper 
management strategies and effective antagonistic mea-
sures is critically important for safeguarding food, water, 
and soil quality against pathogen contamination. Con-
ventionally, a diverse array of synthetic biocidal agents 
and disinfectants, including azoles, chlorine, chlorine 

dioxide, chloramines, aldehydes, phenols, esters, organic 
acids, isothiazolinones, halogens, and oxidizing agents, 
have been utilized to suppress the virulence across a 
broad spectrum of pathogens, as substantiated through 
extensive evidence of inhibitory efficacy across myriad 
application scenarios [2, 6]. However, their residues or 
even their byproducts on plants, fruits, and water and 
also their long-term persistence elicits profound con-
cerns regarding human health, environmental impact 
and ultimately economic burdens. Remarkably, the 
extensive and abuse of synthetic biocide compounds can 
induce selective pressure in pathogens, facilitating muta-
tions, which ending with biocides tolerance phenomena 
; thereby escalating the hazard [7]. Thus, finding of effi-
cient alternatives that are cost-effective, environmentally 
benign with an extensive public acceptance is prerequi-
site from international environmental agencies [2].

The recent progress in nanotechnology has been rapid 
and extensive with overwhelming futuristic aspects by 
modernizing inventive synthesis protocols and character-
ization techniques [8, 9]. The application of engineered 
materials, especially metals and metal oxides, in their 
nanoscale is regarded as one of the most recent prom-
ising solutions for challenging microbial pollution and 
ceasing the dissemination of multidrug-resistant micro-
organisms (MDR) [10]. The enhanced properties (i.e. 
catalytic, magnetic, optical, thermal, biological, etc.) of 
nanostructures promote technologists to develop distinct 
formulations, which find their avenue in diverse realms 
of plant disease management, skin care products, food 
packaging/preservatives, antitumor agents, drug delivery, 
and water disinfection [11–13]. The miniature dimen-
sions and augmented surface-area-to-volume ratios of 
metals/metal oxide nanoparticles grant an enhanced abil-
ity to penetrate microbial cells, inflicting multi-modal 
antimicrobial mechanisms that impede the rapid evolu-
tion of target-specific resistance [14]. Remarkably, the 
strategic integration of geometrically diverse nanoma-
terials into unified composite nanoarchitectures yields a 
collective choir of complementary properties. This syn-
ergistic phenomenon dramatically augments the overall 
functional capabilities and mitigating the limitations of 
individual nanoparticle varieties. Accordingly, these mul-
tifunctional nanocomposite formulations engender man-
ifold impactful advances across an extensive spectrum of 
technical disciplines and commercial sectors [11, 15, 16]. 
Noteworthy mentioning the fruitful multifaceted appli-
cations of metallic nanocomposites in water disinfec-
tion [17], dye degradation [18], phenols, and heavy metal 
detoxication [19, 20], self-healing [20], bio-blocks [21], 

Conclusion The synergistic efficiency provided by CuNPs and TiNPs in mycofunctionalized CuTiNCs boosted its 
recruitment as antiphytopathogenic, antibiofilm, antimicrofouling and disinfectant agent in various realms.
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bio-cement [22, 23], energy storage [24] and bio-implants 
[25].

Different studies reported the efficacy of amalgamation 
between CuO and TiO2 in their nanocomposites (NCs) 
form; assigning such efficiency to elevated synergistic 
activity and their quantum confinement effects, which 
consequently improved antimicrobial and photocata-
lytic performance, relative to their sol counterparts of 
CuNPs and TiNPs [26–28], and [29]. Additionally, their 
low price, higher compatibility, anti-toxicity, chemical 
stability, low band gap (Cu, 1.208  eV p-type; Ti, 3.2  eV: 
3.6  eV n-type) and the whole multi-functionality rein-
forced their application in food nano-packaging, bioap-
plications, antimicrobial photodynamic/ photo-catalytic 
therapeutic and photothermal disinfection [30–32], and 
[21]. Presently, the incorporation of one of their oxides 
in nanocomposite hybrids was agreed by the FDA for 
vast domestic application in drugs, cosmetics, food, 
and food packaging industries as it can lessen or eradi-
cate their toxic impacts [32–34], and [35]. Remarkably, 
almost all published scholars attributable to such bifunc-
tional systems of CuNPs and TiNPs were prepared via 
physicochemical means such as spray pyrolysis, electro-
spinning and chemical reduction [26–28], and [29]. The 
biogenic synthesis route of their nanocomposites (NCs), 
in particular microbial approach, is highly limited or not 
reported. It is plausible to mention the merits of biogenic 
methods symbolizing in their biocompatibility, environ-
mental safety, cost-effective and overlook the utilization 
of temperature, energy, pressure, complicated equipment 
and toxic chemicals and residues [36, 37].

As a biogenic tool, yeasts occupy a prominent posi-
tion as mediators for synthesizing non-metallic, metal-
lic (alloy) and metal oxides NPs either intracellularly or 
extracellularly [38–40]. Let alone their primary and sec-
ondary metabolites, which are the hallmarks of meta-
bolic engineering and synthetic biology in food and 
biopharmaceutical industries [41]. However, their easy-
manipulative culturing, elevated metal bioaccumulation 
potentials, larger biomass with higher yields of metabo-
lites per biomass unit, higher adaptability, diverse detoxi-
cation mechanisms and higher tolerance to suppressors 
positioned them as a platform for novel biotechnological 
applications [42, 43].

In light of the aforementioned, this study focused on 
mycofabrication of functionalized CuNPs, TiNPs and 
their –based nanocomposites (CuTiNCs) in the simulta-
neous existence of Cu and Ti salts. The structural prop-
erties of CuNPs, TiNPs and CuTiNCs were scrutinized 
using physicochemical characterization techniques of 
the transmission electron microscope (TEM), scanning 
electron microscope (SEM), X-ray diffraction (XRD), The 
Energy Dispersive X-ray microanalysis (EDX), UV-Vis 
spectrophotometry, Fourier transform infrared (FTIR), 

zeta potential and thermal gravimetric analysis (TGA). 
Thereafter, the antimicrobial capability of CuTiNCs was 
determined comparatively with the individual CuNPs 
and TiNPs; in addition, the behavior of CuTiNCs in 
prohibiting biofilm development and microfouler were 
evaluated. Moreover, the disinfection strength in eradi-
cating the microbial load (bacteria, fungi and indicator 
organisms) in real environmental samples was assessed 
as well. Interestingly, no investigation to the best of the 
authors’ acquaintance has so far been published concern-
ing microbial synthesis of CuTi hybrid, in particular by 
yeast isolate.

Materials and methods
Materials
The chemicals and media utilized in the current study 
were: DeMan-Rogosa agar (MRS agar) (OXOID), LB 
broth (Sigma Aldrich), Mueller Hinton (MH) agar (Sigma 
Aldrich), Trypticase Soy Broth (TSB) (Sigma Aldrich), 
Plate Count agar (PCA) (Sigma Aldrich), Rose Ben-
gal chloramphenicol (RBCA), (Himedia), Violet Red 
Bile Agar (VRBA) (Sigma Aldrich), m-Enterococcus 
agar (Sigma Aldrich), Cu (NO3)2 (Sigma Aldrich) and 
C12H28O4Ti (Sigma Aldrich).

Methods
Collection of samples, screening and cultural conditions
Several raw milk samples (from cows and buffalos) locally 
produced in Damietta governorate, Egypt were collected, 
evenly mixed, preserved in sterile bottles and placed in 
ice until arrival to the laboratory. As the samples were 
dairy products, the screening process for microbial nano-
factories, to fabricate both nanoparticles and nanocom-
posites (NPs-NCs), were performed using serial dilution 
method on DeMan-Rogosa agar (MRS) agar, with the fol-
lowing ingredients (g/L): 10.0 Peptone, 5.0 Meat extract, 
5.0 Yeast extract, 20.0 D (+)-Glucose, 2.0 K2HPO4, 2.0 
Na2C6H6O7, 5.0 CH3COONa, 0.1 MgSO4, 0.05 MnSO4 
and 15 agar, pH 6.5 ± 0.2, supplemented with 1.5 mM 
of NPs-precursors (i.e., Cu (NO3)2, and C12H28O4Ti). 
After incubation for 5 days at 30  °C, the isolate exhibit-
ing color-changing (dark brown) was selected and con-
sidered as NPs-NCs producer [44]. The selected isolate 
underwent morphological, cultural and microscopic 
characterization. Actually, it exhibited the highest per-
formance in NPs-NCs synthesis on MRS broth, thence, 
the cultural features were determined by aerobic and 
anaerobic incubation on MRS. Besides, its capability to 
grow on different pH ranges was examined by adjusting 
initial MRS broth in the range of 3–10. Moreover, the 
freshly prepared cultures were incubated at 4  °C, 10  °C, 
20  °C, 30  °C, 40  °C, 50  °C, 60 and 70  °C to deduce its 
thermal tolerance. The morphology and dimensions of 
the selected strain was visualized by photomicrographs 
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utilizing scanning electron microscopy (SEM) (JEOL 
JEM-1230, Japan) [44]. Regarding the molecular charac-
terization, it was implemented by amplifying ITS region 
by using ITS-primer sets of (ITS1, 5′- T C C G T A G G T G A 
A C C T G C G G-3′) and (ITS4, 5′ T C C T C C G C T T A T T G A T 
A T G C-3′). The obtained amplicon (∼ 600-base pair (bp) 
DNA) fragment was sequenced by an ABI 3730 auto-
mated sequencer (PerkinElmer/Applied Biosystems (Fos-
ter City, CA, USA). The BLASTn analysis was employed 
to assess the similarity, and its corresponding accession 
number was inquired; the phylogenetic tree was con-
structed by the MEGA- 6 software package via the neigh-
bor-joining (NJ) method with bootstrap analyses for 1000 
replicates [44].

