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Abstract 

The biosynthetic potency of Taxol by fungi raises their prospective to be a platform for commercial production 
of Taxol, nevertheless, the attenuation of its productivity with the fungal storage, is the challenge. Thus, screening 
for a novel fungal isolate inhabiting ethnopharmacological plants, with a plausible metabolic stability for Taxol pro‑
duction could be one of the most affordable approaches. Aspergillus niger OR414905.1, an endophyte of Encephalartos 
whitelockii, had the highest Taxol productivity (173.9 μg/L). The chemical identity of the purified Taxol was confirmed 
by HPLC, FTIR, and LC–MS/MS analyses, exhibiting the same molecular mass (854.5 m/z) and molecular fragmentation 
pattern of the authentic Taxol. The purified Taxol exhibited a potent antiproliferative activity against HepG‑2, MCF‑7 
and Caco‑2, with  IC50 values 0.011, 0.016, and 0.067 μM, respectively, in addition to a significant activity against A. 
flavus, as a model of human fungal pathogen. The purified Taxol displayed a significant effect against the cellular 
migration of HepG‑2 and MCF‑7 cells, by ~ 52–59% after 72 h, compared to the control, confirming its interference 
with the cellular matrix formation. Furthermore, the purified Taxol exhibited a significant ability to prompt apoptosis 
in MCF‑7 cells, by about 11‑fold compared to control cells, suppressing their division at G2/M phase. Taxol productiv‑
ity by A. niger has been optimized by the response surface methodology with Plackett–Burman Design and Central 
Composite Design, resulting in a remarkable ~ 1.6‑fold increase (279.8 μg/L), over the control. The biological half‑
life time of Taxol productivity by A. niger was ~ 6 months of preservation at 4 ℃, however, the Taxol yield by A. niger 
was partially restored in response to ethyl acetate extracts of E. whitelockii, ensuring the presence of plant‑derived 
signals that triggers the cryptic Taxol encoding genes.
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Introduction
Cancer diseases are currently ranked as the second nota-
ble reason of mortality after cardiovascular disease [1, 2]. 
Chemotherapy has been recognized as one of the most 
profound treatment protocol for cancer, and Taxol is 
one of the most prescribed drugs. Taxol, a diterpenoid 
that was initially isolated from Taxus brevifolia with a 
significant anticancer activity by arresting the tumor 
cell cycle at the G2/M phase [3, 4]. Taxol had a power-
ful anticancer activity against a wide-range of tumor cell 
lines including breast, ovarian, hepatic, leukemia, lung 
tumors, and polycystic kidney disease [5, 6]. The influen-
tial activity of Taxol against various tumor cells is mainly 
due the unique affinity to bind with N-terminal region of 
β-tubulin, stopping the depolymerization of the micro-
tubules, so, blocking the mitotic division, with an ulti-
mate arrest to the cell cycle of tumor cells [7, 8]. Taxol 
was originally derived from T. brevifolia bark, nonethe-
less, its significantly low yield (~ 0.001%), unpredicted 
fluctuations and reproducibility, due to the natural envi-
ronmental changes that could have a negative effect on 
the Taxol biosynthetic machinery by T. brevifolia, are 
the challenge for this approach [9, 10, 11]. Semisyn-
thetic technology based on Taxus baccata for produc-
tion of the intermediate 10-decaetylbaccatin III, followed 
by tailoring enzymes to synthesize Taxol, has been used 
as an authenticated approach for the commercial Taxol 
production [12], however, the heterogeneity of these 
intermediates are the major obstacle. Interestingly, the 
fungal metabolic potency of Taxol production raise the 
hope for implementation of this approach commercially, 
for the feasibility of manipulating their yield, independ-
ence on the environmental conditions, rapid growth, and 
cost-effectiveness [13, 14]. Numerous endophytic fungi 
were reported to possess the Taxol producing metabolic 
potency [15–20]. The biosynthetic pathway of Taxol in 
fungi started with cyclization of geranylgeranyl diphos-
phate to taxa-4(5),11(12)-diene by the action of taxadi-
ene synthase, then hydroxylation of taxadiene nucleus by 
the cytochrome P450-monooxygenases, as reviewed in 
details by our previous studies [21]. However, the antic-
ipation of fungi to be a commercial approach for Taxol 
production has been confronted by the attenuation of 
Taxol productivity by fungi with the storage and multi-
ple subculturing [16, 21–24]. The machinery of Taxol 
biosynthesis in fungi is usually encoded by gene cluster 
located on different domains on the fungal genome, and 
the expression of these cluster become cryptic under 
standard lab conditions, due to the lack or dilution of the 
transcriptional signals to synchronize the expression of 
these genes [18, 24–28]. Thus, screening for a metaboli-
cally stable Taxol producing fungal isolate from different 
medicinal plants is the objective.

Medicinal plants of ethno-pharmaceutical uses could 
be a repository for novel endophytic fungi with unique 
metabolic stability and sustainability for bioactive sec-
ondary metabolites. The genus Encephalartos has been 
recognized as one of the well-known pharmaceutically 
valuable plants, the second-largest genus of the fam-
ily Zamiaceae, predominantly developed in south of the 
Sahara Desert [29–31], tropical Africa, over 50% of the 
genus has been present in South Africa [32]. Enceph-
alartos has a significant ethno-pharmacological value, 
exhibiting cytotoxic and antifungal properties [33–35], 
however, the identity of the endophytic fungi from this 
genus remains ambiguous. Thus, the objective was to 
search for a potential endophytic fungal isolate from 
Encephalartos whitelockii, with a reliable biosynthetic 
stability for Taxol production, and to maximize the yield 
of Taxol via Surface Response Methodology optimization 
bioprocessing.

Material and methods
Plant sample collection, and isolation of the fungal 
endophytes
Fresh leaves samples of Encephalartos whitelockii were 
obtained in March 2022 from El-Abd Garden in Giza, 
Egypt, for isolation of their endogenous fungal endo-
phytes. The plant was kindly identified by Dr. Therese 
Labib, a Plant Taxonomist at Orman Botanical Garden in 
Giza, Egypt, and the sample voucher was deposited at the 
Department of Pharmacognosy Herbarium, Faculty of 
Pharmacy, Zagazig University, with ID# ZU-Ph-Cog-608 
was deposited. The leaves were gathered and sterilized by 
70% ethanol for 2  min, then by 2.5% sodium hypochlo-
rite for 2 min, rinsed twice with distilled water. The leaves 
were carefully segmented into 1  cm × 1  cm, and placed 
onto the surface of potato dextrose agar (PDA) [20] 
(200 g/L potato extract, 20 g/L glucose, and 20 g/L agar 
in distilled water, with 0.1  g of chloramphenicol). The 
plates were incubated at 30 ℃ for 10  days [16, 36], and 
the emerged colonies of fungi were purified on the same 
media, and the developed fungi were identified according 
to their morphological features [37–39]

Screening for Taxol production by the endophytic fungi
The endophytic fungi from the leaves of E. whitelockii 
were grown on potato dextrose broth (PDB) [16, 20]. 
A plug of 6-day-old culture on PDA of each isolate was 
inoculated into PDB medium, the cultures were incu-
bated at 30  ℃ for 10  days, filtered, the filtrates were 
centrifuged at 5000 rpm, followed by extraction with eth-
ylacetate [40, 41]. The collected organic phase of solvent 
was dried by rotary evaporation, the resulting residues 
were dissolved in methanol. The Taxol productivity was 
evaluated by Merck 1 mm (20 × 20 cm) pre-coated silica 
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gel TLC plates (Silica gel 60 F254, KGaA, Darm, Germ.) 
[20, 42], with methylene chloride/ methanol/dimethyl 
formamide of 90:9:1 (v/v/v). The TLC plates were UV-
illumined at λ254 nm, to visualize the putative Taxol spots, 
as well as the plates were sprayed with a 1% vanillin sulfu-
ric acid solution, and gently heated for 24 h. The putative 
Taxol sample gave the same bluish color and mobility rate 
of the authentic one (Cat. # T7402), were considered. The 
putative silica spots containing Taxol were scraped off 
for Taxol extraction [16, 20, 21]. The concentration and 
purity the extracted Taxol were evaluated using HPLC 
(Agilent Technology, G1315D) of Eclipse Plus RP-C18 
column (Cat. # 959963-902) with methanol/ acetonitrile/
water (25:35:40, v/v/v) at 1.0  mL/min for 20  min. The 
fractions of Taxol were scanned using a photodiode array 
detector (DAD) from 200 to 500 nm, and the concentra-
tions of the putative Taxol were determined, compared to 
the authentic one at λ227 nm [20, 43].