Mycosynthesis approach of NPs-NCs
For detecting intracellular synthesis of NPs-NCs, a yeast 
lawn of 0.5 McFarland (≈ 108 CFU/ml), taken from a pre-
vious freshly prepared culture, was inoculated in 250 
mL Erlenmeyer flasks containing 70 mL of (MRS broth) 
(Oxoid) supplemented with 1.5 mM of (i.e., Cu (NO3)2, 
1.5 mM of C12H28O4Ti and both. The precursors’ concen-
trations were selected based on the minimal inhibitory 
concentration (MIC) test (data not shown) [45]. How-
ever, the extracellular synthesis approach was monitored 
by inoculating cell-free filtrate of fresh culture (100 mL) 
with the exact concentrations of metals’ precursors either 
solely or mixed. All flasks were incubated for 96  h at 
30 °C under orbitally shaking conditions (150 rpm). Con-
currently, control flasks, namely, MRS broth containing 
yeast culture without metal precursors and MRS broth 
containing metal precursors without yeast cultures, were 
run in parallel with the test flasks. The primary sign of 
NPs-NCs fabrication was monitored visually through-
out the incubation period via color changes in media and 
biomass from pale yellow to white, dark brown and whit-
ish brown; indicating a successful formation of TiNPs, 
CuNPs and CuTiNCs, respectively [44, 45]. After com-
plete incubation, the precipitates containing NPs-NCs 
either from intracellular or extracellular test flasks were 
harvested by centrifugation at 12,000×g for 20 min. The 
harvested pellets were rinsed thrice with distilled H2O to 
eliminate any residues, thereafter, the pellets containing 
NPs were washed and dried in oven (70  °C for 2  h) for 
subsequent characterization and application stages.

Characterization of the mycosynthesized NPs-NCs
A number of different experimental techniques were 
used to obtain characteristic details on NPs-NCs in the 
terms of optical, morphology, size, chemical composi-
tion, phase identity, thermal, surface charge and func-
tional properties. The optical properties of the NPs-NCs 
were first determined at room temperature using UV– 
Visible spectrophotometer, (Labomed model-double 

beam) within a wavelength range of 200–800  nm to 
detect Surface Plasmon Resonance (SPR). For the mor-
phological properties and size, transmission electron 
microscopy (TEM) [JEOL JEM-1230-Japan], operated at 
200 kV and Scanning electron microscopy (SEM) (JEOL 
JSM-6360LA) were employed [45]. For analyzing the 
physical configuration, phase identification and crystal-
linity of NPs-NCs, X-ray diffractometer (Shimadzu 7000, 
USA) operated with Cu Kα radiation (λ = 0.15406  nm), 
generated at 30 kV and 30 mA with a scan rate of 2°/min 
for 2θ values across a wide range of Bragg angles 10° ≤ 
2θ ≤ 100, was employed in X-ray diffraction (XRD) analy-
sis. However, the elemental components of the examined 
NPs-NCs were detected qualitatively and quantitatively 
by energy dispersive X-ray (EDX) detector connected 
with SEM- JEOL, JEM-1230- Japan [44]. Dynamic light 
scattering (DLS) technique was employed using Zetasizer 
Nano-ZS (Malvern Instruments, Worcestershire, UK) 
for measuring particle size distribution and zeta poten-
tial (ζ-potential), which reflect the colloidal stability of 
NPs and, in turn, to indirectly assess the surface charge 
and electrostatic potential [46]. The measurements were 
carried out at 25  °C, at a fixed scatter angle of 173° and 
the results were processed using Zetasizer software. The 
thermal properties were conducted by a TGA analyzer 
(TGA-50 H, Shimadzu, Japan), in a nitrogen atmosphere 
at a temperature range of 35–1000 °C and with a heating 
rate of 20 °C /min [47]. However, Shimadzu FTIR-8400 S, 
Japan, was used to analyze the functional groups associ-
ated with NPs-NCs. The spectrums of FTIR were mea-
sured at a spatial resolution of 4 cm− 1 in the transmission 
mode, between 4700 and 400  cm− 1 employing the disc 
technique [46].

Applications of mycosynthesized NPs-NCs
Antimicrobial potency
The antagonistic potentiality of mycosynthesized CuNPs, 
TiNPs and CuTi-NCs were estimated by well diffusion 
method [28, 48]. Different pathogens from different 
microbial categories were examined including, human 
pathogens [Bacillus cereus (ATCC 33,019), Staphylococ-
cus aureus (ATCC 29,213), Pseudomonas aeruginosa 
(ATCC 15,442)] and yeast [Candida albicans (ATCC 
10,231)] and also plant pathogens [Erwinia carotovora, 
Erwinia amylovora, Pseudomonas solanine, Pseudomonas 
syringae, Pedobacter carotovorum, Xanthomonas oryzae, 
Xanthomonas campestris, Agrobacterium tumefaciens 
Ralstonia solanacearum and clavibacter michiganensis]. 
Such phytopathogenic microbes were isolated, identi-
fied and procured from the Plant Pathology Department, 
Faculty of Agriculture, Alexandria University. In brief, a 
single colony of each examined pathogen was inoculated 
in LB broth and incubated for 24 h at 30 °C on a rotary 
shaker at 150 rpm. A lawn of culture from each pathogen 
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was prepared by spreading 100 µL of fresh culture con-
taining 106 CFU/mL on Mueller Hinton (MH) agar plates 
(Peptone 17.5, Meat extract 2.0, starch 1.5, agar, 17.0 g/L, 
pH 7). The inoculated plates were left standing for 10 min 
to let the culture get absorbed. Then 3 wells/ plate each of 
8 mm in diameter were punched into the MH agar plates 
using sterile gel puncher (cork borer) and loaded with 
50  µg/mL of CuNPs, TiNPs, and CuTiNCs. The plates 
were incubated at 35  °C ± 2 for bacteria and 25  °C ± 2 
for yeast. After 24  h incubation period, the plates were 
investigated for the presence of zone of inhibition (ZOI), 
which was measured by subtracting the well diameter 
from the total inhibition zone diameter and expressed in 
centimeters (cm) [48, 49]. All tests and control samples 
were run in triplicates and the results were expressed as 
mean ± standard error of mean (SEM).

Antibiofilm activity
The biocidal function of TiNPs, CuNPs and their com-
posites were investigated against biofilm-producing S. 
aureus, P. aeruginosa and Candida albicans cultures. 
A Sterile 96-well polystyrene microtiter plate well was 
inoculated with 10  µl of each culture solution adjusted 
to an OD600 of 0.1 (0.5 McFarland standard) in 100 µl of 
Trypticase Soy Broth (TSB) supplemented with 1% w/v 
glucose, followed by the addition of NPs-NCs (50,100 
and 200  µg/ml). Besides, two controls; (positive control 
wells: medium containing bacterial suspension and nega-
tive control wells: containing just the sterile medium) 
were loaded in parallel. The microtiter plates were sealed 
and incubated at 37  °C for 24 h under stationary condi-
tions to allow the biofilm development. Afterwards, the 
well content was drained, rinsed, and the residual biofilm 
was fixed and stained using 95% ethanol and 0.25% crys-
tal violet, respectively. Using a plate reader (Tecan Infi-
nite M200, Switzerland), the absorbance of the attached 
cells-dye mixture was spectrophotometrically mea-
sured at 595  nm, and the biofilm inhibitory percentage 
was estimated by Eq.  (1). All tests and control samples 
were run in triplicates and the results were expressed as 
mean ± SEM [50, 51].

 Theantagonistic efficiency = (A − Ao)/A × 100  (1)

Wherein A denotes the absorbance of the untreated 
control and Ao denotes the absorbance of the treated 
samples.

Anti-microfouling activity
Initially, a sterile glass slide was coated with 200  µg/ml 
of CuTiNCs and dried at 60  °C followed by washing off 
with distilled water in order to check fixation and self-
cleaning properties, as described by Veena et al. [52]. The 
coated glass slide was fixed inside a 250-mL Erlenmeyer 

flask contained 50 mL of seawater supplemented with 50 
mL of nutrient broth. The flasks were incubated at 30 °C 
for 24  h. An untreated control flask was prepared and 
incubated under exact conditions. At the end of incuba-
tion period, an adhered marine biofilm consortia on the 
surface of the glass slides were washed to remove any 
non-adherent cells, crushed with sterile scalpel under 
aseptic conditions, suspended in LB broth and incubated 
at 30  °C for 24 h to estimate quantitatively the antifoul-
ing performance of CuTiNCs [53, 54]. Meanwhile, Light 
microscope and SEM were utilized to visualize the anti-
microfouling effect of CuTiNCs.

Environmental effluents disinfection
The power of the CuTiNCs in curtailing the microbial 
load was assessed in two real wastewater samples. One 
of them was municipal and the other one was an agricul-
tural wastewater sample; their physicochemical criteria 
were defined formerly according to [55]. About 100  ml 
of effluents were exposed to two doses (100 and 200 µg/
ml) of the as-prepared CuTiNCs, mixed well and incu-
bated for 2  h at room temperature. The total bacteria 
(TPC), total mold &yeast (TMY), total coliforms (TCs) 
and fecal Streptococcus (FS) count were determined using 
pour plate method on plates of Plate Count Agar (PCA), 
Rose Bengal chloramphenicol (RBCA), Violet Red Bile 
Agar (VRBA) and m-Enterococcus agar, respectively, as 
described by Standard methods for the examination of 
water and wastewater, 2017 [56]. The plates were incu-
bated at 30 °C for 48 h for bacteria and 25 °C for 72 h for 
mold & yeast. After incubation period, the colonies were 
enumerated and expressed as CFU/mL. In addition, the 
previous parameters in untreated control samples were 
defined in parallel. The disinfection potentiality was cal-
culated according to the following equation [57].

 

Disinfectionpotentiality (%)

= Colony count in untreated samples
−Colony count in treated sample/Colony count in untreated sample*100

 (2)

Statistical analysis
The results of all experiments were expressed as 
mean ± standard error of mean (SEM); Tukey post-hoc 
analysis of variance (ANOVA) was utilized to determine 
the significance of treatments (p < 0.05), by Graphpad 
Instat software [44].

Results and discussion
Initially, the sign of reduction of the NPs precursors and 
NPs-NCs synthesis could be inferred through visual 
inspection. Wherein, 7 microbial isolates alternated 
the media color surrounding the colonies on the agar 
medium; however, the isolate designated as ASM exhib-
ited the highest tolerance and reduction capability for 
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both NPs precursors (data not shown). Therefore, it was 
selected as a bionanofactory for synthesis of CuNPs, 
TiNPs and also CuTiNCs. On MRS agar, their colonies 
appeared round and moderate in size with a creamy/ 
whitish appearance and raised borders with character-
istic yeast scent. It possesses the ability to grow under 
aerobic and anaerobic conditions but at a slower rate 
anaerobically. Besides, it exhibited a considerable capa-
bility to grow on broad pH and temperature ranges (4–9, 
10 ℃ − 40 ℃) with optimum pH of 6–8 and tempera-
ture of 25–30℃, however, the above and below ranges 
of pH /temperature influenced adversely on its viabil-
ity. As a unicellular eukaryote, it was a non-motile oval 
to spherical shape with 4.5 μm width and 5.7 μm length 
(Fig.  1). In addition, the isolate was identified molecu-
larly by sequencing of ITS- rDNA (≈ 530 bp), which dis-
played 99% sequence correspondence with all species of 
the genus Candida with lower percentages with other 
genera. The nucleotide sequence was deposited in Gen-
Bank under the accession number of MZ312358. The 
Phylogenetic relationship of the strain under study and 
other closely related species was symbolized using the 

neighbor-joining (NJ) approach. In the phylogram, it was 
grouped in the main subcluster with two different strains 
of Candida parapsilosis, revealing their phylogenetically 
close relationship. Broadly, it affiliates to the domain 
Eukaryota, kingdom Fungi, division Ascomycota, class 
Saccharomycetes, order Saccharomycetales and family 
Saccharomycetaceae.

Mycosynthesis approach and physicochemical 
characterization of NPs-NCs
The selected strain Candida sp. was subjected to fabri-
cate CuNPs, TiNPs and CuTiNCs both intracellularly 
and extracellularly. Its ability for the mycosynthesis pro-
cess was initially assessed by changing the media’s origi-
nal yellowish-orange colour to brown-olive, whitish and 
brown-whitish colours corresponding to CuNPs, TiNPs 
and CuTiNCs, respectively (Fig.  2). Interestingly, the 
formation of colour is considered a preliminary gauge 
on the excitation of surface Plasmon vibrations of metal 
particles that display uniquely different size, crystallin-
ity, and polydispersity properties of metal sols, which 
are broadly altered at the nanoscale as described by [58]. 

Fig. 1 Culture, morphological and molecular characteristics of Candida sp. MZ312358 (A)- Colony appearance on MRS agar, (B)-Cells under bright field 
microscopy (x100), (C)- SEM micrograph of cells (X10000) (D)- The isolated DNA and ITS- rDNA gene of strain under study and (E)- Phylogenetic position 
of the selected strain by neighbor-joining tree

 



Page 7 of 25Almahdy et al. Microbial Cell Factories          (2024) 23:148 

Comparatively, and in parallel control sets, no particular 
noticeable variations were found, showing that the bio-
transformation of metal ions to relevant NPs proceeds 
mainly in the presence of the possible reducing agents 
provided by the bionanofactory Candida sp. The char-
acteristic traits and structural identification of mycologi-
cally prepared NPs-NCs were elaborately evidenced via a 
number of analytical techniques as would be displayed.

Morphological properties
To ascertain the capability of Candida sp. in NPs-NCs 
fabrication, either extracellularly or intracellularly, elec-
tron microscopy (transmission (TEM) and scanning 
(SEM)) was employed. It gives an insinuation about mor-
phology, dimensions, textural properties, location and 
interior structure of nanomaterials [59]. Obviously as 
depicted in (Fig. 3), there was heterogeneity in the mor-
phologies, size and localization of NPs-NCs. The cells of 
Candida sp. possessed the ability to synthesize CuNPs 
both intracellularly and extracellularly. They seemed as 
numerous, uniform, electron opaque, tiny and spheri-
cal or quasi-spherical nanoparticles ranging in their 
size from 2.18 to 24.85  nm in a monodispersed pattern 
or with slight aggregation scattered at the periplasmic 
compartment of the cell. Besides, rod-shaped CuNPs dis-
persed among the cells were also visualized. Meanwhile, 
our fungal cells failed to internalize and reduce the par-
ent molecule of Ti inside the cells to its NPs counterpart 
but succeeded in this mission extracellularly. It is worth 
mentioning that such synthesis process was implemented 
via extracellular fungal metabolites such as enzymes, ter-
penoids, extracellular polysaccharides, polyketides and 
non-ribosomal peptides. The mycosynthesized TiNPs 
varied in their shape from spherical, rods to polygonal 
and size oscillated from 17.8 to 98.3  nm appeared as 
clusters in aggregates surrounding the cell. However, the 
nanofactory Candida sp. exhibited a prominent capabil-
ity in simultaneous synthesis of both CuNPs and TiNPs 

in nanocomposites form upon exposing to the presursore 
salts of both metals.

On the other hand, the cell free supernatent of fun-
gal culture shared the same features with the producing 
cells in the overall NPs morphology and size. Where, 
TEM and SEM micrographs illustrated that CuNPs were 
dark, tiny, spherical or needle-shape embeded in less 
dense light funagl protenaceous matrix. The presence of 
rod or needle shaped CuNPs could be attributed to Ost-
wald ripening mechanism [60]. While, larger irregular, 
square, rectangular and polygonal TiNPs were margin-
ally agglomerated. Regarding CuTiNCs, they displayed as 
an undefined assemblage of polygonal TiNPs with well-
defined edges that were agglomerated arbitrarily into the 
matrix of fungal biomolecules, which appeared as elec-
tron opaque bulk or spots with sizes ranging from 15 to 
75  nm. Intriguingly, CuNPs ornamented the surface of 
TiNPs as indicated by arrows (Fig. 3). Such agglomerated 
NCs were reported frequently in metal hybrid nanostruc-
tures [44, 61, 62]. It could be assigned to the electrostatic 
attractions between NPs, their surface energy differ-
ences, the magnetic interference and the coexistence of 
H-bonding in the microbial bioactive moieties accompa-
nying to the NPs as well [50, 63, 64]. Broadly, the varia-
tions in NPs-NCs morphology and size was documented 
previously in litratures by [44] and [65], who attributed 
that to the selective interaction mechanism, microbial 
biochemistry, metal type and the entire physical condi-
tions of the synthesis reaction.

Virtually, the features of NPs-NCs seemed to be equiv-
alent for both extracellular and intracellular synthesis 
approaches. Therefore, the extracellularly produced NPs-
NCs were selected for further characterization and appli-
cation steps. It symbolizes easy implementation, higher 
yields, saving more time/effort and cost-effectiveness by 
the dint of lacking extra extraction and purification steps, 
compared to intracellular approaches.

Fig. 2 Mycosynthesis of NPs-NCs. A, B and C show the intracellular synthesis of CuNPs, TiNPs and CuTiNCs, respectively. E, F and G indicate the extracel-
lular synthesis of CuNPs, TiNPs and CuTiNCs, respectively
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Optical properties
Typically, UV-Vis spectroscopy is a low-cost, quick, and 
non-destructive initial instrumental technique for the 
recognition of NP systems, and types besides monitoring 
the signature of colloidal particles in the range of 200–
900 nm [47, 66]. As marked out in (Fig. 4), each mycosyn-
thesized metallic sole NPs exhibits distinct absorbance 
bands in distinctive representative spectra. A relatively 
narrow, well-defined surface Plasmon resonance (SPR) 

band with high absorbance was observed at wavelengths 
of 290 and 378 nm for copper and titanium, respectively. 
This finding is consistent with previous observations in 
which the UV-vis spectra for CuO NPs ranged between 
250 and 300 nm [67–69]. Meanwhile, some studies pre-
sented a spectrum in which the absorption peaks of 
around 380 and 400  nm correspond to TiNPs anatase 
phase, with the cutoff wavelength at 379  nm [70, 71]. 
Notably [45], found that SPR of bacterially synthesized 

Fig. 3 Electron microscopy examination of CuNPs, TiNPs and CuTiNCs fabricated by Candida sp. (A, B and C) TEM micrographs showing intracellular 
CuNPs, TiNPs and CuTiNCs, respectively. (D, E and F) TEM micrographs of extracellularly- synthesized CuNPs, TiNPs and CuTiNCs, respectively. Red arrows 
referred to TiNPs and yellow arrows referred to CuNPs. The squared area was examined by EDX. (E, F and G) SEM micrographs of extracellularly- synthe-
sized CuNPs, TiNPs and CuTiNCs, respectively
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TiNPs at 360  nm. whereas [72], detected it at 380  nm, 
which were synthesized by Bacillus mycoids. Gener-
ally, the maximum absorption peak related to TiNPs was 
observed in the range of 300–400 nm [45].