Spectroscopic analyses of Taxol
The absorbance of the putative Taxol from the most 
potent fungal isolate was measured by UV–Vis spec-
trophotometry at wavelength range 200–400  nm. The 
concentration and purity of the extracted sample were 
assessed, compared to the authentic Taxol, with metha-
nol for zeroing the spectrophotometer [16]. The Infra-
Red (FT-IR) spectra of the sample were determined using 
a JASCO, FTIR 6100 Spectrophotometer, sample was 
pulverized in KBr pellets, and the spectra were recorded 
from 4000 to 500  cm−1.

The identity of the purified Taxol was resolved by the 
LC–MS/MS with a Thermo Scientific LCQ Deca mass 
spectrometer and Hypersil Gold aQ (C18 column) 
equipped with a positive ion mode electrospray source. 
The gradient elution mobile phase system of solution 
A (0.1% formic acid) and B (acetonitrile in 0.1% formic 
acid), was used with at 0.2  mL/min for 40  min, with a 
mobile phase B gradient ranging from 2 to 98% [16, 17, 
21]. The chemical features of the committed signals were 
assessed by analyzing their fragmentation pattern with 
the NIST mass spectral library.

Molecular identification of the potent Taxol‑producing 
fungal isolate
The potent Taxol-producing fungal isolate was molecu-
larly identified based on the internal transcribed spac-
ers (ITS) sequence [44, 45]. The fungal genomic DNA 
(gDNA) was extracted by CTAB reagent [46], used as a 
PCR template with the primers ITS5 5ʹ-TCC TCC GCT 
TAT TGA TAT GC-3ʹ and ITS4 5ʹ-GAA GTA AAA GTC 
G TAA CAA GG-3ʹ [47]. The reaction of PCR contains 
10 µL of 2X  TOPsimple™ DyeMIX-nTaq (Cat. # P510T), 
1 µL gDNA, 1 µ of each primer (5 pmol) in 20 µL total 

volume. The PCR program was denaturation at 95 ℃ for 
2 min, followed by 35 cycles of denaturation at 95 ℃ for 
30 s, annealing at 55 ℃ for 40 s, and extension at 72 ℃ for 
40 s, and then 72 ℃ for 2 min in final extension. The PCR 
amplicons were analyzed by 1.5% agarose gel, and the 
amplicons were purified, sequenced, and the obtained 
sequences were non-redundant BLAST searched, then 
imported into MEGA X software, and aligned by the 
ClustalW algorithm. Finally, the phylogenetic analysis 
was assessed using the neighbor-joining with 100 boot-
strap replicates [48].

Antiproliferative activity of the crude ethylacetate 
and purified Taxol extracts
The anticancer activity of the crude ethyl acetate extract, 
and purified Taxol of the potent fungal isolate towards 
the human hepatocellular (Hep-G2), breast (MCF-7) and 
intestinal (Caco-2) carcinoma, compare to the Vero cells 
was assessed by MTT assay [49]. The 96-well microti-
ter plate was initially inoculated with 2 ×  103 cells/ well, 
incubated at 12  h at 37 ℃, then ethyl acetate and puri-
fied Taxol were added to at different concentrations, 
then further incubated of the plate for 48  h at 37 ℃ at 
4%  CO2. The MTT reagent was added to the plate, incu-
bated for 6  h, the resulting purple formazan compound 
was assayed at λ570 nm. The  IC50 values were represented 
by the concentration of Taxol inhibits the cell growth by 
50%, compared to the control group (without drug). For 
the normal cell line (Vero), the  CC50 value was deter-
mined by the drug concentration reducing the initial 
cellular growth by 50%. The selectivity index (S.I.) was 
expressed by the value of  CC50 of the Vero cell to the  IC50 
value towards the cancer cells.

Biological activity‑guided assay of ethylacetate extract 
and putative Taxol extracts
The antifungal activity of ethyl acetate extract of the 
potent fungi and the putative purified Taxol sample was 
evaluated against Aspergillus flavus, as a model human 
fungal pathogen [50, 51]. The fungal spores was mixed 
with PDA prior plate pouring, incubated for 6 h, then dif-
ferent concentrations (0.1, 0.5, 2.5, 5, and 10  µg/mL) of 
the extracted Taxol were injected to the wells of the plate 
cultures, incubated at 28 ℃ for 5 days, and the diameter 
of the fungal inhibition zones was determined. The nega-
tive control was 1% DMSO. Triplicates of the experi-
ments were performed, and the results were presented by 
the mean ± standard deviation. Minimum inhibitory con-
centration (MIC) was assessed as the lowest extract con-
centration effectively inhibits the visual fungal growth, 
based on the inhibition zone diameters [52].
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Anti‑wound healing activity of the extracted Taxol
The effect of purified Taxol from the potent fungus on the 
stopping the cellular migration of MCF-7 and HepG-2 
tumor cells was determined. The 12-wells microtiter 
plate were seeded with at 4 ×  106 cells to, allowed to grow 
to a confluent monolayer, then a wound was made on the 
cell layer, the plate was rinsed with PBS, and amended 
with fresh medium with the extracted Taxol at  IC25 value, 
compared to 2% DMSO as a negative control. The culture 
was incubated at 37 ℃ at 4%  CO2, and the wound closure 
were monitored and imaged by phase-contrast micros-
copy. The healing efficiency of wound was calculated the 
percentage of a scratch area in drug-treated cells, com-
pared to untreated cells.

Apoptosis and cell cycle analyses of the MCF‑7 cells due 
to the putative Taxol
The apoptotic analysis of MCF-7 cells was assessed by 
Annexin- Apoptosis Detection Kit (Catalog #: K101-25). 
This assay based on the reaction of Annexin V protein 
with the externalized phosphatidylserine (PS) of the cells, 
with the initial stages of apoptosis, and the complex of 
Annexin V-PS can be easily measured by flow cytometry 
[53]. The MCF-7 cells were seeded to a 96-well plate cul-
ture at 2 ×  107 cells/well, treated with the purified Taxol, 
incubated for 24  h. The cultured cells were harvested, 
washed with 1  mL of PBS, and 200  μL of 1X annexin-
binding buffer was added. After the addition of Annexin 
V-FITC and PI to the cells, the mixture was incubated in 
total darkness for 15 min. The Annexin-PS complex was 
detected (Ex, λ488 nm; Em, λ530 nm) using a FITC signal 
detector.