On the other hand, a broader cumulative peak with 
increased blue-shifted absorption at 350 nm was detected 
in the combined hybrid system of CuTiNCs. Interestingly, 
the hybridization of both metal precursors in the reac-
tion mixture of the mycosynthesis system caused a rela-
tive change in the absorbance maxima, which appeared 
at an intermediate place between the SPR band of CuNPs 
and TiNPs, denoting the formation of hybrid CuTiNCs.

As referred previously by [73], UV–Vis spectroscopy 
could easily give insinuation about the signal architec-
ture of any binary or hybrid nanomaterials, wherein, the 
presence of single SPR peak at an intermediate location 
between the SPR of the two metals indicates a randomly 
organized hybrid metal/metal oxides. In this sense [36], 
found that the phyto- synthesized CuO-TiO2-NCs dis-
played their characteristic absorption band at 301  nm; 
however [74] and [75], detected an absorption peak 
of chemically synthesized CuO‐TiO2-NCs at 380 and 
363 nm, respectively,. Such variations in results could be 
attributed to the differences in particle surface properties 
(e.g. particle morphology, crystallinity, size and aggre-
gation state, etc.) owing to synthesis method, precursor 
type, precursors concentration, reducing agent type/con-
centration, capping agent type/concentration and overall 
solution chemistry [68, 76–78]. In addition, the presence 
of a single surface Plasmon band for each NPs-NCs with 
a tailing appearance might reveal the formation of small 
aggregated nanocrystals [79]. Generally, the incorpo-
ration of Cu and Ti into CuTi hybrids is more favorable 
in terms of charge transfer as well as functional photo-
catalytic activity in the visible range; hence, boosting 
photoelectrochemical properties throughout a broader 
spectrum of wavelengths [80].

Structural properties
The crystalline nature, phase purity and identity of 
mycosynthesized CuNPs, TiNPs and CuTiNCs were 
scrutinized and confirmed via XRD analysis (Fig. 5). As 
observed, a series of characteristic peaks in the XRD pat-
tern of the examined CuNPs at 2θ = 30.9°, 39.39°, 44.91°, 
53.57°, and 68.88°, which correspond to (110), (111), 
(− 202), (020), and (200), Bragg’s reflection, respectively, 
matched the diffraction planes of monoclinic cubic phase 
of CuO (JCPDS file no. 00-005-0661) [81]. However, the 
crystalline structure of the TiNPs exhibited predomi-
nant mycosynthesis of crystalline anatase with charac-
teristic peak positions at 25.8°, 37.9°, 48.7°, 54.8°, 62.9° 
and 70.7°, which matched the diffraction planes of (101), 
(004), (200), (105), (211) and (204), respectively, based on 
(JCPDS file no. 2-21-1272). These findings were compat-
ible with previous reports of greenly synthesized CuO 
and TiO2-NPs [45, 81]. Notably, the presence of CuO 
and TiO2 distinctive peaks in the XRD diffractogram of 
CuTiNCs ascertained the successful fabrication of hybrid 
composites. Wherein, clear diffraction peaks of CuO at 
30.9°, 39.4°, 44.91 indicated the presence of CuO in the 
nanocomposites along with diffraction peaks of TiO2 
at 25.8°, 48.9°, 54.8°, 62.9° and 75.1°. Obviously, there 
was no shift in the diffraction peaks of TiO2 displayed 
in the CuTiNCs upon incorporation of CuO, proposing 
the adherence of CuNPs on the surface of TiNPs but not 
integrated into the lattice of TiO2. This suggestion was 
harmonized formerly with TEM. Our result is in com-
pliance with that reported by [82] who also declared 
that the absence of notable changes in the intensity and 
half-height widths of TiO2 diffraction peaks revealed 
the impregnation of CuO without changing both struc-
tures or even the crystallite size of TiO2 in the chemi-
cally synthesized xCuO/TiO2 nanocomposites. On the 
other hand, in the study performed by [83], only sharp 
peaks concerning Cu were displayed in an amorphous 
TiO2 matrix of Cu@TiO2 samples, which were prepared 
by sole gel method; reflecting the advantageous proper 
incorporation of both CuO and TiO2NPs in our hybrid 
crystalline system. As a general notice, all XRD patterns 
of our examined NPs-NCs showed a background hump 
at 2θ before 20°, implying the conjugation of fungal bio-
molecules with the crystalline as-synthesized NPs-NCs. 
Likewise, a similar finding was recorded by biologically 
synthesized NPs [84, 85].

Compositional properties
The elemental composition and quantification of the 
NPs samples were defined through energy-dispersive 
X-ray analysis (EDX). The elemental pattern of CuNPs 
indicated characteristic major absorption peaks at 0.9 
and 8  keV with an atomic percentage of 39.6%, which 
corresponds bending energy of metallic copper ; also an 

Fig. 4 UV-spectrophotometric analysis of CuNPs, TiNPs and CuTiNCs fab-
ricated by Candida sp.
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additional peak at 0.5  keV that signifies oxygen with an 
atomic percentage of 7.3%. Regarding TiNPs, a typical 
maximum peak at bending energies of Ti and O at 4.5, 
4.9 and 0.5  keV with atomic percentages of 41.1% and 
50.4%, respectively (Fig. 5). As implied from the obtained 
previous EDX profiles, the examined CuNPs and TiNPs 
were biosynthesized in their oxide forms. Remarkably, 
our finding is congruent with that obtained by [44, 45, 
86]. On the other hand, the binary hybrid structure of 
CuTiNCs was emphasized as indicated by the predomi-
nance of Cu, Ti and O signals in the examined samples 
in atomic percentages recording 31.7, 35.3 and 25.5%, 
respectively. Notably, the slightly higher percentage of Ti 
signal than Cu implied the uniform dispersion of CuO on 
the surface of TiO2NPs as pointed out by [44] and [82], 
which agreed our finding that also recorded formerly 
by TEM and XRD analysis. In addition, obvious intense 
peaks of N and S were detected at 0.39 and 2.3  keV in 
CuTiNCs pattern with atomic percentages reached to 
1.7 and 2.1, respectively. The presence of such elements 
could be ascribed to the conjugation of fungal biomol-
ecules (e.g., proteins, lipids, etc.) with the biosynthesized 
NCs [87, 88]. Besides, the coexistence of strong C signal 
in all examined EDX profiles of NPs-NCs at 0.27 KeV was 
considered residues from fungal carbonaceous metabo-
lites. Interestingly, the association of such fungal enti-
ties with as-prepared NPs-NCs is an advantageous trait 
through furnishing them with functionality, stability and 

dispersity as self-functionalizing capping agents; hereby, 
avoid multiple surface modification steps as mentioned 
in chemical and physical methods. The involvement of 
microbial biomolecules with NPs-NCs was documented 
frequently in the green synthesis approach [89]. However, 
despite the significance of such biomolecules as func-
tionalizing agents, especially in biological applications 
(e.g. anticancer, antioxidant, antimicrobial, etc.) [90], 
employed 500 °C calcination to TiNPs for eradicating the 
organic scaffolds conjugated with NPs derived from gum 
matrix to get refined free of companion biomolecules.

Functional properties
The analysis of FTIR spectroscopy is a powerful tool for 
the primal determination and detection of active micro-
bial biofunctional groups associated with the synthesized 
NPs, via absorbing the corresponding “resonant frequen-
cies” and depicting their representative IR spectra in the 
infrared range of (4000 –400  cm− 1) [70]. FTIR spectra 
of the mycosynthesized CuNPs, TiNPs, CuTiNCs and 
cell-free supernatant are illustrated in (Table  1; Fig.  7); 
reflecting the presence of common peaks that contrib-
uted substantially in their biosynthesis, stabilization and 
functionalization.

Generally, our results agreed with [91] and [92] who 
found the same vibration peak in INPs and AgNPs syn-
thesized by Pleurotus sp. and nematophagous fungus 
Duddingtonia flagrans. Concerning the vibrational 

Fig. 5 XRD diffractograms of CuNPs (A), TiNPs (B) and CuTiNCs (C) fabricated by Candida sp.
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modes for Cu and Ti [93], manifested that the region 
below 1000  cm− 1 is characterized by metal-oxygen 
bonds. Hereby, in the fingerprint zone, especially at 
570  cm− 1 and the range of 615–830  cm− 1; respectively, 
the spectral peaks are affiliated to Cu-O, and O-Ti-O. 
Such stretching vibrations were aligned with earlier 
reports of [63] and [94]. However, a minor shift in the 
absorption peaks was noticed in CuTiNCs profile, com-
pared to both sole metal NPs, which might be traced 
back to the interaction of CuNPs and TiNPs and the 
development of CuTiNCs [95, 96]. Sensibly, the coupling 
of multiple functional groups such as C = O, C-H, C–O–
C, PO4

3-, amine and amide with NPs seemed to be propi-
tious. Where, the electrostatic attraction or interactions 
at the oxygen side form a bridge between metal atoms 
and free amine groups, exopolysaccharides, protein resi-
dues and phospholipids mediated stabilization function-
ality as dispersing ligands. Similarly [97], advocated the 
same point of view.