The analysis of MCF-7 cell cycle in response to purified 
Taxol was assessed by propidium Iodide (PI) assay Kit 
(Cat #. ab139418). Briefly, the 48-wells microtiter plate 
were seeded with the cells, incubated for 12  h at 37 ℃, 
Taxol was added at  IC25 value, and then the cultures were 
incubated for 48 h. The cells were harvested by centrifu-
gation for 5 min at 2000 rpm, fixed in ice-cold 70% eth-
anol for 2  h at 4 ℃, and then the cells were rehydrated 
with 1 mL of PBS, and stained with PI solution contain-
ing 5 μg/mL RNase, for 30 min in dark. Subsequently, the 
cellular DNA were analyzed using flow cytometry, with 
excitation at λ493 nm and emission at λ636 nm, using Flow 
Jow software package for calculating the of G0-G1, S, and 
G2-M cells percentages.

PCR mining of baccatin 
III‑3‑O‑(3‑Amino‑3‑phenylpropanoyl) transferase
The Taxol molecular biosynthetic blueprint was assessed 
by PCR mining of baccatin III-3-O-(3-amino-3-phenyl-
propanoyl) transferase (bapt), as a rate-limiting gene of 

Taxol synthesis. The extracted fungal DNA was used as 
a PCR template for bapt amplification with the primers 
5ʹ-TGA GGA CCT CCA TCT CTT CAT-3ʹ; 5ʹ-TAC ACA 
TTC GCT CCC ACAAC-3ʹ. The PCR mixture contains 
10 μL of  TOPsimple™ DyeMIX-nTaq (Cat.# P510T), 2 μL 
DNA, and 1 μL of each primers (10 pmol) in 20 μL total 
volume, using the Thermal Cycler 006 (A&E Lab Co. Ltd. 
England). The PCR was programed to denaturation at 
94 ℃ for 2 min, followed by denaturation at 94 ℃ for 20 s, 
annealing at 51 ℃ for 30 s, and extension at 72 ℃ for 30 s, 
for 35 cycles, and 72 ℃ for 2 min as a final extension. The 
PCR amplicons were checked by 1.5% agarose gel. Sub-
sequently, these amplicons were purified and sequenced 
with the same primers. The obtained sequence of bapt 
was non-redundant BLAST searched and aligned using 
Clustal W [54], phylogenetic analysis was conducted by 
neighbour-joining [55].

Nutritional bioprocessing of A. niger for optimizing 
the Taxol yield by plackett–burman and central composite 
designs
Various nutritional requirements including maltose, 
sucrose, lactose, peptone, soytone, yeast extract, ammo-
nium tartrate, sodium acetate, sodium nitrate, calcium 
chloride, magnesium sulfate, potassium hydrogen phos-
phate, ammonium sulfate, fluconazole, methyl jasmonate, 
cysteine, phenylalanine, methionine and glycine, were 
optimized by Plackett–Burman design for maximiz-
ing the Taxol yield of A. niger. The nineteen parameters 
were symbolized by (+ 1) and (− 1), as high and low lev-
els, respectively. Response Surface Methodology has 
been recognized as an effective approach for evaluating 
the interactions of the independent parameters and their 
consequences on productivity of Taxol by fungi [40]. The 
first-ordered polynomial model was calculated from the 
determination coefficient (R2), and F-test according to 
the following equation:

Y is predicted yield of Taxol, Xi an independent vari-
able, βi the linear coefficient, and β0 the model intercept. 
Three replicates were performed for each trial. The most 
influential variables derived from the Plackett–Burman 
Design (PBD), influencing on the Taxol production by A. 
niger were optimized by the Central Composite Design 
(CCD) [44, 83].

The second-ordered polynomial model has been uti-
lized for predicting the optimum storage conditions for 
Taxol production according to the following equation:

Y = β0+�βiXi

Y = β0 +
∑

βiXi +

∑
βiixii +

∑
βijXij ,
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βi the variables regression coefficient, βii the regression 
coefficient of square effects, βij the regression coefficient 
of interactions.

Taxol productivity by A. niger with the storage, potency 
of restoring their productivity by the plant extracts
The metabolic biosynthetic stability of Taxol by A. niger, 
with the storage was assessed. The original fungal culture 
was preserved as slope cultures at 4 ℃ for 10  months, 
and the Taxol productivity by the fungus was monthly 
assessed by growing at the standard conditions, then 
Taxol was extracted and quantified by the TLC and 
HPLC [14, 21].

The impact of different extracts of E. whitelockii namely; 
dichloromethane, ethyl acetate, and ethanol on induction 
of the Taxol productivity by A. niger was assessed. The 
fresh leaves (5 g) of E. whitelockii were minced in 50 mL 
of each solvent, and the mixture was stored at 4 ℃ for 
12 h, and the resulting extracts were filtered, centrifuged 
at 5000  rpm for 10  min, and the extracts were concen-
trated to 10 mL. Different concentrations of the prepared 
extracts were added to the 5-days old pre-cultures of A. 
niger, and further incubated for 14 days, and then Taxol 
was extracted and quantified [36]. Blank media without 
A. niger, with the plant extracts, and control cultures of 
A. niger without plant extracts, were used.

Fungal deposition
The internal transcribed sequence of A. niger, an endo-
phyte of E. whitelockii, was deposited to Genbank with 
accession number OR414905.1.

Statistical analysis
Triplicates of each experiment were executed, and the 
results were represented by the mean ± standard devia-
tion. The significance and F-test statistical analysis was 
determined the one-way ANOVA by using Prism Version 
6.0 (GraphPad Software, Inc., CA, USA).

Results
Isolation of the endophytes of Encephalartos whitelockii, 
screening for Taxol production
Eight fungal endophytes were recovered from the leaves 
of E. whitelockii on PDA media, these isolates were mor-
phologically identified based on their macroscopic and 
microscopic traits into four genera Aspergillus, Penicil-
lium, Cladosporium and Fusarium (Fig.  1). Among the 
recovered genera, Aspergillus was represented by 55%, A. 
niger, A. awomari, A. candidus, A. flavus and A. fumiga-
tus. Taxol productivity by the recovered endophytes of 
E. whitelockii were assessed on PDB, incubated at stand-
ard conditions, then Taxol was extracted and quantified. 
From the results (Fig. 1), the maximum Taxol yield was 

reported for A. niger (173.9 μg/L), followed by Fusraium 
solani (55.2 μg/L), A. candidus (40.2 μg/L) and A. awom-
ari (35.2 μg/L). However, the other fungal isolates had a 
relatively low potency of Taxol productivity (2–10 μg/L). 
The putative sample spots gave the identical mobility rate 
and color of the authentic Taxol under UV-illumination 
at λ254 nm, were considered, ensuring the chemical iden-
tity of the samples as Taxol. The putative Taxol samples 
was scarped-off from the TLC silica, and dissolved in 
methanol. The concentration of the putative Taxol sam-
ples were confirmed by HPLC, gave a sharp peaks at 
4.4  min that was identical to the authentic one. Thus, 
from the TLC and HPLC, the putative sample was rela-
tively authenticated as Taxol.

Identification of the most potent Taxol‑producing fungi, 
and PCR mining of bapt
The morphological characteristics of the most potent 
Taxol-producing fungal endophyte of E. whitelockii, 
was observed by growing on PDA and Czapek’s-Dox 
agar media along for 10  days at 30 ℃, and their macro 
and microscopical traits were checked daily. The devel-
oped fungal colonies obviously appeared whitish, then 
turned to black after 4  days, the sides of the colonies 
appear pale yellow producing radiating fissures. The fun-
gus has smooth colored conidiophores, radial biseriate 
conidial heads, with conidial size 3.5–5.0 mm and vesicle 
45–80 μm (Fig. 2). The morphological identity of the cur-
rent fungal isolate completely follow the descriptions of 
A. niger as described by Samson et al. [56] and Raper and 
Fennel, [39]

The morphological identity of the most potent isolate 
“A. niger” was verified from the molecular sequence of 
their rRNA region. The genomic DNA was extracted, 
used as a PCR template, and the resulting amplicon 
was ~ 500–520 bp (Fig. 2). The PCR product was purified, 
sequenced, and non-redundantly BLAST searched on 
Genbank. From the alignment analysis on the NCBI, the 
retrieved sequence was displayed 100% similarity with 
the isolates of A. niger with zero E-value. The sequence of 
ITS of A. niger EFBL-AG was deposited into the Genbank 
at accession # OR414905.1. The phylogenetic relatedness 
of A. niger was constructed by alignment with the data 
based deposited ITS sequences of A. niger. The isolate A. 
niger EFBL-AG OR414905.1, an endophyte of E. white-
lockii, had a 99.5% identity with the isolates of A. niger 
with accession # MH341159.1, KP172477.1, MF078659.1, 
KJ881377.1, LC496501.1, KU171053.1, MW282896.1, 
MH279840.1, and KJ881376.1 with zero E-value and 
query coverage (98–100%).

The metabolic potency of Taxol biosynthesis of A. niger 
has been assessed based on the expression of 10-dea-
cetyl-baccatin III-O-acetyltransferase, as a rate-limiting 
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gene of Taxol biosynthesis. From the PCR results, an 
amplicon of bapt was ~ 450  bp for A. niger, the ampli-
con was sequenced (Fig.  2). The sequence of bapt was 
in silico translated by ExPASy portal tool (https:// www. 
ebi. ac. uk/ Tools/ st/ emboss_ sixpa ck). The phylogenetic 
analysis of the BAPT protein was constructed by MEGA 
X software package (Fig.  2), displayed ~ 99.2% similarity 
with A. niger MGMT family proteins (XM025592527.1, 
XM003188855.1, XP040634291.1, CEL02241.1, 
KAJ04141.1, KKK26970.1, PYH87447.1, XP025390.1, 
XP025470662.1, XP025566557.1 and XP025510978), and 
91% similarity with putative methyltransferase of A. neo-
niger (XM025626698.1, XP025536416.1, XP025566557.1, 
XP026631223.1). So, the results of TLC and HPLC 
analysis of Taxol were significantly complemented with 
PCR amplicons of bapt, as a rate-limiting gene of Taxol 
biosynthesis.

Chemical identity of the extracted Taxol from A. niger
The chemical identity of Taxol extracted from A. niger 
was verified by UV–Vis, FT-IR, and LC–MS/MS Anal-
yses. Based on the UV-absorption spectral analysis, 
the purified Taxol of A. niger exhibited a maximum 

absorption peak at 227  nm, that was consistent with 
the standard absorption spectrum of authentic Taxol. 
From the FT-IR spectra, the purified Taxol had a broad 
peak in the range of 3475.04 to 3290.39   cm–1 owing to 
the stretching of hydroxyl (OH) group and amide (-NH) 
group, as well as, to the stretching of the aliphatic CH 
groups in the area of 2976 to 2853   cm–1. The peaks at 
1734.06 and 1601.65 were designated to the ester group 
and aromatic rings stretches, respectively. The COO 
stretching frequency peaked at 1259.69   cm–1, while the 
alkyl C-O stretching of ester appeared at 1073.10   cm–1. 
The Aromatic C and H bends frequency peaked at 
1020.01  cm–1 as shown in Fig. 3.

The chemical structure of Taxol was resolved by UPLC-
ESI–MS/MS in a positive mode. The LC–MS analysis 
revealed that the Taxol sample had a molecular mass 
to charge ratio of 854.5 m/z (Fig. 3), that was similar to 
authentic Taxol from Taxus brevifolia [57]. The molecu-
lar identity of Taxol has been further resolved from the 
LC–MS/MS analysis, the parent molecule of 854.5  m/z 
was further fragmented, displayed a similar fragmenta-
tion pattern of authentic Taxol [58]. The mass fragmenta-
tion of the parent Taxol molecule was illustrated in Fig. 3. 

Fig. 1 Isolation and screening for the endophytic fungal isolates of E. whitelockii leaves. A Morphological view of E. whitelockii. B Plate cultures 
of the recovered fungal endophytes. (1. Penicillium citrinum, 2. Fusarium solani, 3. Aspergillus niger, 4. A. awamori, 5. A. candidus, 6. Cladosporium 
sp., 7.A. flavus and 8. A.fumigaus). C The TLC plate of the extracted Taxol from the fungal isolates normalizing to authentic Taxol. D Yield of Taxol 
as quantified from the TLC chromatograms. E HPLC chromatogram of the TLC purified Taxol from A. niger, and F. solani, compared to the authentic 
Taxol at retention time 4.4 min. The yield of Taxol from the HPLC chromatograms for A. niger and F. solani were about 173 and 55 μg/L, that being 
matched with the TLC analysis

https://www.ebi.ac.uk/Tools/st/emboss_sixpack
https://www.ebi.ac.uk/Tools/st/emboss_sixpack


Page 7 of 19Gamal et al. Microbial Cell Factories           (2024) 23:78  

Fig. 2 Morphological and molecular identification of the potent Taxol producing fungus. A Plate culture of A. niger on PDA medium after 6 days. 
B Conidial heads of A. niger with an oval shape, and biserriate strigma at 1000 × magnification. C PCR amplicon of the ITS region of A. niger. D PCR 
amplicon of bapt gene as Taxol rate‑limiting gene of Taxol biosynthesis. E Phylogenetic relatedness of the ITS region of A. niger by the maximum 
neighbor‑joining (NJ) model by the MEGA X software. F The phylogenetic relatedness of the sequence of putative protein sequence of the BAPT 
retrieved from translation of the bapt gene by the maximum neighbor‑joining (NJ) model by the MEGA X. The DNA ladder was 1 kb (Nex‑gene 
Ladder, Puregene, Cat.# PG010‑55DI)

Fig. 3 Chemical analysis of extracted Taxol from A. niger. A FT‑IR spectrum of the extracted Taxol. From A. niger. B LC–MS chromatogram 
of the extracted Taxol. C LC–MS/MS fragmentation of the extracted Taxol. D Scheme of fragmentation pattern of Taxol by the 2nd MS
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The parent molecule of Taxol at m/z 854.5 [M +  H]+ had 
MS/MS base peak ion at m/z 286 revealing the loss of 
Taxol side chain  (C16H15NO4). The characteristic frag-
ment ions were 749, 655, 509, 387, 327, 122 and 105 m/z 
were completely matched with the fragments of authen-
tic Taxol, ensuring the chemical identity of putative sam-
ple of A. niger as Taxol.