Thermal properties
The thermogravimetric analysis of the pure biofabricated 
CuNPs, TiNPs and their nanocomposites retrieved curves 
were demonstrated in (Fig.  8). Its main idea lies behind 
following up the correlation between the applied higher 
temperature in constant rate and mass shift proportions; 
offering thereby a valuable insight into the mass, stabil-
ity, thermal properties, coating composition and ratios 
of the nanoparticles [47]. In temperatures ranging from 
20  °C to 800  °C, the TGA curves of the examined NPs-
NCs samples were represented in four main weight loss 
stages. Initially, rapid mass reduction (7.37-12.0%) can be 
easily detected in a temperature lower than 200  °C cor-
responding to the desorption and release of chemisorbed 
and physisorbed/retained water molecules [98]. The sec-
ond weight loss portion was recorded from 200 to the 
range of 400–428  °C reached to 39.7, 35.21 and 41.34% 
for CuNPs, TiNPs and CuTiNCs, respectively, which 
could be ascribed to the thermal pyrolysis and carboniza-
tion of organic molecules bound to the surface of NPs-
NCs [98]. The third stage began from 428 °C to the range 
of 490–552  °C with weight loss assessed by 27.96, 35.60 
and 26.29% % for CuNPs, TiNPs and CuTiNCs, respec-
tively. However, an additional step was observed in the 
case of CuTiNCs, wherein about 3.75% weight reduction 
was observed at 593 °C, which was attributed to the con-
tinuous evaporation of biosorbent water molecule and 
gradual pyrolysis of the biomolecules residues (e.g., as 
polysaccharides, proteins, phospholipids, etc.), which still 
tightly bound to NCs surface [90]. In the same context 
[99], revealed that the conjugation of amide I signature 
with inorganic particles that were confirmed through 
FTIR analysis at wave numbers of 1600: 1650  cm− 1, 
resulted in weight loss at a temperature range of 250–
595 °C, which are harmonized with the current data.

Remarkably, as stated by [100], the weight loss at 
the temperature range of 200–350  °C and 350–550  °C 
assigned to the degradation of organic matrix followed 
by the combustion of organic residues. Actually, non-
significant weight loss reaching 4.89, 6.1 and 3.95% was 

Table 1 FTIR peaks assignments and their corresponding 
functional groups associated with CuNPs, TiNPs, CuTiNCs and 
cell-free extract involved in their biosynthesis and capping
Wave number 
(cm− 1)

Vibration type Assignment Refer-
ence

3700–4000 stretching O–H group  [141]
3440, 3441 and 3442 stretching NH2  [142]
2936 stretching C–H  [143]
2438 stretching C = O  [144]
2270, 2352 and 2382 stretching NH2+ and NH3+ in pro-

tein/peptide bonds
 [145]

1600, 1611 and 1649 stretching Amide-I/amide-II 
linkages

 [146]

1421 stretching C-O  [138]
1447 stretching –C–H / –CH3 in ali-

phatic –compounds
 [147]

1497 stretching C = O of carboxylic 
acid

 [146]

1372 stretching carboxyl groups 
(–COOH)

 [148]

1045, 1076, 1124, 
1126 and 1177

stretching PO4
3−  [149]

Fig. 6 EDX profiles of CuNPs, TiNPs and CuTiNCs fabricated by Candida sp.
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observed for CuNPs, TiNPs and CuTiNCs, respectively 
throughout the range of 490/552°C to 799  °C; imply-
ing the stability of materials mass and their crystallinity. 
Likewise [101], declared that insignificant weight loss in 
the temperature range of 540∼900℃ was considered a 
sign of the transformation of TiO2 from the amorphous 

phase to a crystalline phase. Ultimately, about 82.31, 
88.96 and 82.73% of examined CuNPs, TiNPs and 
CuTiNCs, respectively, get destroyed, leaving 17.69% 
(0.94  mg), 11.04% (0.59  mg) and 17.27% (0.87  mg) with 
considerable thermal stability remaining. Generally, 
the hybridization of both Cu and Ti in the composite 

Fig. 8 Thermal behavior analysis by TGA for CuNPs (A), TiNPs (B) and CuTiNCs (C) fabricated by Candida sp.

 

Fig. 7 FTIR spectrum of mycosynthesized CuNPs (A), TiNPs (B), CuTiNCs (C) and Cell-free supernatant of Candida sp. (D)
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nanoform didn’t influence adversely on their thermal sta-
bility. Conversely [98], found that the pure TiO2 offered 
higher thermal stability with 23% mass loss compared to 
the Cu3%-TiO2 nanostructure that lost 35% of its mass 
after Cu incorporation.

Surface charge properties
To evaluate the manner of particle diffusion in any fluid 
(i.e., hydrodynamic diameters (size distribution) and 
ζ-potential), the dynamic light scattering (DLS) was 
employed as a noninvasive technique. As revealed by 
[88], this technique gives an insinuation about the fluctu-
ations in light scattering intensity as a function of particle 
sizes, which is attributed to Brownian motion. Figure  9 
demonstrated the particle size distribution curves of 
CuNPs, TiNPs and CuTiNCs. As observed, the hydro-
dynamic sizes of CuNPs assessed by 84.2  nm (78.9%), 
27.3 nm (16.7%) and 3.5 nm (4.4%). However, the hydro-
dynamic size of 28.8, 83.4 and 393  nm with intensities 
14.4, 72.1, and 13.5% was recorded for TiNPs. Regarding 
CuTiNCs, the obtained hydrodynamic size were 28.8 nm 
(24.3%) and 171.5 (75.7%) nm. Such distinct difference in 
size between DLS and TEM could be ascribed to the con-
jugation of water and other fungal moieties to the surface 
of NPs-NCs [88].

On the other hand, the storage stability of NPs colloi-
dal dispersion, surface charge, degree of hydrophobicity, 
particles distribution as well as the manner/ fate of inter-
action with the biological systems are predicted by mea-
suring the zeta (ζ) potential [46, 102]. This is determined 
by the magnitude of the attractive or repulsive forces, 

which in turn is correlated to the potential difference 
between the outer Helmholtz plane and the surface of 
shear [46]. Accordingly, the stability of the nanosuspen-
sion requires the value of zeta potential to be in the range 
of ± 20–30 mV [33, 47]. The higher absolute zeta poten-
tial of NPs indicates the high electric charge on their sur-
faces, which points to strong repelling forces that stabilize 
the NPs in the medium with minor agglomeration [47]. 
As demonstrated in the zeta graphs (Fig. 10), the electro-
kinetic that existed on the shear plane of a particle, which 
is related to surface charge, were evaluated by -31.3, 
-26.2 and − 27.7 mV for CuNPs, TiNPs and CuTiNCs, 
correspondingly. As displayed, CuNPs possessed sig-
nificantly greater zeta potential owing to electrostatic 
repulsion force among the NPs, which exceeded Van der 
Waals attraction force that in turn results in “Brownian 
motion”, ultimately higher stability and lower propensity 
to agglomeration [102, 103]. In general, the electrostatic 
repulsion force among similar surface-charged particles 
is explained by DLVO theory [103]. On the other hand, 
the lower ζ potential value of TiNPs, compared to the 
other examined NPs-NCs, could be simply assigned to 
the larger size and non-uniform shape of TiNPs, which 
generated heterogenous dispersity and slow particle dif-
fusion in light scattering intensity as reflected by [104]. 
Notably, all examined NPs-NCs were negatively charged 
owing to their wrapping with anionic biomolecules of 
negatively charged proteins, nucleic acids, lipopolysac-
charides, etc., which bestowed NPs-NCs with dispersity, 
functionality and stability. Seemingly, all the previous 
data are harmonized, complementary and confirming 

Fig. 9 Hydrodynamic size of CuNPs (A), TiNPs (B) and CuTiNCs (C) prepared by Candida sp.
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each other. Interestingly, the data of as-prepared NPs-
NCs of the current study showed superior ζ-potential 
than other related studies [105, 106].

Thence, it is plausible to propose the mycosynthe-
sis/functionalization mechanism and also highlight the 
eminant performance of nanofactory Candida sp. in 
its manipulation differently with both NP-parent mol-
ecules, based on their nutritional importance to the cells 
or their toxicity. That was unequivocally evident via cel-
lular compartmentaization of each synthesized NPs and 
even NCs and also in exhibiting variable dimensions and 
overall properties [42, 107]. For the intracellular synthe-
sis of CuNPs, the intact cells internalized Cu-precursor 
through electrostatic interaction between positively 
charged Cu2+ ions and negatively charged functional 
groups that scattered on the intact cell; followed by 
metabolizing them either to alleviate their toxicity or to 
recruit them in their metabolic functions [94]. In this 
context, it is worth stating the significant tasks of Cu as 
one of the essential microelements, which contributes in 
physiological catalysis, regulation of the electron trans-
port process, denitrification, oxidative respiration and 
other redox reactions [44]. After Cu2+ ions uptake, the 
yeast cells underwent a cascade of oxidation-reduction 
steps via reducing NADH-dependent enzymes (e.g., 

hydrogenases, cytochrome reductase, nitrate reduc-
tase, superoxide dismutase dehydrogenases, and cata-
lase). Such reducing biomolecules shuttle electrons to 
the metal ions, which were subjected to sequential redox 
reaction led to the formation of CuO nuclei. With con-
tinuous nucleation, the growth of larger crystals and 
self-assembly were also continued till reaching to the 
most thermostable crystallographically oriented form, as 
explained in detail by [108].