Antiproliferative and antifungal activity activities of ethyl 
acetate extract and purified Taxol from A. niger
The antiproliferative activity of ethyl acetate extract 
and purified Taxol from A. niger was evaluated against 
human hepatocellular (Hep-G2), breast (MCF-7) and 
intestinal (Caco-2) carcinoma cells, compared to the 
normal Vero cells. The fungus was grown on PDB 
medium, incubated at the desired conditions, the cul-
ture filtrate was extracted with ethyl acetate, and Taxol 
was fractionated by TLC. The putative Taxol spots 
with the same mobility rate and color of the authentic 
one were scraped off and Taxol was eluted, and their 
activity was evaluated against the experimental cancer 
cell lines. From the viability of cells (Fig.  4), the ethyl 
acetate extract of A. niger showed a significant effect 
against MCF-7  (IC50 value 8.9  μg/mL), Hep-G2  (IC50 
value 15.36  µg/mL) and Caco-2  (IC50 value 68.9  μg/
mL), compared to the normal Vero cells. The selec-
tivity index of the ethyl acetate extracts of A. niger 
towards MCF-7 and HepG-2 cells, were 17.6 and 9.4, 
respectively. The purified Taxol of A. niger exhibited 

a significant cytotoxic activity towards the tested cell 
lines. From the  IC50 values, Taxol had a strong activity 
against the MCF-7 and HepG2 cells (~ 0.014 μM), and 
Caco-2 cells (0.067  μM), with selectivity index about 
22.2, revealing the efficiency and specificity of Taxol in 
targeting the tumor cells than normal Vero cells.

The antifungal activity of the ethyl acetate extracts 
of the recovered fungal isolates from E. whitelockii was 
assessed by well-diffusion assay, towards Aspergillus 
flavus, as a model human fungal pathogen. From the 
data (Fig.  4), obviously the positive Taxol-producing 
endophytic fungal isolates have a remarkable activ-
ity against A. flavus, in a concentration-dependent 
manner. The ethyl acetate extracts of A. niger had the 
highest activity against A. flavus, as revealed from the 
diameter of the inhibition zone (30  mm) followed by 
A. awamori (23 mm), and A. candidus and A. fumiga-
tus (17–18  mm) at 10  μg/mL. Practically, the putative 
Taxol sample exhibited a substantial activity against A. 
flavus in a concentration-dependent manner, in con-
trast to the absence of such activity against A. niger as 
a producer strain (Fig.  4). The lack of biological activ-
ity of the extracted Taxol on A. niger, confirm the pos-
sessing of a specific resistance mechanism to Taxol 
that might be by blocking the receptors on the surface 
of cell membrane or by re-orienting the molecular ste-
reo-structure of tubulin proteins, to be inaccessible for 
binding with Taxol.

Fig. 4 The antiproliferative and antifungal activities of the extracted Taxol and crude ethylacetate extracts of A. niger. A, The activity of the putative 
Taxol A, and crude ethylacetate extracts (B) towards the tumor cell lines HepG‑2, MCF‑7, Caco‑2, compared to the normal Vero cells, a revealed 
from the  IC50 values. C The antifungal activity of the extracted Taxol and crude ethylacetate extracts against A. flavus at concentrations 0.1, 0.5, 2.5, 5 
and 10 μg/mL. D The diameter of the inhibition zones of the tested fungal extracts against A. flavus 
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Anti‑Wound healing activity of the cells due to the purified 
Taxol of A. niger
The effect of purified Taxol of A. niger on the migration 
of the HepG2 and MCF-7 cells, was assessed by measur-
ing the wound closure after 24 and 72 h, compared to the 
untreated cells. The results showed that the wound clo-
sure of HepG-2 and MCF-7 monolayer cells was remark-
ably suppressed by the purified Taxol, compared to the 
negative control (Fig. 5). The wound healing percentage 
of the homogenous monolayer of HepG2 and MCF-7 was 
approximated by 49% and 54%, after 24 h, and by 52% and 
59% after 72  h, respectively, compared to the untreated 
cells. The suppression of wound healing of HepG2 and 
MCF-7 cells upon addition of the purified Taxol of A. 
niger, confirmed the interference with the cellular regen-
eration, and matrix formation of tumor cells, ultimately 
halts their metastasis.

Apoptosis and cell cycle analysis of the MCF7 responsive 
to the purified Taxol of A. niger
The effect of the purified Taxol of A. niger on the apopto-
sis of MCF-7 cells was assessed by Annexin V-propidium 

iodide assay. From the results (Fig. 6), a significant shift 
was observed for the cells to an early apoptotic and late 
apoptotic stages, due to Taxol of A. niger, compared to 
the control cells. The MCF-7 cells percentage in early, late 
apoptosis, and necrosis were about 15.2%, 4.6% and 3.9%, 
in response to Taxol of A. niger, while, the early apop-
tosis, late apoptosis and necrosis were represented by 
about 2.71, 0.71 and 1.78%, respectively, in control cells. 
The percentage of total apoptosis of the MCF-7 cells was 
increased by about 11 folds in response to Taxol treat-
ment, compared to the control cells.

The MCF-7 cell cycle with Taxol treatment was ana-
lyzed by propidium iodide, the cells were amended 
with purified Taxol of A. niger, at their  IC25 values, after 
incubation, the cells were harvested by centrifugation, 
fixed by 1  mL ice cold 70% ethanol for 2  h at 4 ℃. The 
DNA content of the cells was analyzed and the ratios of 
G0-G1, S and G2-M cells were determined. From the 
results (Fig.  6), the maximum growth arrest of MCF-7 
cells in response to Taxol treatment was reported at the 
G2/M values, compared to the control cells. However, 
the purified Taxol had no obvious effect on the S-phase 
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Fig. 5 Wound healing assay of the HepG2 and MCF‑7 cells in response to the purified Taxol of A. niger comparing to the untreated cell lines 
(negative control), after 24 ad 72 h. After 24 h of growth of the cells as homogenous monolayer, a scratch was made and the extracted Taxol 
was added (IC50 values 0.02 μM), to the medium, then the wound healing was measured at zero time and after 24 h and 72 h of incubation 
for the cell lines HepG‑2 (A) and MCF‑7 (B). The percentage of wound healing of the HepG‑2 (C) and MCF7 (D) cells in response to Taxol treatment
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and G0-G1phases of MCF-7, compared to the negative 
control cells. Overall, the purified Taxol from A. niger 
had a significant arresting effect to the cell cycle at G2/M 
phase.

Bioprocess optimization of Taxol production of A. niger 
by the plackett–burman and central composite designs 
(CCD)
The productivity of Taxol by A. niger, an endophyte of 
E. whitelockii, was maximized by optimizing the fun-
gal nutritional requirements. The medium constitu-
ents and their interactions are crucial in regulating the 
biosynthetic machinery of fungal secondary bioactive 
metabolites. The Response Surface Methodology has 
been frequently employed to nutritionally optimize the 
fungal growth to maximize their secondary metabolites 
yield [44]. Nineteen variables including carbon, nitrogen 
precursors, growth modulators, and elicitors were evalu-
ated. The lowest and highest values of Plackett–Burman 
design of each parameter were summarized in (Table 1). 
After fungal growth, Taxol was extracted, quantified, and 
the significance of the independent variables affecting 
Taxol productivity by A. niger, along with the predicted 
and actual responses from the matrix of Plackett–Bur-
man design were summarized (Table  2). All experi-
ments were conducted in triplicate. Statistical analysis 
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Fig. 6 Flow cytometric apoptotic analysis of the MCF‑7 cells by Annexin V‑FITC. The cells were exposed to IC25 concentration of Taxol, 
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Table 1 Lowest and highest values of the selected parameters 
in Plackett–Burman Design for optimization of Taxol production

No Variables (g/L) Value

Low (− 1) High (+ 1)

X1 Maltose 2.0 6.0

X2 Lactose 2.0 6.0

X3 Sucrose 2.0 6.0

X4 Peptone 3.0 8.0

X5 Soy tone 3.0 8.0

X6 Yeast extract 3.0 6.0

X7 Ammonium tartrate 2.0 4.0

X8 Sodium acetate 2.0 4.0

X9 Cysteine 3.0 6.0

X10 Phenyl alanine 1.0 3.0

X11 Methionine 2.0 4.0

X12 Glycine 2.0 4.0

X13 Sodium nitrate 1.0 3.0

X14 Calcium chloride 1.0 3.0

X15 Magnesium sulphate 0.5 2.0

X16 Potassium hydrogen phosphate 1.0 4.0

X17 Fluconazole 1.0 3.0

X18 Methyl jasmonate 0.1 1.0

X19 Ammonium sulphate 2.0 5.0
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of this design illustrated the significance of this Model 
with F-value of 9.04. There is only 0.05% noise of this as 
revealed from the F-Value. Also, the model terms hold 
significant importance when the values of "Prob > F" are 
less than 0.0500. The "Predicted R-Squared" of 0.5174 
is in rational agreement with the "Adj. R- Squared" of 
0.6791. "Adeq. Precision" signal to noise ratio was about 
10.011 revealing the adequacy of the signal (Table  3). 
The plotting of the main effects and normal probability 
of the tested variables were assessed (Fig. 7), demonstrat-
ing that there were five different independent variables, 
S-methyl jasmonate (X15), T- Ammonium sulfate (X14), 
B-Lactose (X4), A-Maltose (X10) and R-Fluconazole 
(X13), had a significant effect on Taxol productivity by A. 
niger. The significance of the factors on Taxol productiv-
ity by A. niger, as well as the actual and predicted yield 
of Taxol, can be observed through the Pareto chart and 
probability plots of the independent variables (Fig.  7). 
The evaluation of statistical significance of each variable 
was conducted using the p-value and student’s t-test, as 
shown in Table  3. The distribution of residuals around 
the diagonal line confirmed the independent normality of 
the variables, indicating a precise alignment between the 
predicted and actual Taxol yield. The initial polynomial 
equation for Taxol production by A. niger reflecting the 
significant independent variables was represented by the 
following:

Taxol productivity = 65.49333 − 8.865 ∗ Malt-
ose + 9.46 ∗ Lactose − 16.48 ∗ Fluconazole + 60.4 ∗ Methyl 
jasmonate + 16.95333* Ammonium sulphate.

The highest actual (267.16  µg/L) and predicted 
(233.5 µg/L) yields of Taxol by A. niger was reported at 
Run #7, with the Plackett–Burman design, with about 
1.5 folds increases in Taxol yield of A. niger, com-
pared to the control “non-optimized” fungal cultures 
(173.9 µg/L).

The most significant parameters affecting Taxol pro-
duction by A. niger as revealed from the Plackett–Bur-
man design including maltose, lactose, fluconazole, 
methyl-jasmonete and ammonium sulfate were further 
optimized by Central Composite Design (CCD). The 
interactions of the five parameters “maltose, lactose, 
fluconazole, methyl-jasmonate and ammonium sul-
fate” were tested at five levels, to assess their physiologi-
cal interactions of on Taxol production A. niger. From 
the CCD results (Table  4), the maximum productiv-
ity of Taxol (279.8  µg/L) by A. niger with the CCD bio-
processing was recorded at the run #7, i.e. by about 1.1 
folds increments over the Plackett–Burman deisgn. The 
highest Taxol productivity by A. niger upon CCD, was 
achieved at 4 g/l maltose, 4 g/L lactose, 1.0 g/L flucona-
zole, 0.2 g/l methyl-jasmonate and 2 g/L ammonium sul-
fate incubated for 15 days. The factors with p-value < 0.1 
were considered to be significant. The most significant 
factors affecting Taxol production was reported at 90% 
confidence, with r2 value 97.8%, revealing the good-
ness of fit of the regression model. Thus, the interaction 
between maltose, lactose, fluconazole, and methyl-jas-
monate were the most significant factors affecting Taxol 
production by A. niger.

Table 3 Analysis of regression statistics and variance ANOVA for Placket‑Burman design

Source Sum of squares Df Mean Square F Value p‑Value Prob > F

Model 46,586.94 5 9317.39 9.04 0.0005 Significant

A‑Maltose 6287.06 1 6287.06 6.1 0.027

B‑Lactose 7159.33 1 7159.33 6.95 0.0196

R‑Fluconazole 5431.81 1 5431.81 5.27 0.0376

S‑Methyl jasmonate 14,775.05 1 14,775.05 14.34 0.002

T‑Ammonium sulfate 12,933.7 1 12,933.7 12.55 0.0032

Residual 14,427.3 14 1030.52

Cor Total 61,014.24 19

Coefficient Standard Error 95% CI VIF

Factor Estimate Df Low High

Intercept 127.47 1 7.178166797 112.074363 142.8656366

A‑Maltose − 17.73 1 7.178166797 − 33.125636 − 2.33436342 1

B‑Lactose 18.92 1 7.178166797 3.52436342 34.31563658 1

R‑Fluconazole − 16.48 1 7.178166797 − 31.8756365 − 1.08436342 1

S‑Methyl jasmonate 27.18 1 7.178166797 11.78436342 42.57563658 1

T‑ammonium sulfate 25.43 1 7.178166797 10.03436342 40.82563658 1
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Metabolic stability of Taxol production by A. niger 
with the storage and effect of the plant leaf extracts 
on restoring the Taxol productivity
The influence of storage of A. niger at 4  ℃ along 
10  months was assessed on their Taxol biosynthetic 
potency, compared to the zero culture. After incuba-
tion of each culture, Taxol was extracted and quanti-
fied by TLC and HPLC. A noticeable relative stability 
of Taxol biosynthetic machinery has been observed till 
6  months of storage as slope cultures at 4 ℃ (Fig.  8). 
The productivity of Taxol by A. niger was attenuated by 
about 1.25 folds after the 6 months (180.7 μg/L) of stor-
age, compared to the first culture (234.43  μg/L). The 
yield of Taxol by A. niger was reduced by about 2.6 folds 
at the 10th month of storage (91.8 μg/L). Thus, from the 
linear equation of Taxol productivity by A. niger, the 
biological half-life time of metabolic biosynthetic sta-
bility of Taxol was approximated by about 6.1  months 
as slope cultures at 4 ℃. As well as, the mycelial mela-
nin pigmentation of A. niger was obviously faded with 
the fungal storage, revealing the apparent connection 
with the expression of the biosynthetic genes of pol-
yketides with the storage time, that might be correlated 
with the Taxol reduction over the time [21].

The effect of organic leaves extracts of E. whitelockii on 
restoring the Taxol biosynthetic potency of A. niger has 
been assessed. The extracts of dichloromethane, ethyl 
acetate and ethanol of E. whitelockii leaves, was amended 
to 5  days pre-culture of the zero culture and 8  months 
stored A. niger, then completed to 15 days of incubation, 
Taxol was extracted and quantified. From the obtained 
results (Fig. 8), the ethyl acetate extracts of E. whitelockii 
displayed a slight inducing effect of Taxol biosynthesis 
of 8 months stored culture of A. niger by about 1.3 folds 
(210  μg/L), however, this extract had no obvious effect 
on Taxol production by the zero culture of A. niger. The 
extracts of dichloromethane and ethanol had no notice-
able effect on induction of Taxol biosynthesis by the 
stored A. niger culture. The remarkable inducing effect of 
ethyl acetate extracts, compared to other extracts, might 
be due to the high polarity of the ethyl acetate extracting 
unique compounds, than the other solvents.