At this stage the Candida sp. cells accumulated CuNPs 
in the periplasmic compartment either for storage or for 
pumping out by the efflux system to maintain homeosta-
sis [44, 78, 104]. However, the toxicity of the Ti-parent 
molecule could explain its transformation extracellularly 
by metal-selective interaction strategy induced by Can-
dida sp. cells, which adopted TiNPs synthesis under the 
umbrella of metal adaptation/detoxification scenario. The 
cells reduced Ti ions outside the cells, rather than inter-
nalize them, via several extracellular reducing biomol-
ecules such as extracellular polysaccharides, enzymes, 
etc [109]. It is proposed that TiNPs were synthesized 
via serious collaboration of such biomolecules to nucle-
ate Ti ions in the form of TiO2-nuclei, which undergo 
a growth stage to form pleomorphic TiNPs. However, 
upon dual exposure to Cu and Ti precursors, the cells are 

Fig. 10 Long-term stability analysis determined by Zeta potential for CuNPs (A), TiNPs (B) and CuTiNCs (C) synthesized by Candida sp.
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subjected to lethal metal stress, which triggers the cells 
harness multiple metabolic pathways simultaneously 
for detoxifying both metal ions in the form of CuTiNCs. 
Seemingly, all biosynthesized NPs-NCs were less toxic 
than their parent molecule. That could be clearly evident 
through TEM, which depicted the viability and healthy 
appearance of the cell. The cells were still intact with no 
evidence of cellular damage or wall rupturing; reflecting 
the capability of our bionanofactory to exert a balance for 
healthy growth with efficient metal detoxification.

On the other hand, the availability of reducing bio-
molecules in the free-cells supernatant (i.e., extracellular 
mycosynthesis) such as enzymes, quinones-derivatives, 
quorum sensing molecules (e.g., farnesoic acid, tyrosol, 
farnesol, tryptophol, and phenylethyl alcohol), extracel-
lular polysaccharides and other secondary metabolites 
[109] facilitated the transformation of both metal salts 
into their corresponding metal oxides in a sequential 
stages of oxidation-reduction reactions as proposed in 
the possible following equations:

 C6H12O6 → 2C2H5OH + 2CO2 + Oxidoreductase (3)

 H2O → H+. + OH  (4)

 Cu2+ + NADH+H ++NAD (P)H − Reductase → 2Cu+ + NAD+ + 2H+ (5)

 Ti4 + +NADH + H+ + NAD (P)H − Reductase → Ti3 + +NAD+ + 2H+ (6)

 Ti3+ + NADH + 3H+. + NAD (P)H − reductase → Ti2+ + NAD+ + 3H+ (7)

Throughout aerobic incubation, the reduced Cu and Ti 
ions were oxidized via oxygen, oxidase enzymes, and 
oxidizing biomolecules that occupying reaction sphere. 
Meanwhile, in the presence of OH-, the hydroxide forms 
of both metals generated as declared in the following 
equations:

 Cu+ + 2OH− + Oxidase → Cu(OH)2(s) + 2H2 (8)

 Ti3 + +3OH− + Oxidase → Ti(OH)3(s) + 3H2O (9)

 T
i2+ + 2(OH)− + Oxidase → Ti(OH)2(s) + 2H2O (10)

However, such hydroxide intermediates were less stable 
forms and dissociated, by the catalysis of fungal biomol-
ecules, into their corresponding oxide variants, which 
were the most stable forms [110, 111].

 Cu(OH)2 → CuO + H2O  (11)

 Ti(OH)3 → Ti(OH)2 + OH−  (12)

 Ti(OH)2 → TiO (OH) + H2 (13)

 TiO (OH) → TiO2 + H2O (14)

Accordingly, the bioreduction / biooxidation processes of 
both metal precursors were attained synchronously gen-
erating the first CuO and TiO2 nuclei [44]. Such nuclei 
serve as the seeds or embryos assembled into larger 
crystals of TiO2-NPs that encompass CuO-NPs through 
electrostatic, coordination, van der Waals, hydrogen 
binding or even dispersion interactions generating nano-
composites architecture [112]. In fact, the mycologically 
synthesized CuTiNCs were indigenously functionalized 
by fungal biomolecules that prevailed in the reaction 
mixture, acting in such way dual and simultaneous role 
of reduction and self-functionalization. Hence, consid-
ered to be more economic by avoiding additional sur-
face-modification step that is substantially required in 
physicochemical synthesis approaches to maintain the 
stabilization of nanomaterials as inferred by [113]. Fur-
thermore, the indigenously functionalized NPs-NCs 
would mediate facile and selective-targeting purposes, 
in particular the biological applications such as antimi-
crobial, anticancer and antioxidant, etc. Evidently, the 
extracellular synthesis of both NPs-NCs is particularly 
favorable in terms of large-scale manufacture [114].

Applications of mycosynthesized NPs-NCs
Antimicrobial potency
Our study focused on assessing the biocide potency of 
mycosynthesized CuNPs, TiNPs and their hybrid sys-
tem of CuTiNCs against various pathogenic microbes to 
cover a wide array of application fields. The assessment 
included some human pathogens, which are opportu-
nistic and responsible for food intoxication, water-borne 
diseases, nosocomial and community-acquired infections 
[115] . Besides, the response of phytopathogenic bacteria 
versus the exposure of mycosynthesized NPs-NCs was 
also evaluated by ZOI assay (Table 2; Fig. 11). Strikingly, 
the examined pathogens cause a number of diseases in 
different plant organs (i.e., fruit, stem, leaf, etc.) such as 
fruit spots, blackleg, cankers, blights, wilts, soft rots and 
tumors, leading to seasonal devastation of various crops 
like potato, tomato, celery, carrot, lettuce, onion, cabbage 
and fruits as well [116, 117].

As observed, the capability of NPs-NCs to thwart 
microbial growth varied significantly. Wherein, the 
CuTiNCs displayed the superior significant (P ˂ 0.05) 
antagonistic activity than that showed by their soli-
tary counterparts, as deduced from statistical analysis 
of the data with one-way ANOVA. Besides, the antimi-
crobial activity of CuNPs was much significantly higher 
than that exhibited by TiNPs in all examined pathogens. 
Arguably, B. cereus was the most susceptible pathogen 
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in its response to NPs-NCs among the other examined 
pathogens. On the other hand, C. albicans showed viv-
idly higher resistance. Regarding this, many possible 
interpretations could be encountered starting with the 
rapprochement of the genus used, in our study for the 
synthesis, with the examined strain, reflecting its ability 

to sequester NPs-NCs or utilize the same metabolic path-
way to avoid their toxicity. Let alone the rigid fungal cell 
wall, which is composed mainly of glucans, chitin and 
chitosan conjugated with glycosylated protein that trig-
gers them less permeable to toxic materials [118]. Like-
wise, earlier studies by [63] and [65] accentuated the 
higher susceptibility of bacteria to NPs treatment than 
fungi and yeast. Meanwhile, the results of the current 
study were similar to those obtained by [119, 120] and 
relatively comparable to those reported by [83].

Despite the disparity in cell wall compositional orga-
nization and its structural architecture among all exam-
ined pathogens, its role in realizing the differences in 
microbial sensitivity to the examined NPs-NCs could be 
overlooked. The examined phytopathogens, which are all 
Gram-negative, exhibited sensitivity patterns similar to 
those of Gram-positive. However, the microbial physiol-
ogy, metabolic performance, and uptake/regulation sys-
tems are deemed to be intrinsic factors in managing the 
resistance and sensitivity profiles among inter and intra-
species of the microbes against any antagonistic agent.

Antibiofilm activity
The antagonistic potency of CuNPs, TiNPs and 
CuTiNCs in eradicating the biofilm growth of S. aureus, 

Table 2 Antimicrobial potency of mycosynthesized CuNPs, TiNPs 
and CuTiNCs against pathogens via well diffusion method, ZOI 
represented in cm. The results were expressed as mean ± SEM 
and (*) indicates the statistical significance (P˂ 0.05)
Microorganism CuNPs TiNPs CuTiNCs
Human 
Pathogens

B. cereus 1.9 ± 0.1* 0.5 ± 0.1 2.7 ± 0.1*
S. aureus 1.25 ± 0.05* 0.3 ± 0.05 1.65 ± 0.15*
P. aeruginosa 0.8 ± 0.1 0.2 ± 0.00 1.15 ± 0.15
C. albicans 0.5 ± 0.1 0.1 ± 0.05 0.9 ± 0.1

Plant 
Pathogens

E. carotovora 1.6 ± 0.1* 0.2 ± 0.05 1.7* ± 0.1
P. syringe 1.4 ± 0.1* 0.25 ± 0.25 1.85 ± 0.15*
P. Solani 1.35 ± 0.05* 0.15 ± 0.05 1.7 ± 0.2*
E. amylovora 1.1 ± 0.1 0.2 ± 0.1 1.7 ± 0.1*
Pedobacter spp. 1.3 ± 0.1* 0.15 ± 0.05 1.85 ± 0.05*
X. oryzae 1.65 ± 0.15* 0.2 ± 0.1 2.1 ± 0.1*
X. campestris 1.9 ± 0.15* 0.4 ± 0.2 2.15 ± 0.1*
A. tumefaciens 1.55 ± 0.15* 0.2 ± 0.1 1.95 ± 0.05*
R. solanacearum 1.2 ± 0.1 0.1 ± 0.1 1.6 ± 0.2*
C. michiganensis 1.6 ± 0.15* 0.35 ± 0.15 1.8 ± 0.2*

Fig. 11 Antimicrobial activity of mycosynthesized CuTiNCs (a), CuNPs (b) and TiNPs (c) against the examined human and plant pathogens by the well 
diffusion method
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P. aeruginosa, and C. albicans was evaluated (Table  3; 
Fig.  12). As a general observation, there was a notice-
ably progressive thwart in the biofilm formation for 
all examined pathogens in a concentration-dependent 
manner. Surprisingly, the lowest dose of CuNPs showed 
enhancement in biofilm growth by 11.3 ± 1.7, 11.7 ± 1.5, 
and 14.2 ± 0.9% of S. aureus, P. aeruginosa, and C. albi-
cans, respectively. Similar outputs were manifested by 
[121] and [122]; attesting the fact that upon utilizing 
sub-inhibitory concentrations of methicillin or any other 
disinfectant can lead to dramatic induction in the biofilm 
formation of S. aureus as a result of up-regulating the 
genes encoding surface proteins responsible for the bio-
film formation process. Besides, the nature of Cu as vital 
microelement trigger the biofilm-forming microbes, par-
ticularly in our study, utilized it in its lowest concentra-
tion (50 µg/mL) in regulating physiological processes and 
various metabolic activities rather than antagonize their 
biofilm development. In contrast [123], highlighted that 
100 ng of CuNPs facilitated the elimination of biofilm at 
the initial stage of development, making the eradication 
process easier.