Discussion
Despite the fungal fast growth, resistance to mechanical 
stress, and feasibility of genetic manipulation, the com-
mercial production of Taxol by fungi has been halted by 
the rapid loss of Taxol productivity with the storage and 

Fig. 7 The impacts of several variables on Taxol production corresponding to the Plackett–Burman experimental design. The normal probability 
plots of the variables for Taxol production by A. niger as determined by the first order polynomial equation. A: The Pareto chart displays 
the significance of all variables. The half ‑Normal plot (B), The Box‑Cox power transform (C), and the normal plot of the standardized effect 
with normal possibility (D). E Plot of correlation between predicted and actual Taxol yield of. A. niger. F Plot of the standardized effect with normal 
residuals
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subculturing [14, 18, 22, 59]. Thus, screening for a novel 
endophytic fungal isolate inhabiting the plants of ethnop-
harmacological uses, could have relatively stable Taxol-
producing machinery. From literature, the biological and 
metabolic identities of the fungal endophytes inhabiting 
E. whitelockii remains equivocal, thus, mining of fungal 
endophyte with metabolically stable Taxol-producing 
machinery with the storage was the main objective of 
this study. Eight fungal isolates were recovered from 
the leaves of E. whitelockii, the highest Taxol produc-
ing potency was reported for A. niger (173.9  μg/L). The 
isolate of A. niger was morphologically identified based 
on the descriptions of Samson et al. [56] and Rapper ad 
Fennel et al. [39]. The isolate of A. niger was molecularly 
identified based on its internal transcribed spacer (ITS) 

sequence, the sequence was deposited on Genbank with 
accession number OR414905.1. This is the first report 
describing isolate of A. niger as an endophyte of E. 
whitelockii, that has the Taxol producing potency. Simi-
lar results reported the Taxol producing potency from 
gymnosperms; Ginkgo biloba [44] and Podocarpus gra-
cilior [21]. The Taxol yield by A. niger has been matched 
with Penicillium polonicum [44], A. flavipes [60], A. ter-
reus [21], endophytes of Podocarpus gracilior, as well as 
endophytes of Taxus sp such as A. niger [61], Fusarium 
solani [62] and A. candidus [63]. The metabolic potency 
of Taxol production was verified by the PCR mining of 
10-deacetyl-baccatin III-O-acetyltransferase as rate-lim-
iting gene of Taxol biosynthesis. Molecular verification of 
Taxol biosynthesis via PCR mining of the signature genes 

Table 4 Matrix and responses of the CCD for the significant factors affecting Taxol production by A. niger 

Maltose (g/L) Lactose (g/L) Fluconazole (g/L) Methyl jasmonate 
(g/L)

Ammonium sulfate 
(g/L)

Taxol yield (µg/L)

1 2 8 0.1 0.2 2 152

2 1 4 0.5 0.1 5 82.2

3 2 2 0.5 0.1 3 110.2

4 1 8 1 0.4 4 162.2

5 8 12 4 0.4 1 93.2

6 2 8 2 0.6 2 213.8

7 4 4 2 0.6 3 279.8

8 8 8 2 0.4 2 130.1

9 2 12 2 0.2 4 93.4

10 4 4 4 0.2 3 84.1

11 8 4 4 0.4 2 120.1

12 1 4 4 0.8 4 132.1

13 8 8 2 0.8 5 149.7

14 4 2 2 0.1 5 210.1

15 1 2 4 0.1 1 135.9

16 4 2 4 0.6 1 230.1

17 4 8 2 0.8 2 161.6

18 4 2 0.5 0.2 2 141.1

19 8 4 0.5 0.6 4 102.6

20 1 4 0.5 0.6 3 120.8

21 12 4 0.1 0.8 2 120.2

22 8 4 0.1 0.6 4 160.8

23 4 8 2 0.4 5 164.9

24 4 1 2 0.6 4 126.7

25 12 8 4 0.8 5 137.7

26 12 12 2 0.1 3 87.9

27 12 12 4 0.1 3 210.3

28 8 1 4 0.1 3 203.9

29 8 12 4 0.2 4 128.9

30 4 1 4 0.2 4 89.0

31 4 8 2 0.6 1 84.9
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encoding the rate-limiting enzymes was recognized as 
preliminary marker for assessing the molecular blueprint 
of Taxol biosynthesis [21, 64, 65].

The chemical identity of the purified Taxol from A. 
niger was confirmed by HPLC, UV-absorption spec-
tra, FT-IR spectra, and LC–MS/MS. Collectively, from 
these spectral and chromatographic analysis, the purified 
putative Taxol from A. niger had the same spectral and 
chemical structures of the authentic Taxol from T. brevi-
folia [14]. Additionally, the putative Taxol sample from A. 
niger had a molecular mass to charge ratio of 854.5 m/z, 
which was identical to the authentic Taxol from T. brevi-
folia [14]. Furthermore, the parent molecule of the puta-
tive Taxol from A. niger exhibited the same molecular 
fragmentation pattern as the authentic Taxol, confirming 
their chemical identity as Taxol [20, 58, 66].

The antiproliferative activity of ethyl acetate extract 
and Taxol from A. niger was evaluated against human 
hepatocellular (Hep-G2), breast (MCF-7) and intestinal 
(Caco-2) carcinoma cells compared to the Vero cells. 
From the  IC50 values, the ethyl acetate extract of A. niger 
had a significant effect against MCF-7 (8.9 μg/mL), Hep-
G2 (15.36 µg/mL), with obviously tiny activity to the Vero 
cells. The purified Taxol of A. niger had a significant activ-
ity towards the MCF-7 and HepG2 cells (~ 0.014  μM), 
and Caco-2 cells (0.067 μM), with selectivity index 22.2, 
revealing the efficiency and specificity of Taxol in target-
ing the tumor cells than normal ones. According to the 
National Cancer Institute (NCI) reports, the potent cyto-
toxic compounds should be of  IC50 value < 20 μg/mL [67]. 

Ethyl acetate extract was found to have a potent cytotoxic 
activity with  IC50 of < 20 μg/mL on MCF-7 and Hep-G2, 
that being similar with the ethyl acetate extracts of A. fla-
vus, with  IC50 for MCF-7 cells of 16.25 µg/mL [68].

A. flavus is the second most prevalent opportunistic 
pathogen that causes both invasive and superficial infec-
tions in humans, exhibiting the highest levels of morbid-
ity and mortality [69]. Ethyl acetate extract of A. niger of 
E. whitelockii exhibited superior antifungal activity than 
ethyl acetate extract of A. niger, an endophyte of Alan-
gium salviifolium, or other host plants against A. flavus 
[70, 71]. This finding could be attributed to the fluctua-
tion in the metabolite contents of fungal endophytes in 
relation to different host plants [22]. Taxol purified from 
A. niger has superior antiproliferative activity to Hep-G2 
and MCF-7 tumor cells than P. polonicum Taxol  (IC50 
values of 4.06  μM and 6.07  μM) [44]. The antiprolifera-
tive activity of A. niger extracted Taxol towards the vari-
ous human carcinoma cell lines were closely similar to 
Taxol purified from various fungal sources [20, 72–75]. 
Taxol inhibits the formation of functional spindles dur-
ing metaphase in mitosis and cellular proliferation, dis-
rupting the normal reorganization of the microtubules, 
ultimately leads to the induction of apoptosis and cell 
mortality during the G2/M phase of cell cycle [76–78]. 
Obviously, the Taxol-producing endophytic fungi have 
a remarkable activity against A. flavus, in a concentra-
tion-dependent manner. The putative Taxol sample has 
a significant activity against A. flavus in a concentration 
dependent manner. The lack of activity of the extracted 