While no inhibition or enhancement performance was 
recorded upon treatment with TiNPs (50 µg), Otherwise 
[51] and [124], elucidated that the utilization of 100 µg/
ml of TiNPs was enough to clearly reduce the biofilm for-
mation in P. aeruginosa as compared to S. aureus. Such 
variability in the antagonistic performance among differ-
ent scholars could be ascribed to discrepancies in NPs 
characteristics (e.g., size, crystal quality, surface area, 

stability, surface properties, etc.), the synthesis method, 
and the applied dosage [125, 126]. However, microbial 
cell physiological properties, cell age, cell surface traits, 
and microbial load also should be taken into consider-
ation [124, 127], and [65]. Additionally, the whole condi-
tions of the inactivation reaction, such as contact time, 
organic/inorganic nutrient content, ionic strength, etc., 
were reported as categorical parameters that manage 
the NPs-effectiveness in delaying or accelerating the pro-
hibition [128, 129]. Hence, it is important to consider a 
balance for achieving effective biocide activity without 
causing unwanted side effects, as recommended by [26] 
and [130].

Strikingly, in the present investigation, there were com-
mon symptoms shared between biofilm-forming patho-
gens and the examined pathogens, which are dwelling 
in free-floating or planktonic forms. Firstly, S. aureus 
biofilm exhibited higher sensitivity for the treatments of 
CuNPs, TiNPs, and CuTiNCs in all examined concentra-
tions. Secondly, the biofilm of C. albicans appeared to 
be the least susceptible to all examined concentrations 
of NPs-NCs. Thirdly, all concentrations of CuTiNCs 
displayed a prominent prohibition pattern in all tested 
biofilm-forming microbes. Notably, a significant inhibi-
tion (P ˂ 0.05) for S. aureus, P. aeruginosa, and C. albicans 
biofilm development was recorded at 80.3 ± 1.4, 68.7 ± 3.0, 
and 55.7 ± 3.0%, respectively, upon treatment with 200 µg 
of CuTiNCs, as testified by ANOVA. In comparison, a 
study conducted by [44] revealed that 100  mg/mL of 
CuFe nanocomposites devastated E. coli and S. aureus 

Table 3 Antibiofilm activity of CuNPs, TiNPs and CuTiNCs (50, 100, and 200 µg /mL) fabricated by Candida sp. against some biofilm-
producing pathogens. The results were expressed as mean ± SEM and (*) indicates the statistical significance (P˂ 0.05)
Biofilm type CuNPs TiNPs CuTiNCs

50 µg 100 µg 200 µg 50 µg 100 µg 200 µg 50 µg 100 µg 200 µg
S. aureus -11.3 ± 1.7 13.9 ± 0.2* 38.2 ± 1.9 0 8.6 ± 1.5 20.2 ± 2 36.1 ± 1.8 62.4 ± 3.5 80.3 ± 1.4*
P. aeroginusa -11.7 ± 1.5 5.4 ± 1.7 30.7 ± 1.3 0 5.5 ± 1.6 15.6 ± 2 28.4 ± 1.7 55.9 ± 4.1 68.7 ± 3.0*
C. albicans -14.2 ± 0.9 3.8 ± 1.9 23.4 ± 1.8 0 3.9 ± 1.6 9.2 ± 2 22.5 ± 1.8 39.7 ± 4.0 55.7 ± 3.0*

Fig. 12 Antibiofilm performance of CuNPs, TiNPs and CuTiNCs in different concentrations (50, 100, and 200 µg /mL) against biofilm-producing pathogens
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biofilm growth by 12 and 49%, respectively; reflecting 
the potency of the current CuTiNCs in defeating biofilm 
growth in minuscule amounts. Interestingly, no study 
examined the antibiofilm potential of the CuTi hybrid.

Based on the previous backdrop, the whole scenario 
for the antagonistic potentiality of NPs-NCs, under study 
against various pathogens in either planktonic or bio-
film phases, could be envisaged. As outlined by [50] and 
[131] the strategies followed by NPs in inducing their 
toxicity could be described as nonspecific, complex, and 
complicated modes of action. By serving as nanoknives, 
NPs-NCs commence their action by physical cracking in 
the cell wall, phospholipid peroxidation, depolymeriza-
tion of polysaccharides, and concurrent enfeeblement of 
membrane integrity. All these features collectively result 
in leakage of cellular components (proteins, lipopolysac-
charides, reducing sugars, etc.), dissipation of electron 
motive force, osmotic imbalance, and a diminishment 
in ATP intracellular levels. Once NPs, which are less 
than 80  nm, are sequestered in the cell internally, more 
destructive effects are exerted, including frustration of 
biochemical activities and hindering metabolic path-
ways. Such could be implemented by the higher affinity 
of metal ions released from NPs-NCs to bind with the 
thiol group (R − SH) of amino acids, forming (–S–S–) 
bonds, which deform protein structure, block their active 
sites, and eventually cause proteins malfunctioning. Let 
alone their ability to interact with nucleic acids, disrupt-
ing, in such a way, replication, DNA repair and protein 
synthesis processes. However, the intrinsic reason for the 
overall inhibition lies behind the massive oxidative stress 
owing to the intense generation of oxygen-free radicals or 
reactive oxygen species (ROS) like singlet oxygen (1O2), 
hydroxyl radicals (OH−) and superoxide radicals (O2

−) 
via Fenton and Haber–Weiss reactions. Such elevation of 
ROS intensifies the damage to microbial biomolecules, 
which terminates metabolic activities and ultimately cell 
death. Additionally, regarding the antibiofilm potency, 
NPs-NCs controlled the development of biofilm by lim-
iting the productivity of EPS, prohibiting cell adhesion 
by modifying surface characteristics and enhancing the 
quorum-quenching activity of sessile cells.

Worthwhile, the biocide potency of CuNPs exceeded 
unequivocally that displayed by TiNPs, which is attrib-
uted to their higher surface area (surface/volume smaller 
ratio) of ultrafine-size CuNPs with homogenous disper-
sity and limited aggregation. All those features allow 
a faster elution rate of copper ions, more contact with 
microbial cells, and consequently a higher rate of cyto-
toxicity. Whereas, the exposure of microorganisms to 
CuTi in their composite nanoform declared distinct 
functionalities and an eminent magnitude of toxicity 
as compared to their sole NPs. That could be ascribed 
to the synergistic leverage of two different metal oxides 

rather than merely additive impact, which was consis-
tent with that reported by several research groups [65, 
132], and [44]. Intriguingly, the dual exposure of micro-
bial cells to different metal ions simultaneously released 
from nanomaterials with binary structures put the cells 
in a sudden shock situation, triggering them handi-
capped to induce multiple gene mutations for tolerating 
such synchronized, multiple, and condensed antagonistic 
doses. Therefore, it is plausible to propose that CuTiNCs 
exerted their hostility by targeting multiple cellular loca-
tions simultaneously with a multimode of action. In the 
same context [44] and [129], explicated similar findings 
with CuFeNCs and CuZnNCs, respectively.

Out of the preceding results, the efficacy of mycosyn-
thesized CuTiNCs in ceasing microbial growth and cor-
rupting biofilm formation encouraged their application 
as an antimicrofouling agent and disinfectant in purifying 
environmental effluents from their microbial load.

Anti-microfouling activity
Biofouling, as an economic and ecological problem, is 
detected in industrial aquatic processes, food and bever-
age industries, water desalination systems, oil industry 
grates, cooling systems, electric cables, and pipelines of 
water treatment, storage, and distribution. It involves the 
accumulation of organic materials such as polysaccha-
rides, proteins, and glycoproteins, followed by the coloni-
zation of biofilm-forming organisms (e.g., bacteria, fungi, 
phytoplankton, algae, and protozoa) on submerged sur-
faces. Such microfoulers represent the main focal point 
and primary key step in establishing a rigid three-dimen-
sional polymeric matrix that captures larger organisms of 
macrofoulers (e.g., macroalgae, bryozoans, mussels, bar-
nacles, and tube worms). Economically, to reduce energy 
consumption, maintain wet surfaces of pipelines, and 
protect the environment from pathogen dissemination, 
the development of antifouling coating or painting is the 
decipher [133]. Worthwhile, organotin (tributyltin) and 
heavy metal-based paints are the most often employed 
effective biocide, Nevertheless, owing to environmental 
damage caused by their broad spectrum cytotoxicity (in 
ppb) against target and nontarget organisms, their appli-
cations became limited [134]. Therefore, the utilization of 
inorganic NPs as main constituents of antifouling agents 
has gained momentum.

Herein, CuTiNCs showed significantly (P ˂ 0.05) dis-
tinguished anti-microfouling properties by lessening the 
density and diversity of adhered marine biofilm-forming 
microbes by 64.63 ± 3.5, and 89.82 ± 4.3% for 100 and 
200  µg/ml, respectively. The images of the light micro-
scope demonstrated that the surface area of the control 
uncoated slide was harbored with an evenly dispersed 
confluent, prolific, and dense biofouling load. In com-
parison, the treated slides appeared to have fewer cells 
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dwelling on the coated surface in a separate manner. 
For more morphological changes, SEM was employed. 
(Fig.  13) demonstrated the destructive potentiality of 
CuTiNCs against marine microfoulers more deeply than 
a light microscope. Wherein, multilayer aggregations of 
rods and coccid-shaped cells appeared compactly packed 
and immersed in a dense EPS matrix in the untreated 
control sample. However, a few numbers of microfouler 
bacteria were loosely scattered, reflecting the decay of the 
EPS skeleton. Besides, treatment with CuTiNCs resulted 
in dramatic deformation of the cells, represented by the 
presence of wide furrows, implying cell membrane dete-
rioration and disability to colonize CuTiNCs-coated 
slides and construct their EPS lattice. Both images of 
light and SEM emphasize the potential of CuTiNCs in 
inhibiting microfouler settlement. Recent studies docu-
mented the incorporation of CuONPs and TiO2NPs in 
fouling polymeric membranes to consolidate their hydro-
philicity and antimicrobial behavior [135, 136], and [137]. 
Hereby, the antagonistic feature of CuTiNCs impeded the 
biofilm biomass coverage and disrupted its architecture 
and distribution, which is a prerequisite step in the whole 
biological fouling process, as declared by [138] and [53]. 
It is important to mention that the capability of CuTiNCs 
to prevent macrofouling development in in-situ fields will 
be implemented in an ongoing study. Hence, the current 

study succeeded in finding an alternative solution for the 
micro-fouling problem through recruiting CuTiNCs as 
antifouling paints.

Environmental effluents disinfection
Microbial pollution of aquatic environments menaces 
the sanitary state of water bodies, which consequently 
influences negatively the quality of water specified for 
drinking and irrigation, in particular with the continuous 
uplifting in population. The discharges from decontami-
nation stations, hospitals, domesticated animals, indus-
tries, and water treatment plants are considered to be the 
major sources for microbial contamination [88, 139]. The 
arrival of such contaminated sources into the drinking 
water is a real peril that touches public health, which may 
result in the dissemination of epidemics and the fall of a 
country’s economy. Therefore, there is an urgent demand 
for recruiting proper disinfection practices for purify-
ing contaminated water until it reaches standard limits 
for consumption, especially given the current situation 
of the water crisis. On the account of several limitations 
regarding the chlorination approach, which is the most 
effective and commonly applied disinfection method, the 
endeavors for alternative green means are continuously 
implemented. Accordingly, recent literature has devoted 
different NPs-NCs to this concern. Meanwhile, based 

Fig. 13 Anti-microfouling potentiality of CuTiNCs via light microscope (A, B, and C) and SEM (D, E, and F) of control, and treatment at 100 µg/ml and 
200 µg/ml, respectively
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on international standards of environmental guidelines, 
there are some criteria, such as total plate count (TPC), 
mold & yeast (TMY), and indicator organisms, including 
total coliforms (TCs) and fecal Streptococcus (FS), that 
should be determined, and their concentration shouldn’t 
exceed a certain allowable limit to be safely utilized [140]. 
Hence, in our study, the disinfection potency of CuTiNCs 
(100 and 200 µg/ml) was scrutinized in treating two real 
effluent samples through defining TPC, TMY, TCs, and 
FS.

As observed in Table (4), the enhancement in microbial 
inhibitory power was associated with an increase in the 
treatment dose. Virtually all the examined parameters of 
TPC, TM, TCs, and FS revealed the distinct disinfection 
potentiality of CuTiNCs in controlling and inhabiting the 
microbial content in domestic and agricultural effluents. 
Wherein, 100 and 200  µg/ml of CuTiNCs engendered 
about 68.23 and 84.48% reductions in the TPC content of 
domestic effluent and 55.95 and 73.94% for agricultural 
effluent, respectively. Whereas, the suppression of mold 
and yeast content induced by both doses recorded 59.81 
and 78.69% for domestic effluent and 47.40 and 67.93% 
for agricultural effluent, respectively. Regarding indicator 
microorganisms, the disinfection potency reached 90.43 
and 75.57% for TCs in domestic and agricultural efflu-
ents, 98.11% and complete elimination of FS, respectively, 
upon treatment with 200  µg/ml of CuTiNCs. Generally, 
CuTiNCs exerted a higher disinfection potentiality in 
domestic effluent than that observed in agricultural sam-
ple. The presence of heavy metals and residues from pes-
ticides, herbicides, and fertilizers was proposed to induce 
a greater tolerance modality for the agriculture-dwelling 
microbiota than that in municipal wastewater, which was 
enriched with residues of organic nutrients as accentu-
ated formerly by water quality studies of physicochemical 

parameters [55]. Additionally, the presence of a higher 
content of dissolved solids and cations, such as Ca2+ 
could reveal intricacies in the interaction between NCs 
and the microbial surface. That could happen through 
the adsorption of such cations on negatively charged 
CuTiNCs, neutralizing their surface and generating large 
floccules, which subsequently hampered the antagonistic 
effect of the released CuO and TiO2 ions [138]. There-
fore, the physicochemical properties of wastewater are 
an incontestably conclusive factor in determining the 
adequate dose required for implementing an accept-
able disinfection process. Eventually, the collective traits 
of mycologically synthesized /functionalized CuTiNCs 
and the synergism provided by both ions released from 
the hybrid NCs will open up innovative avenues for their 
recruitment in various technological applications.

Conclusion
To summarize, this investigation, for the first time, accen-
tuates the ability of Candida sp. towards the fabrication 
of binary hybridized nanoforms of CuTiNCs. Through a 
simple eco-friendly bottom-up approach, the bionano-
factory Candida sp. was challenged for both extracel-
lular and intracellular production of CuNPs, TiNPs and 
their nanocomposites. The mycofabrication of CuNPs, 
TiNPs, and CuTiNCs was assured via TEM, SEM, XRD, 
UV-Vis spectroscopy, FTIR, EDX, ζ-potential, and TGA. 
The biocidal activity of myco-synthesized NPs-NCs was 
assessed against a vast array of human as well as plant 
pathogens. Besides, the antibiofilm activity of CuNPs, 
TiNPs, and CuTiNCs in different concentrations was 
also defined. A significant inhibition (P ˂ 0.05) exerted 
by CuTiNCs (200 µg/mL) reached to 80.3 ± 1.4, 68.7 ± 3.0, 
and 55.7 ± 3.0% in defeating S. aureus, P. aeruginosa, 
and C. albicans biofilms development, respectively. The 

Table 4 Disinfection potentiality of 100 and 200 µg/ml of CuTiNCs in decontaminating domestic and agricultural effluents from some 
microbial parameters. The results were expressed as mean ± SEM and (*) indicates the statistical significance (P˂ 0.05)
Parameter CuTiNCs Dose (µg/ml) Domestic effluent Count (CFU/mL) Agricultural effluent Count (CFU/

mL)
Control Treated Control Treated

Total Plate Count 100 1.42 × 107 ± 2.95 × 104 4.51 × 106

± 3.5 × 105*
4.09 × 105

± 1.2 × 102
1.80 × 105

± 8.85 × 103*

200 2.20 × 106

± 1.08 × 105
1.065 × 105

± 7.83 × 103*

Mold &Yeast 100 1.25 × 105 ± 8.65 × 103 5.06 × 104

± 8.65 × 103
1.63 × 104

± 2.19 × 103
8.58 × 103

± 9.16 × 102

200 2.68 × 104

± 2.77 × 103
5.23 × 103

± 2.9 × 102

Coliforms 100 1.58 × 104 ± 1.06 × 102 5.83 × 104

± 6.78 × 102
1.089 × 104

± 3.37 × 102
5.33 × 103*

± 2.05 × 102*

200 1.51 × 104

± 1.06 × 102
2.66 × 103

± 1.39 × 102

FecalStreptococcus 100 1.06 × 102 ± 12 40 ± 2.5 41 ± 1 8 ± 2
200 2 ± 1* 0*
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results unveiled the superior potency of CuTiNCs com-
pared to their single nanoforms, in a dose-dependent 
modality, which favored their applications in wastewa-
ter treatment as antifouling agents and disinfectants. 
The light microscopy and SEM depicted the capability 
of 200  µg/ml CuTiNCs in inhibiting microfouler settle-
ment by 89.82 ± 4.3%, while deteriorating EPS architec-
ture and cell morphology. However, 100 and 200 µg/ml of 
CuTiNCs exhibited an eminent disinfection potential and 
diminished the microbial load of bacteria, molds, yeast, 
and indicator organisms of coliforms and fecal Strepto-
cocci after 2 h of exposure. Interestingly, the mutual cor-
porative interactions of Cu and Ti ions from the CuTiNCs 
spark immense interest to be invested in prospective 
medical and energy-mediated applications.
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