234.43

205.02
191.42

180.71
164.05

91.8

y = -24.193x + 262.58 

0

50

100

150

200

250

300

Zero 2 4 6 8 10

Ta
xo

l y
ie

ld
 (μ

g/
L)

Storage (month) 

Zero             2nd                4th          6th               8th         10th

164

181
210

152

0

50

100

150

200

250

8 months Dichloromethane Ethylacetate Ethanol

Ta
xo

l y
ie

ld
 (μ

g/
L)

8th months     Dichloromethane     Ethylacetate         EthanolA B 

Fig. 8 Biosynthetic stability of Taxol by A. niger in response to storage and effect of plant extracts on restoring its biosynthetic Taxol machinery. A 
The productivity of Taxol for A. niger in response to fungal preservation as slope culture (The upper panel is the TLC, the lower panel is the yield 
of Taxol). B The yield of Taxol by A. niger in response to amendment with different extracts of E. whitelockii (The upper panel is the TLC, the lower 
panel is the yield of Taxol)



Page 16 of 19Gamal et al. Microbial Cell Factories           (2024) 23:78 

Taxol on A. niger, the same Taxol-producing fungal iso-
late, confirm the possessing of a specific resistance mech-
anism to Taxol that might be by blocking the receptors 
on the cell membrane or re-orienting the molecular ste-
reo-structure of tubulins, to be inaccessible for binding 
with Taxol. Similar results for dual antiproliferative and 
antifungal activities of Taxol were reported [79].

The effect of purified Taxol of A. niger on the migra-
tion of the HepG2 and MCF-7 cells, was evaluated by 
measuring the wound closure. The wound healing of the 
HepG2 and MCF-7 was estimated by 71% and 79% after 
72  h, compared to the control. The plausible suppres-
sion of healing of tumor cells with the purified A. niger 
Taxol, confirmed the interference with the cellular divi-
sions, and matrix formation, with ultimate halting of 
their metastasis. Taxol was extensively researched for its 
ability to act as an anti-angiogenic agent, hinder wound 
healing, and impede cell migration across various cell 
lines [80, 81]. Taxol inhibited the human umbilical vein 
endothelial cells migration, decreasing the length of 
microtubules; reducing the peripheral microtubules [80]. 
The effect of the purified Taxol of A. niger on the apop-
tosis of MCF-7 cells was assessed, a significant shift has 
been observed for the normal cells to apoptotic phase, 
responsive to Taxol, compared to control. The percent-
age of total apoptosis of the MCF-7 cells was increased 
by about 11 folds in response to A. niger Taxol, compared 
to the control cells. The cell cycle of MCF-7 in response 
to Taxol treatment was analyzed with the purified Taxol 
at  IC25 values. The maximum growth arrest of MCF-7 
cells in response to Taxol was reported at the G2/M val-
ues, compared to the control cells, that being similar with 
previous results [82]. The same biological effect of A. 
niger Taxol on cell cycle, antiproliferative activity, and cell 
migration of tumor cells with the Taxol from T. brevfolia, 
ensures the identical molecular stereo-structure, orien-
tation and structure activity relationships of the purified 
sample with the authentic one.

The productivity of Taxol by A. niger, endophyte of E. 
whitelockii, was maximized by the nutritional optimiza-
tion with the response surface methodology. The signifi-
cant variables affecting Taxol productivity by A. niger was 
methyl jasmonate, ammonium sulfate, lactose, maltose 
and fluconazole. The actual yield of Taxol by A. niger was 
increased by ~ 2.3 folds, compared to the control cul-
tures. Similar paradigm of maximizing the yield of bio-
active metabolites by fungi via nutritional optimization 
with the Plackett–Burman Design was reported, consid-
ering the interactions of the components in regulating 
the biosynthetic machinery of secondary metabolites in 
fungi [17, 44, 50, 66]. Similar optimization protocol has 
been employed for maximizing to the Taxol productivity 
by P. polonicum and A. terreus [21, 44]. Methyl jasmonate 

has been recognized a significant elicitor triggering the 
crosstalk of the plasma membrane receptors, stimulat-
ing the plant defense responses, by generating the reac-
tive oxygen species, induce the overexpression of the 
secondary metabolites [83]. Actually, the Taxol yield by 
A. niger, an endophyte of E. whitelockii, was similar to 
those of A. terreus, endophyte of Podocarpus gracilior 
(265.4  μg/L) [20, 21], A. niger, endophyte of Taxus cus-
pidata (273 μg/L) [61], A. candidus, endophyte of Taxus 
media (112  μg/L) [15], and A. fumigatus, endophyte of 
Podocarpus sp [3]. However, the Taxol yield by the cur-
rent isolate of A. niger was higher than those reported by 
F. proliferatum (240 ng/L) and Colletotrichum gloeospori-
oides (120 ng/L), endophytes of Taxus cuspidata [63].

The Taxol productivity of A. niger preserved as slope 
culture at 4  ℃ along 10  months was assessed, a rela-
tive stability of Taxol biosynthetic machinery has been 
observed till 6 months. The Taxol productivity by A. niger 
was attenuated by ~ 1.25 folds after 6 months of storage 
as slope culture, compared to the first culture, thus, the 
biological half-life time of metabolic biosynthetic stabil-
ity of Taxol was approximated by 6.1 months as slope cul-
ture. Attenuation of the Taxol productivity by fungi has 
been reported as one of the most challenges that halt the 
further implementation of fungi to be an industrial plat-
form for Taxol production [4, 17, 18, 20, 21, 44]. Similarly, 
the Taxol biosynthetic stability by A. flavipes was reduced 
by 2 folds by the 6th month storage (135 μg/L) [16]. The 
yield of Taxol by A. terreus was drastically reduced by 4 
folds (78.2 μg/L) by the 6th month of storage, compared 
to the 1st culture [20, 21], that being lower than the bio-
synthetic stability of Taxol by current isolate of A. niger, 
at the same conditions (174 μg/L).

The ethyl acetate extracts of E. whitelockii displayed a 
slight inducing effect on Taxol biosynthesis of 8 months 
stored culture of A. niger by about 1.3 folds (210  μg/L). 
The remarkable inducing effect of ethyl acetate extracts 
might be attributed to the higher polarity of the ethyl 
acetate extracting unique compounds, than the other sol-
vents. So, the Taxol biosynthetic machinery of A. niger 
may be influenced by chemical signals from the host 
plant or its associated microbial flora [15, 20].

In conclusion, A. niger, an endophyte of E. whitelockii, 
had the most promising yield of Taxol with relative meta-
bolic stability till the 6th month of storage. The chemical 
identity of purified A. niger Taxol was confirmed by the 
FT-IR, HPLC and LC–MS/MS analysis, compared to the 
authentic one. The purified Taxol of A. niger displayed 
a significant antiproliferative activity, strong inhibitory 
effect on tumor cells migration, arresting the cell cycle 
at the G2/M phase. The biological half-life time of Taxol 
productivity by A. niger was about 6  months as slope 
culture at 4  ℃, with partial restoring to the metabolic 
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potency of Taxol productivity by A. niger upon addi-
tion of ethyl acetate plant extract, ensuring possessing of 
some plant-derived signals that triggers the cryptic Taxol 
encoding genes. Metabolic characterization of the chemi-
cal identity of the plant-derived signals, and their effect 
on restoring the molecular expression of the Taxol bio-
synthetic machinery by the fungus, are the ongoing stud-
ies by our lab.
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